跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 04:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:牟昕
研究生(外文):Shin Mou
論文名稱:準相位匹配產生差頻紅外光之研究
論文名稱(外文):A Study of Quasi-Phase-Matched Difference Frequency Generation of Infrared Radiation
指導教授:林清富林清富引用關係
指導教授(外文):Ching-Fuh, Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:121
中文關鍵詞:準相位匹配差頻產生三維之疊代有限差分光束傳播法可調式高功率半導體雷射抗反射鍍膜
外文關鍵詞:Quasi-phase-matcheddifference frequency generationquasi-3D IFD-BPMhigh power semiconductor laserAR coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在本篇論文中,準相位匹配差頻產生中紅外光將於數值模擬及實驗雙方面來研究。
在數值模擬的部分,我們提出了一個準三維之疊代有限差分光束傳播法。它是由二維的模型改進而來,而且它是一個實用的模型。我們用它來模擬一個差頻之實驗,發覺它所得到的結果較二維的模型接近實驗結果,而且結果合理。我們也用這個模型來研究了一些準相位差頻之現象,結果發現在適當的條件下可使差頻光場形的腰寬保持固定,與孤立波類似。
在實驗的部分,我們用一個自製的可調式高功率半導體雷射來作為差頻產生的幫浦光。首先,我們在一個線性展開的半導體雷射鏡面上製作了抗反射鍍膜。此鍍膜使雷射的臨界電流上升,發光效率下降,且頻寬顯著增寬。因此此雷射適合用外腔光柵反饋的方式來達成可調式的高功率半導體雷射。在發光能量在三百至四百五十毫瓦時,可調範圍可達到十奈米。利用此雷射作幫浦所製成的差頻系統已建立。最大功率可達到3.4微瓦,此時轉換效率為7.32 微瓦/公厘瓦平方。此效率較數值模擬預測的小很多,最主要是因為入射角度過大(四十八度)而造成的。
Quasi-phase-matched difference frequency generation of mid-IR radiation have been studied from the numerical simulation to the real experiment in this thesis.
In the numerical part, a quasi-3D IFD-BPM was proposed. It is improved from 2D model to a cylindrically symmetric 3D model named quasi-3D. This model is practical to simulate QPM DFG. A DFG experiment is simulated, and the simulation result of quasi-3D IFD-BPM is closer to it than that of 2D IFD-BPM. Some phenomena in QPM DFG are also surveyed with quasi-3D IFD-BPM. The most important one is that the DFG beam waist could be kept as constant inside the QPM crystal. This implies spatial soliton may be generated with QPM DFG.
In the experimental part, a home-made tunable high power semiconductor laser is used as the pump source to carry out the DFG in PPLN. At first, the single layer AR coating on a tapered gain region semiconductor is investigated and carried out. This device is used for the tunable semiconductor laser with external-cavity grating feedback. After the AR coating, the threshold current is raised up slightly and the slope efficiency of L-I curve is lowered. The spectra get wider apparently. With grating external-cavity, the tuning range is 10nm for power from 300mW to 450mw. It is barely satisfactory to be the pump source of DFG. At last, the DFG pumped with tunable high power semiconductor laser is carried out. The maximal power is 3.4mW at 4.32mm. The efficiency is 7.32mW/cmW2, which is much smaller than the simulated estimation and others’ experimental results. This is caused by the large incident angle (48°) and maybe the bad optical field of semiconductor laser.
