跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 17:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳學禮
研究生(外文):Hsuen-Li Chen
論文名稱:先進光學微影術中底抗反射層與衰減式相位偏移光罩的研究
論文名稱(外文):Study of Bottom Antireflective Coating Layers and Attenuated Phase Shifting Masks for Advanced Optical Lithography
指導教授:王倫
指導教授(外文):Lon Wang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:88
語文別:英文
論文頁數:150
中文關鍵詞:底抗反射層衰減式相位偏移光罩準分子雷射深紫外光微影術真空紫外光微影術極紫外光微影術
外文關鍵詞:bottom antireflective coatingattenuated phase shifting maskexcimer laserDUV lithographyVUV lithographyEUV lithography
相關次數:
  • 被引用被引用:1
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們研究共有三個項目。第一個項目是利用六甲基矽氧烷 (HMDSO) 作成的底抗反射層。它可用於以KrF (波長248 nm)及ArF (波長193 nm)準分子雷射為曝光光源的微影術。適宜作為底抗反射層的HMDSO膜層是利用調整ECR-PECVD製程中氧氣與HMDSO的氣體流量比而製成的。加上抗反射層後,在矽晶片及鋁膜上量測到的反射率均可小於1 %。而擺動(swing)效應也可以得到明顯的改善。我們也研究了以HMDSO作成的多層的底抗反射層結構。它可以用於各種不同的高反射基材,且擁有比單層膜大的厚度控制誤差容忍度。同時這個多層的結構也有潛力作為在深紫外光區的寬波段抗反射層。
第二個項目是利用PECVD製程來製作適用於深紫外光波段衰減式相位偏移光罩(APSM)的氮化矽膜層。並詳細分析膜層的光學常數、能隙、材料組成、雷射照射穩定性、蝕刻選擇性與膜層附著性。我們並利用深紫外光微影術結合矽化製程的技術將半次微米圖樣轉換至光罩膜層上,以證實氮化矽膜層作為APSM材料的可行性。綜合上述,發現氮化矽膜層為適合用來建構248 nm 及193 nm波段使用的APSM膜層。我們也利用RF濺鍍的方式成長氮氧化矽膜層,以作為真空紫外光157 nm雷射波段的APSM膜層之用。並分析氮氧化矽膜層的光學常數、蝕刻選擇性、表面狀態與膜層附著性。結果發現氮氧化矽膜層很有潛力可作為157 nm波段的APSM膜層。
第三個項目是我們利用光學薄膜原理來模擬用於極紫外光微影術中的新式反射式APSM。發現只要控制覆蓋於鉬/矽多層膜之上的鍺膜層厚度,就可以符合反射式APSM的需求,不需加任何相位偏移膜層。
We demonstrate a hexamethyldisiloxane (HMDSO) based BARC layer for both KrF (248 nm wavelength) and ArF (193 nm wavelength) excimer laser lithography. The suitable HMDSO films for BARC layers are obtained by varying the gas-flow rate ratio of oxygen to HMDSO in ECR-PECVD process. The measured reflectance lower than 1 % on both Al / Si and silicon crystal substrates have been achieved. The swing effect is shown significantly reduced by adding the HMDSO-based BARC layer. We also demonstrate a HMDSO based multi-layer BARC can have large thickness control tolerances over various highly reflective substrates. The multi-layer structure also has great potential for broadband AR coating in deep ultraviolet (DUV) regimes.
Suitable SiNx films for constructing the attenuated phase shifting masks (APSM) to be operated in the DUV regime are obtained by a PECVD process. Characteristics of the films such as optical constants, optical band gaps, material compositions, irradiation stability, etching selectivity and adhesion strength are experimentally analyzed in details. Sub-quarter micron patterns on SiNx films are obtained by utilizing DUV lithography and silylation technique for the proof of pattern formation feasibility. These results indicate that the SiNx films thus fabricated can meet all the requirements for building such APSM’s working in the wavelengths of 248 and 193 nm. We also demonstrate that suitable silicon-oxynitride films for constructing the APSM’s to be operated in the vacuum UV (VUV) 157 nm excimer laser regime are obtained by a RF sputtering process. Characteristics of the films such as optical constants, etching selectivity, surface profiles, and adhesion strength are experimentally analyzed. These results indicate that the silicon-oxynitride films can have great potential for building such APSM’s working in the wavelength of 157 nm.
