跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 09:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳秉叡
研究生(外文):Wu, Bing-Ruey
論文名稱:超寬頻高功率二極體
論文名稱(外文):Extremely Broadband Superluminescent Diode
指導教授:林清富林清富引用關係
指導教授(外文):Lin, Ching-Fu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:206
中文關鍵詞:半導體雷射量子井載子動態半導體雷射放大器高功率二極體
相關次數:
  • 被引用被引用:2
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
為達到在光纖通訊波長範圍內寬頻特性的要求,本論文中我們設計並製作了InGaAsP/InP的不同寬度多層量子井結構之脊狀波導雷射及雷射放大器。根據AlGaAs/GaAs及InGaAsP/InP的非對稱多層量子井結構的光激放光實驗結果顯示,在半導體多層量子井中的載子分布是相當不均勻的。理論的計算也與實驗結果吻合。
在將InGaAsP/InP不同寬度多層量子井雷射及高功率二極體依據標準的製程製作完成後,我們量測其電壓對電流曲線、輸出光功率對電流特性曲線、光輸出頻譜及這些特性對溫度變化的關係。從量測結果我們發現在此類多層量子井中控制二維載子最終分布的優勢載子是電子,而非一般所認知的電洞。其原因是因為此類多量子井中的分離侷限異質結構(Separate Confinement Heterostructure, SCH)區域較長,故使得擴散速度較快的電子較電洞快進入量子井的二維能階。由實驗結果與理論模型的相互驗證也顯示出載子的量子力學捕捉時間應比一般所認定的時間(電洞0.2ps、電子1ps)要短一個數量級(電洞0.04ps、電子0.1ps)才可解釋實驗結果。量測的結果也顯示不同寬度量子井的順序對元件特性如L-I特性、發光頻譜及溫度特性有極大的影響,這是由於載子在順序不同的多層量子井內的分布情況不同所致。在實驗中也發現同一雷射元件在相同電流下其波長會有相當大(十幾個毫微米)的漂移;而且在溫度變動(5℃)時雷射波長會有劇烈的變化。其中一種不同寬度多量子井的順序,其雷射放大器的發光頻寬可涵蓋1.3μm到1.55μm(近300nm),為目前所知最寬的發光頻寬。
由之前所發展之數值模型也可對我們的量測結果做一理論與實際符合的解釋,如量子井寬度對峰值增益的影響、載子濃度分布對增益頻譜乃至於發光頻譜的影響及此種種對雷射發光特性的影響。
In order to obtain broadband characteristics in optical communication wavelength, InGaAsP/InP ridge waveguide lasers and superluminescent diodes with nonidentical multiple quantum wells (MQW) are designed and fabricated. According to the photoluminescence experiment of GaAs/AlGaAs and InGaAsP/InP nonidentical MQW, nonuniform carrier distribution inside MQW is discovered at low temperature, especially below 150K. Theoretical study confirms the experimental result.
The ridge waveguide InGaAsP/InP laser diodes and superluminescent diodes are fabricated with standard processing techniques. Then their electrical and optical properties are measured. The measured results show that electron is the dominant carrier controlling the 2D carrier distribution inside our MQW structures, in contrast to the common concept that hole is the dominant one. The reason is the separate confinement heterostructure of MQW structure is so long that it takes much more time for hole than electron to diffuse through. Analysis also suggests that a shorter quantum-mechanical capture time of carriers into QW (0.04ps for hole and 0.1ps for electron) than common concept (0.2ps for hole and 1ps for electron) is required to explain the experimental results. The sequence of the nonidentical MQW is experimentally shown to have significant influence on the L-I properties, emission spectra, and temperature characteristics, showing very different carrier distribution scheme in each sequence. Significant drift of lasing wavelength under same current level of the same laser diode, and abrupt switch of lasing wavelength within small temperature variation (5℃), are observed. Also, spectral width of superluminescent diode covering from 1.3μm to 1.55μm (near 300nm) is obtained from one particular sequence of the MQW structures. Simple calculations are performed to analyze these phenomena.