Chapter 1 Introduction
1.1 Basics of Quasi-Phase-Matching
1.2 Overview of this Thesis
Chapter 2 Numerical Methods
2.1 General Formulations
2.2 Rectangular Approximation (RA scheme)
2.3 2D IFD-BPM
2.4 Quasi-3D IFD-BPM
Appendix 2-A: 3-D simulation of IFD-BPM
Chapter 3 Comparisons and Some Numerical Simulations
3.1 Gaussian Beam in Linear Polarization Material by
Quasi-3D IFD-BPM
3.2 Comparison of Quasi-3D and 2D Schemes
3.2.1 DFG in waveguide-type PPLN
3.2.2 DFG in bulk-type PPLN
3.2.3 Computing time
3.2.4 Power fluctuation
3.3 Comparison of IFD-BPM and Experiment
3.4 Numerical Results by Quasi-3D Scheme
3.4.1 The variation of beam size of the DFG wave
3.4.2 Beam profile after propagation for a long distance
3.4.3 Influence of the beam size and waist position
3.5 Summary
Chapter 4 Antireflection Coatings
4.1 Theoretical Analysis of AR Coatings
4.1.1 Basic concept
4.1.2 Plane wave model
4.1.3 Guided wave model
4.1.4 Estimation of AR coatings
4.2 Paper Review of AR Coating Fabrication
4.3 Fabrication of AR Coating
4.3.1 Material of AR film
4.3.2 Evaporation method
4.3.3 Measurement of index and thickness
4.4 Results and Discussion
4.4.1 Test of evaporation condition
4.4.2 Influence of L-I curve
4.4.3 Influence of spectrum
4.4.4 Discussion
Chapter 5 Tunable High Power Semiconductor Laser
5.1 Experiment Setups
5.1.1 Setup of tunable high power semiconductor laser
5.1.2 L-I curve measurement
5.1.3 Spectrum measurement
5.1.4 Near field and far field measurement
5.2 Measured and Tuning Results
5.2.1 L-I curves
5.2.2 Tuning characteristics
5.2.3 Near field and far field
5.3 Summary
Chapter 6 DFG pumped by Tunable High Power Semiconductor
Laser
6.1 Theoretical Aspects
6.2 Experimental Setup
6.3 Results and Discussion
6.4 Summary
Chapter 7 Conclusion
Reference
Chapter 1
[1.1] T. H. Maiman, “Stimulated optical radiation in ruby”, Nature, vol. 187, pp.493, 1960
[1.2] M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses”, Science, vol. 286, pp. 1513-1517, 1999
[1.3] J. A. Armstrong, N. Blombergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric”, Phy. Rev., vol. 127, pp. 1918-1939, 1962
[1.4] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics”, Phys. Rev. Letters., vol. 6, pp. 169, 1965
[1.5] J. A. Giordmain and R. C. Millers, “Tunable coherent parametric oscillation in LiNbO3 at optical frequency”, Phy. Rev. Letters, vol. 6, pp. 169, 1965
[1.6] E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled planar lithium niobate waveguide”, Electron. Lett., vol. 25, pp. 174-175, 1989
[1.7] Eli Kapon, “Semiconductor laser II: materials and structures”, San Diego: Academic Press, 1999
[1.8] R. W. Boyd, “Nonlinear Optics”, San Diego: Academic Press, 1992
[1.9] E. Mayers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched optical parametric oscillations in bulk periodically poled LiNbO3”, J. Opt. Soc. Am. B, vol. 12, pp. 2101-2116, 1995
[1.10] K. Hayata and M. Koshiba, “Numerical study of guide-wave sum-frequency generation through second-order nonlinear parametric processes”, J. Opt. Soc. Am. B, vol. 8, pp. 449-458, 1991
[1.11] H. M. Masoudi and J. M. Arnold, “Parallel beam propagation methed for the analysis of second harmonic generation”, IEEE Photon. Technol. Lett., vol. 7, pp. 400-402, 1995
[1.12] F. A. Katsriku, B. B. A. Rahman, and K. T. V. Grattan, ‘Numerical modeling of second harmonic generation in optical waveguides using the finite element method”, IEEE J. Quantum Electron., vol. 33, pp. 1727-1733, 1997
[1.13] H.-F. Chou, C.-F. Lin, and G.-C. Wang, “An iterative finite difference beam propagation method for modeling second-order nonlinear effects in optical waveguides,” J. Lightwave Technol., vol. 16, pp. 1686-1693, 1998
Chapter 2
[2.1] R. L. Byer, “Quasi-phasematched nonlinear interactions and devices”, J. of Nonlinear Optical Physics & Materials, vol. 6, pp549-592, 1997
[2.2] M. M. Fejer, G. A. Magel , D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances”, IEEE J. Quantum Electron., vol. 28, pp. 2631-2654, 1992