We have simulated the optical performance of a new reflective type APSM for extreme UV (EUV) lithography by utilizing a multilayer optical thin film theory. In a typical Mo/Si multilayer structure, we show that the requirement of a reflective APSM can be met simply by adjusting the thickness of the over-coated Ge layer. No additional phase shifting layer is needed.
Cover
中文摘要
Abstract
Contents
List of Tables
List of Figures
Chapter 1 Introduction
1.1 Background
1.2 Chapter Outlines
Chapter 2 Bottom Antireflective Coating Layers for Deep Ultraviolet Optical Lithography
2.1 Antireflective Coating Technique for Optical Lithography
2.2 HMDSO Film as Bottom Antireflective Coating Layer for Deep Ultraviolet Optical Lithography
2.3 Multi-Layer HMDSO Films as Bottom Antireflective Coating for Deep Ultraviolet Lithography
Chapter 3 Attenuated Phase Shifting Masks for both Deep and Vacuum Ultraviolet Optical Lithography
3.1 Concepts of Phase Shifting Mask Technology
3.2 Attenuated Phase Shifting Masks for Deep UV Lithography
3.3 Attenuated Phase Shifting Masks for Vacuum Lithography
Chapter 4 Simulation on a Reflection Type Attenuated Phase Shifting Mask for Extreme UV Lithography
4.1 Introduction
4.2 Reflection Type Attenuated Phase Shifting Mask
4.3 Simulation Results
4.4 Summary
Chapter 5 Conclusion
Reference
Chapter 1
1. L. F. Thompson, C. G. Willson, M. J. Bowden, "Introduction to Microliithography," (American Chemical Society publication, Washington D. C. 1994).
2. J. R. Sheats and B. W. Smith, “Microlithography Science and Technology,” (Marcel Dekker Inc. publication, New York, 1998).
3. C. Y. Chang, and S. M. Sze, "ULSI Technology, " (McGraw-Hill Company publication, New York, 1996).
4. C. A. Mack ,"Depth of focus, " Microlithography World, 1, 20 (1995).
5. B. W. Smith," Strategies toward sub-0.25 m lithography," 3, 23 (1997).
6. Semiconductor Industry Association, " International Technology Roadmap for Semiconductor 1998 Updated, "( SIA publication, 1998).
7. J. H. Bruning, " Optical lithography below 100 nm,", Solid State Technology 11, 59 (1998) .
8. R. H. Stulen, ? nm extreme ultraviolet lithography," IEEE Journal of Selected Topics in Quantum Electronics, 3, 970 (1995).
9. M. D. Levenson, " Extending optical lithography to the gigabit era," Microlithography World, 3, 5 (1994).
Chapter 2
1. T. A. Brunner , " Optimization of optical properties of resist processes," Proc. SPIE 1466, 297 (1991) .
2. R. R. Dammel, and R. A. Norwood, " Modeling of bottom anti-reflection layers: sensitivity to optical constants," Proc. SPIE 2724, 754 (1996).
3. T. Perera, " Antireflective coatings - an overview," Solid State Technology 7, 131(1995).
4. J. Sturtevant, and B. Roman, “Antireflection strategies for advanced photolithography,” Microlithography World, 4, 13(1995).
5. J. R. Sheats and B. W. Smith, “Microlithography Science and Technology”, (Marcel Dekker Inc. publication, New York, 1998).
6. C. M. Dai and S. H. Liu, “Rough polysilicon film as a high-performance antireflective layer for sub-half-micron photolithography,” Jpn. J. Appl. Phys. 34, 6611(1995).
7. C. A. Mack , “Antireflective coatings”, Microlithography World, 3, 29 (1997).
8. Y. Tani, H. Mito, Y. Okuda, Y. Todokoro, T. Tatsuta, M. Sawai, and O. Tsuji, “Optimization of amorphous carbon-deposition antireflective layer for advanced lithography,” Jpn. J. Appl. Phys. 32, 5909 (1993).
9. T. Ogawa, M. Kimura, Y. Tomo, and T. Tsumori, “Novel ARC optimization methodology for KrF excimer laser lithography at low K1 factor,” in Optical / Laser Microlithography V, J. D. Cuthbert, ed., Proc. SPIE 1674, 362 (1992).