第一章 簡介 1
第二章 從光激放光實驗探討非對稱半導體量子井之特性 6
2-1 光激放光實驗 6
2-2 載子傳輸動力學及載子在多層量子井中之分布 16
2-3 半導體量子井增益的理論推導 26
2-3-1 半導體量子井價帶能帶結構的理論推導 26
2-3-2 半導體量子井增益之推導-
內部電子光子之交互作用 34
2-3-3 計算舉例 41
2-4 理論與實際驗證 44
2-5 磷化銦/磷砷化銦鎵(InP/InGaAsP)非對稱多層量子井
光激放光實驗 54
第三章 通訊波長非對稱量子井半導體雷射之設計與製作 62
3-1 設計不同寬度量子井 623-2 半導體雷射/雷射放大器製程簡介 67
3-3 製程結果檢視 76
第四章 非對稱量子井半導體雷射/雷射放大器之特性量測 83
4-1 05111/05112非對稱四層量子井
雷射/雷射放大器特性量測 87
4-1-1雷射特性量測 87
4-1-2 05111/05112雷射L-I特性對溫度的關係 92
4-1-3雷射放大器特性量測 99
4-2 04291/04292/05012不同寬度多量子井
雷射/雷射放大器特性量測 105
4-2-1雷射放大器特性量測 105
4-2-2 雷射特性量測 127
第五章 討論 157
5-1量子井結構對載子分布的影響 157
5-1-1 電子在此結構量子井中控制
二維載子空間分布的原因 157
5-1-2 載子在04291/04292/05012量子井結構中
分布的均勻性之探討 169
5-1-3 載子在05111/05112量子井內
分布特性之探討 174
5-2載子分布對發光頻譜的影響 179
5-2-1 04291/04292/05012載子分布對
雷射放大器頻譜之影響 179
5-2-2 04291/04292/05012載子分布對
雷射特性之影響 186
5-3 05111/05112與04291/04292/05012特性的比較 190
5-4製程對雷射及雷射放大器特性之影響 192
5-5光激放光與電致發光的不同 198
第六章 結論與未來展望 202
Chap 1
[1] H. J. R. Dutton, “Understanding Optical Communications”, Chap. 2, pp. 38-41, Prentice Hall, NJ, 1998.
[2] P. Kordos, “Ultra-Fast and broadband photodetectors on low-temperature grown molecular-beam epitaxial GaAs”, EDMO Proceedings of the 1997 Workshop on High Performance Electron Devices for Microwave and Optoelectronic Applications, pp. 129-134, 1997.
[3] R. Nagarajan, T. Fukushima, S. W. Corzine, and J. E. Bowers, “Effects of carrier transport on high-speed quantum-well lasers,” Appl. Phys. Lett., vol. 59, pp. 1835-1837, 1991.
[4] H. Yamazaki, A. Tomita, M. Yamaguchi, and Y. Sasaki, “Evidence of nonuniform carrier distribution in multiple quantum well lasers,” Appl. Phys. Lett., vol.71, pp. 767-769, 1997.
[5] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, and D. A. Thompson, “Effect of barrier thickness on the carrier distribution in asymmetric multipl-quantum-well InGaAsP lasers,” IEEE Photon. Technol. Lett., vol. 12, pp.134-136, 2000.
[6] N. Tessler and G. Eisenstein, “Distributed nature of quantum well lasers,” Appl. Phys. Lett., vol. 63, pp. 10-12, 1993.
[7] B. L. Lee, C. F. Lin, J. W. Lai, and W. Lin, “Experimental evidence of nonuniform carrier distribution in multiple-quantum-well laser diodes,” Electron. Lett., vol. 34, pp. 1230-1231, 1998.
[8] M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Cooper, and W. J. Devlin, “242nm continuous tuning from a SC-GRIN-MQW-BH InGaAsP laser in a extended cavity,” Electron. Lett., vol. 26, pp. 267-269, 1990.
[9] H. Tabuchi, and H. Ishikawa, “External grating tunable MQW laser with tuning range of 240nm,” Electron. Lett., vol. 26, pp. 742-743, 1990.
Chap 2
[1] 台大電機系, “半導體實驗講義,” pp. 1-26, 1997.
[2] J. H. Davies, “The Physics of Low-Dimensional Semiconductors,” Chap. 1, pp. 9, Cambridge University Press, London, 1998.
[3] B. L. Lee, C. F. Lin, J. W. Lai, and W. Lin, “Experimental evidence of nonuniform carrier distribution in multiple-quantum-well laser diodes,” Electron. Lett., vol. 34, pp. 1230-1231, 1998.
[4] D. A. Neamen, “Semiconductor Physics and Devices”, 2nd ed., Chap. 5, pp. 167-201, 1997.
[5] 李嗣涔, 管傑雄, 孫台平, “半導體元件物理,” 第三章, pp. 61-94, 1997.
[6] A. Othonos, “Probing ultrafast carrier and phonon dynamics in semiconductors”, J. Appl. Phys., vol. 83, pp. 1789-1830, 1998.