[2.3] J. D. McMullen, “Optical parametric interactions in isotropic materials using a phase-corrected stack of nonlinear dielectric plates”, J. Appl. Phys., vol. 46, pp. 3076-3081, 1975
[2.4] C. Q. Xu, H. Okayama, and M. Kawahara, “Optical frequency conversions in nonlinear medium with periodically medulated linear and nonlinear optical parameters”, IEEE J. Quantum Electron., vol. 31, pp. 981-987, 1995
[2.5] V. Mahalakshmi, M. R. Shenoy, and K. Thyagarajan, “Evolution of the intensity profile of Cerenkov second-harmonic radiation with propagation distance in planar waveguides”, IEEE J. Quantum Electron., vol. 32, pp.137-144, 1996
[2.6] M. Vaya, K. Thyagarajan, and A. Kumar, “Leaky-waveguide configuration for quasi-phase-matched second-harmonic generation”, J. Opt. Soc. Am. B, vol. 15, pp.1322-1328, 1998
[2.7] H. J. W. M. Hoekstra, “On beam propagation methods for modeling in integrated optics”, Opt. Quantum Electron., vol. 29, pp. 157-171, 1997
[2.8] B. Hermansson, D. Yevick, and L. Thylen, “A propagation beam method analysis of nonlinear effects in optical waveguides”, Opt. Quantum Electron., vol. 16, pp. 525-534, 1984
[2.9] K. Hayata and M. Koshiba, “Numerical study of guide-wave sum-frequency generation through second-order nonlinear parametric processes”, J. Opt. Soc. Am. B, vol. 8, pp. 449-458, 1991
[2.10] K. Hayata and M. Koshiba, “Three-dimentional simulation of guided-wave second-harmonic generation in the form of coherent Cerenkov radiation”, Opt. Lett., vol. 16, pp. 1563-1565, 1991
[2.11] F. A. Katsriku, B. B. A. Rahman, and K. T. V. Grattan, ‘Numerical modeling of second harmonic generation in optical waveguides using the finite element method”, IEEE J. Quantum Electron., vol. 33, pp. 1727-1733, 1997
[2.12] P. S. Weitzman and U. Osterberg, “A modified beam propagation method to model second harmonic generation in optical fibers”, IEEE J. Quantum Electron., vol. 29, pp. 1437-1443, 1993
[2.13] H. M. Masoudi and J. M. Arnold, “Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method”, IEEE J. Quantum Electron., vol. 31, pp. 2107-2113, 1995
[2.14] H. M. Masoudi and J. M. Arnold, “Parallel beam propagation methed for the analysis of second harmonic generation”, IEEE Photon. Technol. Lett., vol. 7, pp. 400-402, 1995
[2.15] G. J. M. Krijnen, W. Torruellas, G. I. Stegeman, H. J. W. M. Heoskstra, and P. V. Lambeck, “Optimization of second harmonic generation and nonlinear phase-shifts in the Cerenkov regime”, IEEE. J. Quantum Electron., vol. 32, pp. 729-738, 1996
[2.16] H. J. W. M. Heoskstra, O. Noordman, G. J. M. Krijnen, R. K. Varshney, E. Henselmans, “Beam-propagation method for second-harmonic generation in waveguides with birefringent materials”, J. Opt. Soc Am. B, vol. 14, pp. 1823-1830, 1997
[2.17] H.-F. Chou, C.-F. Lin, and G.-C. Wang, “An iterative finite difference beam propagation method for modeling second-order nonlinear effects in optical waveguides,” J. Lightwave Technol., vol. 16, pp. 1686-1693, 1998
[2.18] H.-F. Chou, C.-F. Lin, and S. Mou, “Comparisons of finite difference beam propagarion methods for modeling second-order nonlinear effects,” J. Lightwave Technol., vol. 17, pp. 1481-1486, 1998
[2.19] Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method”, IEEE J. Quantum Electron., vol. 26, pp. 1335-1339, 1990
[2.20] H. —F. Chou, “A study of quasi-phase-matched second-order nonlinear effects”, Master’s thesis, National Taiwan University, Taipei, Taiwan, 1998
[2.21] W. Koechner, Solid-State Laser Engineering, New York: Springer-Verlag, 1976
[2.22] K. P. Petrov, L. Goldberg, W. K. Burns, R. F. Curl, and F. K. Tittel, “Detection of CO in air by diode-pumped 4.6-μm difference-frequency generation in quasi-phase-matched LiNbO3,” Opt. Lett., vol. 21, pp. 86-88, 1996
[2.23] J. W. Thomas, Numerical partial differential equations: finete difference methods, New York: Springer-Verlag, 1995