10. T. Gocho, T. Ogawa, M. Muroyama, and J. Sato, “Chemical vapor deposition of anti-reflective layer film for excimer laser lithography,” Jpn. J. Appl. Phys. 33, 486 (1994).
11. T. Ogawa, T. Gocho, H. Nakano, and M. Tsukamoto, “Hydrogenated silicon-oxynitride film antireflective layer for optical lithography,” Jpn. J. Appl. Phys. 36, 3775 (1997).
12. B. H. Jun, S. S. Han, K. S. Kim, J. S. Lee, Z. T. Jiang, B. S. Bae, K. No, D. W. Kim, H. Y. Kang, and Y. B. Koh, “Titanium oxide film for the bottom antireflective layer in deep ultraviolet lithography,” Appl. Opt. 36, 1482 (1997).
13. T. Ogawa, A. Sekiguchi, and N. Yoshizawa, “Advantages of a SiOxNy:H antireflective layer for ArF excimer laser lithography,” Jpn. J. Appl. Phys. 35, 6360 (1996).
14. D. Korzec, D. Theirich, F. Werner, K. Traub, and J. Engemann, “Remote and direct microwave plasma deposition of HMDSO films,” Surface and Coating Technology 74, 67 (1995).
15. 13. R. Rochotzki, M. Arzt, F. Blaschta, E. Krebig and U. H. Poll, “Optical properties of plasma polymer films,” Thin Solid Films 234, 463 (1993).
16. 14. S. Matsuo, and M. Kiuchi, “Low temperature chemical vapor deposition method utilizing an ECR plasma, Jpn. J. Appl. Phys. 22, L210 (1983).
17. M. R. Alexander, R. D. Short, and F. R. Jones, “An X-ray photoelectron spectroscopic investigation into the chemical structure of deposits formed from hexamethyldisiloxane / oxgen plasmas,” J. Mater. Sci. 31, 1879 (1996).
18. H. A. Macleod, Thin Film Optical Filters, (Macmillan, New York publication, 1986).
19. T. C. Paulick, “ Inversion of normal-incidence (R, T) measurements to obtain n+ i k for thin films,” Appl. Opt. 25, 562 (1986).
20. E. D. Palik, Handbook of Optical Constants of Solids, (Academic, San Diego, publication, 1985).
21. C. A. Mack , “Swing curves”, Microlithography World, 3, 23 (1994).
22. T. Tanaka, N. Asai, and S. Uchino, “A novel antireflection method with gradient photoabsorption for optical lithography,” Proc. SPIE 2276, 573 (1996).
23. R. A. Cirelli, G. R. Weber, A. Kornblit, R. M. Baker, F. P. Klemens, and J. Demarco, “A multi-layer inorganic antireflective system for use in 248 nm deep ultraviolet lithography.” J. Vac. Sci. Technol. B 14(6), 4229 (1996).
24. S. Kirkpatrick, C. D. Gelatt, and M. P.Vecchi, " Optimization by simulated annealing", Science 4568, 671 (1983).
Chapter 3
1. M. D. Levenson, " Improving resolution in photolithography with a phase shifting mask," IEEE Trans. Electron. Devices, 29, 1828 (1982).
2. M. D. Levenson, " Extending optical lithography to the gigabit era," Microlithography World, 3, 5 (1994).
3. S. Okazaki, "lithographic technology for future ULSI," Solid State Technology 11, 77 (1991).
4. A. Moniwa, T. Terasawa, N. Hasegawa, and S. Okazaki, " Algorithm for phase shifting mask design with priority on shifter placement," Jpn. J. Appl. Phys. 32, 5874 (1993).
5. M. D. Levonson, "Wavefront engineering for photolithography," Physics Today, July, 28 (1993).
6. A. K. Wang, and A. R. Neureuther, " Mask topography effects in projection printing of phase shifting masks," IEEE Trans. Electron. Devices, 41, 895 (1994).
7. Y. Iwabuchi, J Ushioda, H. Tanabe, and Y. Ogura, "Monolayer halftone phase shifting mask for KrF excimer laser lithography," Jpn. J. Appl. Phys. 32, 5900 (1993).
8. P. Gargini, J. Glaze, and O. Williams, “The SIA’s 1997 national technology roadmap for semiconductors,” Solid State Technology 41, 73(1998).