[7] 早期有關雷射二極體的具代表性文獻可在IEEE Journal of Quantum Electronics的1987年六月號中找到。
[8] M. Asada, Y. Mayamoto, and Y. Suematsu, “Gain and the threshold of three dimensional quantum-box lasers,” IEEE J. Quantum Electron., vol. 22, pp. 1915-1921, 1986.
[9] Y. Arakawa, and A. Yariv, “Quantum well lasers — gain, spectra, dynamics,” IEEE J. Quantum Electron., vol. 22, pp. 1887-1899, 1986.
[10] R. M. Spencer, J. Greenberg, L. F. Eastman, C. Y. Tsai, and S. S. O’keefe, “High speed direct modulation of semiconductor lasers,” from “High Speed Diode Lasers,” Editor: S. A. Gurevich, pp. 41-80, World Scientific, Singapore, 1998.
[11] W. F. Sharfin, J. Schlafer, W. Rideout, B. Elmen, R. B. Lauer, J. LaCourse, and F. D. Crawford, “Anomalously high damping in strained InGaAs-GaAs-AlGaAs graded index separate confinement heterostructure single quantum well lasers,” IEEE Photon. Technol. Lett. Vol. 2, pp. 9-11, 1991.
[12] J. E. Bowers, “High speed semiconductor laser design and performance,” Solid State Electron., vol. 30, pp. 1-11, 1987.
[13] D. Tauber and J. E. Bowers, “Dynamics of wide bandwidth semiconductor lasers,” from “High Speed Diode Lasers,” Editor: S. A. Gurevich, pp. 1-40, World Scientific, Singapore, 1998.
[14] C. Y. Tsai, C. Y. Tsai, Y. H. Lo, R. M. Spencer, and L. F. Eastman, “Nonlinear gain coefficients in semiconductor quantum-well lasers: effect of carrier diffusion, capture, and escape.”, IEEE J. of Selected Topics in Quantum Electronics, vol. 1, pp. 316-330, 1995.
[15] K. Liang, Q. Pan, and R. J. Green, “Nonlinear analysis of quantum-well lasers with the effects of carrier transport”, IEEE J. Quantum Electron., vol.35, pp. 955-960, 1999.
[16] P. V. Mena, S. M. Kang, T. A. DeTemple, “Rate-equation-based laser models with a single solution regime”, J. Lightwave Technol., vol. 15, pp. 717-729, 1997.
[17] N. Tessler and G. Eisenstein, “On carrier injection and gain dynamics in quantum well lasers”, IEEE J. Quantum Electron., vol. 29, pp.1586-1595, 1993.
[18] G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers”, 2nd Ed., Chap. 2, pp. 38, Van Nostrand Reinhold, New York, 1993.
[19] C. F. Lin and B. L. Lee, “Extremely broadband AlGaAs/GaAs superluminescent diode”, Appl. Phys. Lett., vol. 71, pp. 1598-1600, 1997.
[20] H. Hillmer and S. Marcinkevičius, “Optically detected carrier transport in Ⅲ/Ⅴ semiconductor QW structures: experiments, model calculations and applications in fast 1.55μm laser devices”, Appl. Phys. B, vol. 66, pp. 1-16, 1998.
[21] J. Piprek, P. Abraham, and J. E. Bowers, “Carrier nonuniformity effects on the internal efficiency of multiquantum-well lasers”, Appl. Phys. Lett., vol. 74, pp. 489-491, 1999.
[22] T. C. Newell, M. W. Wright, H. Hou, and L. F. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells”, IEEE J. of Selected Topics in Quantum Electron., vol. 5, pp. 620-626, 1999
[23] S. M. Sze, “Physics of Semiconductor Devices”, 2nd Ed., Wiley, New York, 1981
[24] S. C. Kan, D. Vassilovski, T. C. Wu, and K. Y. Lau, “On the effects of carrier diffusion and quantum capture in high speed modulation of quantum well lasers”, Appl. Phys. Lett., vol. 61, pp. 752-754, 1992.
[25] M. Alam and M. Lundstrom, “Simple analysis of carrier transport and buildup in separate confinement heterostructure quantum well lasers”, IEEE Photon. Technol. Lett., vol. 6, pp. 1418-1420, 1994.
[26] S. C. Kan, D. Vassilovski, T. C. Wu, and K. Y. Lau, “Quantum capture limited modulation bandwidth of quantum well, wire, and dot lasers”, Appl Phys. Lett., vol. 62, pp. 2307-2309, 1993.