[2.24] W. Huang, C. Wu, S. T. Chu, and S. K. Chaundhuri, “The finite-difference vector beam propagation method: analysis and assessment”, IEEE J. Quantum Electron., vol. 10, pp. 295-305, 1992
[2.25] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the art of scientific computing, U.K.: Cambridge Univ. Press, 1992
[2.26] S. Nakamura, Applied numerical methods with software, New Jersey: Prentice-Hall, 1991
[2.27] S. E. Koonin, “Computational Physics”, Menlo Park: The Benjamain / Cummings Publishing Co., 1986
[2.28] D. G. Zill, M. R. Cullen, Advanced engineering mathematics, PWS publishing company, 1992
[2.29] P. L. Liu, S. L. Yang, and D. M. Yuan, “The semivectorial beam propagation method”, IEEE J. Quantum Electron., vol. 29, pp. 1205-1211, 1993
[2.30] P. L. Liu and B. J. Li, “Semivectorial beam-propagation method for analyzing polarized modes of rib waveguides”, IEEE J. Quantum Electron. Vol. 28, pp. 778-782, 1992
[2.31] J. Yamauchi, T. Ando, and H. Nakano, “Beam propagation analysis of optical fibers by alternating direction implicit method”, Electron. Lett., vol. 27, pp. 1663-1665, 1991
Chapter 3
[3.1] L. Goldberg and W. K. Burns, “Wide acceptance bandwidth difference frequency generation in quasi-phase-matched LiNbO3”, Appl. Phys. Lett., vol. 67, pp. 2910-2912, 1995
[3.2] L. Torner and G. I. Stegeman, “Soliton evolution in quasi-phase-matched second-harmonic generation“, J. Opt. Soc. Am. B, vol. 14, pp3127, 1997
[3.3] B. Bourliaguet, V. Couderc, A. Barthelemy, G. W. Ross, P. G. R. Smith, D. C. Hanna, and C. De Angelis, “Observation of quadratic spatial solitons in periodically poled lithium niobate,” Opt. Lett., vol. 24, pp1410-1412, 1999
Chapter 4
[4.1] W. Rideout, R. Holmstrom, J. LaCourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings”, Electron. Lett., vol. 26, pp. 36-38, 1990
[4.2] A. J. Collar et al., “Low residual reflectivity of angled-facet semiconductor laser amplifiers”, Photon. Technol. Lett., vol. 2, pp. 553-555, 1990
[4.3] I. Cha, M. Kilamura, H. Honmou, and I. Mito, “1.5mm band travelling-wave semiconductor optical amplifiers with window facet structure”, Electron. Lett., vol. 25, pp. 1241-1242, 1989
[4.4] G. Eisenstein and L. W. Stulz, “High quality antireflection coatings on laser facets by sputtered silicon nitride”, Appl. Opt., vol. 23, pp. 161-164, 1984
[4.5] T. Saitoh, T. Mukai, and O. Mikami, “Theoretical analysis and fabrication of antireflection coatings on laser-diode facets”, IEEE J. Lightwave Technol., vol. LT-3, pp. 288-293, 1985
[4.6] G. Eisenstein, G. Raybon, and L. W. Stulz, “Deposition and measurements of electron-beam-evaporated SiOx antireflection coatings on InGaAsP injection laser facets”, IEEE J. Lightwave Technol., vol. 6, pp. 12-16, 1988
[4.7] I. M. Thomas, “Single-layer TiO2 and multilayer TiO2-SiO2 optical coatings prepared from colloidal suspensions”, Appl. Opt., vol. 26, pp. 4688-4691, 1987
[4.8] R. M. Guo, “Antireflection coatings on semiconductor laser facets”, Master’s thesis, National Taiwan University, Taipei, Taiwan, 1997
[4.9] K. Shigihara, T. Aoyagi, S. Kakimoto, M. Aiga, and M. Ostubo, and K. Ikeda, “Antireflection coating for laser diodes”, Electron. Lett, vol. 31, pp. 1574-1576, 1995
[4.10] D. K. Cheng, “Field and wave electromagnetics”, chapter 8, Addison Wesley, 1989
[4.11] W. Hellmich and P. P. Deimel, “Optimal AR-coating for optical waveguide devices”, IEEE J. Lightwave Technol., vol. 10, pp. 469-476, 1992
[4.12] G. Eisenstein ,L. W. Stulz, and L. G. V. Vitert, “Antireflection coatings on semiconductor laser facet using sputtered lead silicate glass”, IEEE J. Lightwave Technol., pp. 1373-1374, 1986
[4.13] Y. Katagiri and H. Ukita, “Ion beam sputtered (SiO2)x(Si3N4)1-x antireflection coatings on laser facets produced using O2-N2 discharges”, Appl. Opt, pp. 5074-5079, 1990
[4.14] M. Serenyi, and H. U. Havermeier, “Directly controlled deposition of antireflection coatings of semiconductor laser facets”, Appl. Opt, pp. 845-847, 1987