9. Burn J. Lin, " The attenuated phase shifting mask," Solid State Technology, 1 , 43 (1992).
10. P. F. Carcia, R. H. French, K. Sharp, J. S. Meth, B. W. Smith, ” Materials screening for attenuating embedded phase-shift photoblanks for DUV and 193 nm photolithography, ” Proc. SPIE 2884, 255 (1996).
11. K.K. Shih, T.C. Chieu, D.B. Dove, "Hafnium dioxide etch-stop layer for phase-shifting masks, ” J. Vac. Sci. Technol. B 11(6), 2130 (1993).
12. Alessandro Callegari, Andrew T. Pomerene, Harold J. Hovel, Edward D. Babich, Sapath Purushothaman, and Jane M. Shaw, "Optical properties of hydrogenated amorphous-carbon film for attenuated phase-shift mas applications, ”J. Vac. Sci. Technol. B 11(6), 2697(1993).
13. K.K. Shih, D.B. Dove, “Thin film materials for the preparation of attenuating phase shifting masks, ” J. Vac. Sci. Technol. B 12(1), 32 (1994).
14. B.W. Smith, S. Butt, Z. Alam, S. Kurinec, and R. L. Lane, "Attenuated phase shift mask materials for 248 and 193 nm lithography, ” J. Vac. Sci. Technol. B 14(6), 3719 (1996).
15. Bruce W. Smith, Zulfiqar Alam, Shahid Butt, Santosh Kurinec, Richard L. Lane, Graham Arthur, "Development and characterization of nitride and oxide based composite materials for sub 0.18 m attenuated phase shift masking, ”Microelectronic Engineering 35, 201 (1997).
16. Eunah Kim, Seungbum Hong, Zhong-Tao Jiang, Sungchul Lim, Sang-Gyun Woo, Young-Bum Koh, Kwangsoo, "Study on stability of CrFx films for phase shifting mask,” Proc. SPIE 3096, 294 (1997).
17. Jun Ushioda, Yuko Seki, Katsumi Maeda, Takeshi Ohfuji, Hiroyoshi Tanabe, "Chromium fluoride attenuated phase-shifting mask for argon fluoride excimer laser lithography,” Jpn. J. Appl. Phys. 35, 6356 (1996).
18. B. W. Smith, C. Fonseca, L.Zavyalova, Z. Alam and A. Bourov, " Plasma reactive ion etching of 193 nm attenuated phase shift mask materials," J. Vac. Sci. Technol. B 15(6) 2259 (1997).
19. Zhong-Tao Jiang, Tomuo Yamaguchi, Mitsuru Aoyama Leo Asinovsky: "Investigation of silicon rich nitride phase shifting mask material for 193 nm lithography” 3rd International Symposium on 193nm Lithography, 125 (1997).
20. M. A. Hartney, R. R. Kunz, L. M. Eriksen, Optical Engineering, 32, 2382 (1993)
21. H A Macleod, Thin Film Optical Filters, (Macmillan publication, 1986)
22. Laser Optics and Coating, Catalog of CVI (CVI Laser Corporation, publication, 1997)
23. S. Ghosh, D. N. Bose, J. Mat. Sci. Materials in Electronics 5, 193 (1994).
24. Takashi INUKAI, and Ken’ichi ONO, Jpn. J. Appl. Phys. 33, 2593 (1994).
25. G. Socrates, Infrared Characteristic Group Frequencies, (Wiley, New York, publication, 1980).
26. Chang-Dong Kim, Ryoichi Ishihara and Masakiyo, Jpn. J. Appl. Phys. 34, 5971 (1995).
27. Bruce W. Smith, Shahid Butt, Zulfiqar Alam:“ Attenuated phase shifting mask materials for 248 and 193 nm lithography” Microlithography World, 1, 7 (1997).
28. Kazuhiro Shimizu, Osamu Sugiura , Masakiyo Matsumura: Jpn. J. of Appl. Phys. Part 2, 29, L1775 (1990).
29. Rancourt, James D, Optical Thin Films Users’ Handbook, (Macmillan publication, 1987)
30. M. Pons, O. Joubert, C. Martinet, J. Pelletier, J. P. Panabiere and A. Weill, Jpn. J. Appl. Phys., 33, 991 (1994)
31. T. M. Bloomstein, M. Rothschild, R. R. Kunz, D. E. Hardy, R. B. Goodman, and S. T. Palmacci, " Critical Issue for projection lithography at 157 nm," J. Vac. Sci. Technol. B 16(6) (1998).