[27] P. A. Morton, H. Temkin, D. L. Coblentz, R. A. Logan, T. Tanbun-Ek, “Enhanced modulation bandwidth of strained MQW lasers”, Appl Phys. Lett., vol. 60, pp. 1812-1814, 1992.
[28] K. Uomi, T. Mishima, N. Chinone, “Ultrahigh relaxation oscillation frequency (up to 30GHz) of highly p doped GaAs-AlGaAs multiple quantum well lasers’, Appl. Phys. Lett., vol. 51, pp. 78-80, 1987.
[29] P. A. Morton, “High speed 1.55μm lasers for fiber optic transmission”, Intern. J. of High Speed Electron. and Systems, vol. 8, pp. 457-474,. 1997.
[30] S. L. Chuang, “Physics of Optoelectronic Devices”, Chap. 3,4, John Wiley & Sons, New York, 1995.
[31] W. W. Chow and S. W. Koch, “Semiconductor-Laser Fundamentals: Physics of the Gain Materials”, Springer-Verlag, Berlin, 1999.
[32] J. J. Sakurai, “Modern Quantum Mechanics”, Chap. 5, pp. 285-345, Addison-Wesley, MA, 1994.
[33] J. M. Luttinger and W. Kohn, “Motion of electrons and holes in perturbed periodic fields”, Phys. Rev., vol. 97, pp. 869-883, 1955.
[34] D. Ahn and S. L. Chuang, “Optical gain and gain suppression of quantum well lasers with valence band mixing”, IEEE J. of Quantum Electron., vol. 26, pp. 13-24, 1990.
[35] S. L. Chuang, “Physics of Optoelectronic Devices”, Chap. 9, John Wiley & Sons, New York, 1995.
[36] J. J. Sakurai, “Modern Quantum Mechanics”, Chap. 5, pp. 285-345, Addison-Wesley, MA, 1994.
[37] R. Guenther, “Modern Optics”, Chap. 2, pp. 38, John Wiley & Sons, New York, 1990.
[38] Y. P. Chao and S. L. Chuang, “Opin-orbit-coupling effects on the valence band structure of strained semiconductor quantum wells”, Phys. Rev. B, vol. 46, pp. 4110-4122, 1992.
[39] J. Hader, J. V. Moloney and S. W. Koch, “Microscopic theory of gain, absorption, and refractive index in semiconductor laser materials — influence of conduction band nonparabolicity and coulomb-induced intersubband coupling”, IEEE J. Quantum Electron., vol. 35, pp. 1878-1887, 1999.
[40] Z. M. Li, M. Dion, Y. Zou, J. Wang, M. Davies, and S. P. McAlister, “An approximate k•p theory for optical gain of strained InGaAsP quantum-well lasers”, IEEE J. Quantum Electron., vol. 30, pp. 538-547, 1994.
[41] H. Tan, G. L. Snider, L. D. Chang, and E. L. Hu, “A self-consistent solution of Schrödinger-Poisson equations using a nonuniform mesh”, J. Appl. Phys., vol. 68, pp. 4071-4076, 1990.
[42] Adachi, A. R. Adams, M. Missous, F. H. Pollak, V. A. Wilkinson, “Properties of Aluminum Gallium Arsenide”, edited by S. Adachi, pp. 79, IEE, 1993.
Chap 3
[1] 李嗣涔、管傑雄、孫台平,”半導體元件物理”, 第四章, pp. 95-139, 三民書局, 1997.
[2] M. Levinshtein, S. Rumyantsev, and M. Shur, “Handbook Series on Semiconductor Parameters”, pp. 155, World Scientific, Singapore, 1998.
[3] D. A. Neamen, “Semiconductor Physics and Devices”, Chap. 3, pp. 85-132, Irwin, NJ, 1997.
[4] J. H. Davies, ”The Physics of Low-Dimensional Semiconductors”, Chap. 3, pp. 80-114, Cambridge, UK, 1997.
[5] T. R. Hayes, “Dry etching of In-based semiconductors”, from “Indium Phosphide and Related Materials: Processing, Technology, and Devices”, A. Katz, editor, Artech House, MA, 1992.
[6] L. F. Thompson, C. G. Willson, and M. J. Bowden, “Introduction to Microlithography”, 2nd ed., Chap. 5, pp. 377-493, ACS Professional Reference Book, Washington, DC, 1994.