[4.15] G. Hass and C. D. Silzberg, “Optical properties of silicon monoxide in wavelength region from 0.24 to 14.0 microns”, J. Opt. Soc. Am , vol. 44, pp. 181-187, 1954
[4.16] H. Anders, Thin films in optics, The Focal Press, 1965
[4.17] C. J. Mogab, P. M. Petroff, and T. T. Cheng, “Effect of reactant nitrogen pressure on the microstructure and properties of reactively sputtered silicon nitride films”, J. Electrochem. Soc. Solid State Sci. Technol., vol. 122, pp. 815-822, 1975
[4.18] Eli Kapon, “Semiconductor laser II: materials and structures”, pp. 261, San Diego: Academic Press, 1999
[4.19] W. S. Wang, A handout of integrated circuit engineering
Chapter 5
[5.1] K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN”, Appl. Phys. B, vol. 64, pp. 567-572, 1997
[5.2] N. J. Vasa, H. Parhat, M. Kidosaki, T. Okada, and M. Maeda, “Widely tunable difference frequency generation in quasi-phase-matched LiNbO3”, CLEO Pacific Rim '99, pp. 181-182
[5.3] S. Sanders, R. J. Lang, L. E. Myers, M. M. Fejer, and R. L. Byer, “Broadly tunable mid-IR radiation source based on difference frequency mixing of high power wavelength-tunable laser diodes in bulk periodically poled LiNbO3”, Electron. Lett., vol. 32, pp. 218-219, 1996
[5.4] Eli Kapon, “Semiconductor laser II: materials and structures”, San Diego: Academic Press, 1999, pp. 261
[5.5] G. Bendelli, K. Komori, S. Arai, and Y. Suematsu, “A new structure of high-power TW-SLA (Travelling wave semiconductor laser amplifier)”, IEEE Photon. Technol. Lett., vol. 3, pp. 42-44, 1991
[5.6] P. A. Yazaki, K. Komori, S. Arai, and Y. Suematsu, “A GaInAsP/InP tapered-waveguide semiconductor laser amplifier integrated with a 1.5μm distributed feedback laser”, IEEE Photon. Technol. Lett., vol. 3, pp. 1060-1063, 1991
[5.7] D. Mehuys, D. Welch, and D. Seifres, “1W CW, diffraction-limited, tunable external-cavity semiconductor laser”, Electron. Lett., vol. 29, pp. 1254-1255, 1993
[5.8] Hecht E. and Zajac A., “Optics”, Addison-Welsley, 1979, pp. 359
[5.9] J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions”, Optical and Quantum Electronics, vol. 28, pp. 623-645, 1996
[5.10] M. Tamburrini and L. Goldberg, “Periodic filaments in reflective broad area semiconductor optical amplifiers”, Appl. Phys. Lett., vol. 60, pp. 1292-1294, 1992
[5.11] Y. C. Zhang, “High power tapered semiconductor laser amplifier”, Master’s thesis, National Taiwan University, Taipei, Taiwan, 1999
Chapter 6
[6.1] K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN”, Appl. Phys. B, vol. 64, pp. 567-572, 1997
[6.2] M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate”, short communication, Opt. Quantum Electron., vol. 16, pp. 373-374, 1984
[6.3] Y. S. Kim and T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals”, J. Appl. Phys., vol. 40, pp. 4637-4641, 1969
[6.4] L. Goldberg and W. K. Burns, “Wide acceptance bandwidth difference frequency generation in quasi-phase-matched LiNbO3”, Appl. Phys. Lett., vol. 67, pp. 2910-2912, 1995
[6.5] L. Goldberg, W. K. Burns, and R. W. McElhanon, “Difference-frequency generation of tunable mid-infrared radiation in bulk periodically poled LiNbO3 “, Opt. Lett., vol. 20, pp. 1280-1282, 1995
[6.6] C. H. Wen, “Semiconductor laser pumped difference frequency generation of infrared radiation”, , Master’s thesis, National Taiwan University, Taipei, Taiwan, 2000
Chapter 7
[7.1] H.-F. Chou, C.-F. Lin, and G.-C. Wang, “An iterative finite difference beam propagation method for modeling second-order nonlinear effects in optical waveguides,” J. Lightwave Technol., vol. 16, pp. 1686-1693, 1998
[7.2] L. Goldberg and W. K. Burns, “Wide acceptance bandwidth difference frequency generation in quasi-phase-matched LiNbO3”, Appl. Phys. Lett., vol. 67, pp. 2910-2912, 1995
[7.3] K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN”, Appl. Phys. B, vol. 64, pp. 567-572, 1997
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top