32. T. M. Bloomstein, M. W. Horn, M. Rothschild, R. R. Kunz, S. T. Palmacci, and R. B. Goodman, " Lithography with 157 nm lasers," J. Vac. Sci. Technol. B 15(6), 2112 (1997).
33. B. W. Smith, A. Bourov, L. Zavyalova, and M. Cangemi, " Design and development of thin film materials for 157 nm and VUV wavelengths: APSM, binary masking, and optical coatings applications," Proc. SPIE 3676-40, (1999).
34. S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood, Handbook of Plasma Processing Technology, (Noyes publication, New Jersey, 1990).
Chapter 4
1. H. Oizumi, Y. Maejima, T. Watanabe, T. Taguchi, Y. Yamashita, N. Atoda, K. Murakami, M. Ohtani, and H. Nagta. " Sub 0.1 m resist patterning in soft X ray ( 13 nm ) projection lithography, " Jpn. J. Appl. Phys., 32, 5914 (1993).
2. R. L. Kauffman, D. W. Phillion, and R. C. Spitzer, " X-ray production ~ 13 nm from laser-produced plasmas for projection x-ray lithography applications," Appl. Opt. 32, 6897 (1993).
3. M. Richardson, W. T. Silfvast, H. A. Bender, A. Hanzo, V. P. Yanovsky, F. Jin, and J. Thorpe, " Characterization and control of laser plasma flux parameters for soft-x-ray projection lithography," Appl. Opt. 32, 6901 (1993).
4. S. P. Vernon, D. G. Stearns, and R. S. Rosen, " Ion-assisted sputter deposition of molybdenum silicon multilayers," Appl. Opt. 32, 6969 (1993).
5. G. E. Sommargren, and L. G. Seppaia, "Condenser optics, partial coherence, and imaging for soft- X ray projection lithography," Appl. Opt. 32, 6938 (1993).
6. A. M. Hawryluk, N. M. Ceglio, D. A. Markle, " EUV lithography," Microlithography World, 2, 17 (1997).
7. B.W. Smith, S. Butt, Z. Alam, S. Kurinec, and R. L. Lane, "Attenuated phase shift mask materials for 248 and 193 nm lithography, ” J. Vac. Sci. Technol. B 14(6), 3719 (1996).
8. O. R. Wood II and D. L. White, " Use of attenuated phase masks in extreme ultraviolet lithography," J. Vac. Sci. Technol. B 15(6), 2448 (1997).
9. Katsuhiko Murakami,.Sumito Shimizu, and Masayuki Ohtani," Electroplated reflection masks for soft x-ray projection lithography," Jpn. J. Appl. Phys. Vol. 34, No. 12B, 6696 (1995).
10. D. M. Tennant, L. A. Fetter, L. R. Harriott, A. A. MacDowell, P. P. Mulgrew, J. Z. Pastalan, W. K. Waskiewicz, D. L. Windt, and O. R. Wood, "Mask technologies for soft-x ray projection lithography at 13 nm," Appl. Opt. 32, 7007 (1993).
11. J. H. Underwood, and T. W. Barbee, " Layered synthetic microstructures as Bragg diffractors for X rays and extreme ultraviolet: theory and predicted performance," Appl. Opts. 20, 3027 (1980).
12. H A Macleod, Thin Film Optical Filters, (Macmillan, New York, publication, 1986).
13. P. F. Carcia, R. H. French, K. Sharp, J. S. Meth, B. W. Smith, ” Materials screening for attenuating embedded phase-shift photoblanks for DUV and 193 nm photolithography, ” SPIE 2884, 255 (1996).
14. Optical constants compilied by B. L. Henke, E. M. Gullickson, and J. C. Davis and held at the Center for X-ray Optics (CXRO), Lawrence Berkley National Laboratory. Accessed through http://www-cxro.lbl.gov/optical constants (1998).
15. D. G. Stearns, R. S. Rosen, and S. P. Vernon, " Multilayer mirror technology for soft x-ray projection lithography," Appl. Opt. Vol. 32, No. 34, 6952 (1993).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top