[7] T. R. Hayes, “Dry etching of In-based semiconductors”, from “Indium Phosphide and Related Materials: Processing, Technology, and Devices”, A. Katz, editor, Chap. 8, pp. 284-293, Artech House, MA, 1992.
[8] 郭瑞銘, “半導體雷射鏡面之抗反射鍍膜”, 第四章, 國立台灣大學電機工程學研究所碩士論文, 1997.
[9] G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes”, IEEE J. Quantum Electron., vol. 24, pp. 2454-2457, 1988.
[10] A. Katz, “Ohmic contacts to InP and related materials”, from “Indium Phosphide and Related Materials: Processing, Technology, and Devices”, A. Katz, editor, Chap. 9, pp. 307-335, Artech House, MA, 1992.
[11] H. Kogelnik, “Theory of optical waveguides”, from “Guided-Wave Optoelectronics”, T. Tamir, ed., Chap. 2, pp. 7-88, Springer-Verlag, Berlin, 1988.
[12] M. Amann and J. Buus, “Tunable Laser Diodes”, Chap. 2, pp. 7-37, Artech House, MA, 1998.
[13] 王維新, 積體電路工程課程講義, pp. 4-10, 1998.
Chap 4
[1] G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers”, 2nd ed., Chap. 2, Van Nostrand Reinhold, New York, 1995.
[2] J. Braithsaite, M. Silver, V. A. Wilkinson, E. P. O’Reilly, and A. R. Adams, “Role of radiative and nonradiative processes on the temperature sensitivity of strained and unstrained 1.5μm InGaAs(P) quantum well lasers”, Appl. Phys. Lett., vol. 67, pp. 1073-1075, 1998.
[3] J. Piprek, D. Babic, and J. E. Bowers, “Simulation and analysis of double-fused 1.55μm vertical-cavity lasers”, J. Appl. Phys., vol.81, pp. 3382-3390, 1997.
[4] L. J. P. Ketelsen, and R. F. Kazarinov, “Carrier loss in InGaAsP-InP lasers grown by hydride CVD”, IEEE J. Quantum Electron., vol. 34, pp. 811-813, 1995.
[5] Y. Yoshida, H. Watanabe, K. Shibata, A. Takemoto, and H. Higuchi, “Analysis of characteristic temperature for InGaAsP BH lasers with p-n-p-n blocking layers using two-dimensional device simulators”, IEEE J. Quantum Electron., vol. 34, pp. 1257-1262, 1998.
[6] V. Mikhaelashvili, N. Tessler, R. Nagar, G. Eisenstein, A. G. Dentai, S. Chandrasakhar, and C. H. Joyner, “Temperature dependent loss and overflow effects in quantum well lasers”, IEEE Photon. Technol. Lett., vol. 6, pp.1293-1296, 1994.
[7] D. A. Ackerman, G. E. Shtengel, M. S. Hybersten, P. A. Morgan, R. F. Kazarinov, T. Tanbun-Ek, and R. A. Logan, “Analysis of gain in determining T0 in 1.3μm semiconductor lasers”, IEEE J. Select. Topics Quantum Electron., vol. 1, pp. 250-262, 1995.
[8] J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiquantum-well InGaAsP-InP lasers”, IEEE J. Quantum Electron., vol. 36, pp. 366-374, 2000.
[9] T. Saitoh and T. Mukai, “Traveling wave semiconductor laser amplifiers”, from “Coherence, Amplification, and Quantum Effects in Semiconductor Lasers”, Chap. 7, Y. Yamamoto, editor, John Wiley & Sons, New York, 1990.
[10] M. C. Amann and J. Buus, “Tunable Laser Diodes”, Chap. 8, pp. 207-209, 1998.
[11] B. L. Lee and C. F. Lin, “Wide-range tunable semiconductor lasers using asymmetric dual quantum wells”, IEEE Photon. Technol. Lett., vol. 10, pp. 322-324, 1998.
[12] G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers”, 2nd ed., Chap. 3, pp. 74-146, Van Nostrand Reinhold, New York, 1995.
[13] C. F. Lin, B. L. Lee and P. C. Lin, “IEEE Photon. Technol. Lett., vol. 8, no. 11, pp. 1456-1458, 1996.
[14] T. Keating, X. Jin, S. L. Chuang, K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers”, IEEE J. Quantum Electron., vol. 35, pp. 1526-1534, 1999.
Chap 5
[1] M. Alam and M. Lundstrom, “Simple analysis of carrier transport and buildup in separate confinement heterostructure quantum well lasers”, IEEE Photon. Technol. Lett., vol. 6, pp. 1418-1420, 1994.
[2] S. C. Kan, D. Vassilovski, T. C. Wu, and K. Y. Lau, “On the effects of carrier diffusion and quantum capture in high speed modulation of quantum well lasers”, Appl. Phys. Lett., vol. 61, pp. 752-754, 1992.
[3] M. Levinshtein, S. Rumyantsev and M. Shur, editors, “Handbook Series on Semiconductor Parameters, vol. 2, Ternary and Quaternary Ⅲ-Ⅴ Compounds”, Chap. 7, pp.153-178, 1999.
[4] T. Keating, X. Jin, S. L. Chuang, K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers”, IEEE J. Quantum Electron., vol. 35, pp. 1526-1534, 1999.
[5] J. Piprek, P. Abraham, and J. E. Bowers, “Selif-consistent analysis of high-temperature effects on strained-layer multiquantum-well InGaAsP-InP lasers”, IEEE J. Quantum Electron., vol. 36, pp. 366-374, 2000.
[6] R. Nagarajan, R. P. Mirin, T. E. Reynolds, and J. E. Bowers, “High speed quantum well lasers and carrier transport effect”, IEEE J. Quantum Electron., vol. 28, pp. 1990-2008, 1992.
[7] H. Yamazaki, A. Tomita, and M. Yamaguchi, “Evidence of nonuniform carrier distribution in multiple quantum well lasers”, Appl. Phys. Lett., vol. 71, pp. 767-769, 1997.
[8] S. L. Chuang, “Physics of Optoelectronic Devices”, Chap. 3, pp. 88, John Wiley & Sons, New York, 1995.
[9] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, and D. A. Thompson, “Effect of barrier thickness on the carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers”, IEEE Photon. Technol. Lett., vol. 12, pp. 134-136, 2000.
[10] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, D. A. Thompson, and M. Davies, “Effect of barrier height on the uneven carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers”, IEEE Photon. Technol. Lett, vol. 10, pp. 1380-1381, 1998.
[11] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, and D. A. Thompson, “Nonuniform carrier distribution in asymmetric multiple-quantum-well InGaAsP laser structure with different numbers of quantum wells”, Appl. Phys. Lett., vol. 74, pp. 744-746, 1999.
[12] S. L. Chuang, “Physics of Optoelectronic Devices”, Chap. 10, pp. 394-412, John Wiley & Sons, New York, 1995.
[13] D. Hofstetter, and R. L. Thornton, “Loss measurement on semiconductor lasers by Fourier analysis of the emission spectra”, Appl. Phys. Lett., vol. 72, pp. 404-406, 1998.
[14] W. W. Chow and S. W. Koch, “Semiconductor-Laser Fundamentals: Physics of the Gain Materials”, Chap. 1, pp. 1-35, Springer-Verlag, Berlin, 1999.
[15] W. W. Chow and S. W. Koch, “Semiconductor-Laser Fundamentals: Physics of the Gain Materials”, Chap. 2-4, pp. 36-149, Springer-Verlag, Berlin, 1999.
[16] BPM-CAD 4.0 Tutorials, pp. 251-273.
[17] G. R. Hadley, and R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions”, J. Lightwave Technol., vol. 13, pp. 465-499, 1995.
[18] J. C. Chen, and S. Jungling, “Computation of higher-order waveguide modes by imaginary-distance beam propagation method”, Optical and Quantum Electron., vol. 26, pp. 199-205, 1994.
[19] 有些中山大學光電所的研究
[20] T. R. Hayes, “Dry etching of In-based semiconductors”, from “Indium Phosphide and Related Materials: Processing, Technology, and Devices”, A. Katz, editor, Chap. 8, pp. 289, Artech House, MA, 1992.
Chap 6
[1] G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers”, 2nd ed., Chap. 5, pp. 180-230, Van Nostrand Reinhold, New York, 1995.
[2] R. M. Spencer, J. Greenberg, L. F. Eastman, C. Y. Tsai, and S. S. O’keefe, “High speed direct modulation of semiconductor lasers,” from “High Speed Diode Lasers,” Editor: S. A. Gurevich, pp. 41-80, World Scientific, Singapore, 1998.
[3] M. Amann and J. Buus, “Tunable Laser Diodes”, Chap. 4-6, pp. 75-141, Artech House, MA, 1998.
[4] T. E. Stern and K. Bala, “Multiwavelength Optical Networks — A Layered Approach”, Chap. 4, pp. 192-200, Addison Wesley, MA, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top