跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 14:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖啟智
研究生(外文):Chi-Chih Liao
論文名稱:雷射引發p型氮化鎵活化及氮化銦鎵/氮化鎵多重量子井之光學特性研究
論文名稱(外文):Laser-induced p-type GaN Activation and Optical Study of InGaN/GaN Multiple Quantum Well Structures
指導教授:楊志忠楊志忠引用關係
指導教授(外文):C. C. Yang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:78
中文關鍵詞:氮化鎵活化多重量子井誘發放光
外文關鍵詞:GaNActivationMultiple Quantum WellsStimulated Emission
相關次數:
  • 被引用被引用:1
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:1
本篇論文中,我們探討兩個氮化鎵光電元件相關課題。首先,我們嘗試使用雷射照射來引發p型氮化鎵的活化,我們利用Nd:YAG雷射的二倍頻(波長為532毫微米)照射氮化鎵來活化鎂受體。實驗顯示,雷射活化的機制應是透過光子來打斷鎂原子與氫原子之間的鍵結,而非熱處理的效果。我們探討了雷射照射強度與脈衝數目和p-型載子濃度、載子移動率、電阻值之間的關係。同時,實驗結果也顯示只有在一定範圍內的雷射照射強度才能達到活化的效果。在第二部份中,我們則是探討氮化銦鎵/氮化鎵多重量子井結構的光學性質。從材料分析及光學量測結果,可以觀察到量子井附近銦原子聚集及相分離的現象。由光激發光和誘發放光頻譜的一些特殊性質,如S型的峰值波長位置變化及雙峰值的誘發放光頻譜,顯示出銦原子聚集及相分離對於氮化銦鎵/氮化鎵多重量子井的發光特性有相當明顯的影響。
In this thesis, the research results of two important topics in developing GaN-based optoelectronics devices are reported. The results of laser induced p-type GaN activation are first presented. Irradiation of the second harmonic (532 nm) of a Q-switched laser has proved promising in activating Mg acceptors for p-type GaN. Because it was shown to be a non-thermal process, the activation is attributed to the photon-induced dissociation of Mg-H complexes. The dependences of hole concentration, resistivity, and mobility on laser fluence and exposure pulse number are to be discussed. Activation could be achieved within a range of laser fluence level. Second, the optical characterization results of InGaN/GaN multiple quantum well structures are reported. Based on material analysis and optical characterization, evidences of indium aggregation and phase separation in InGaN/GaN multiple quantum well samples were obtained. Various features in photoluminescence and stimulated emission spectra, such as the S-shaped photoluminescence peak wavelength and the two-peak stimulated emission spectrum, support the crucial roles of indium aggregation and phase separation in optical properties of InGaN/GaN quantum wells.
Chapter 1 Introduction
1.1 GaN-based Materials
1.2 Review of p-type GaN Ohmic Contact
1.2.1 Scheme of Metal Contact
1.2.2 Metal-GaN Reactions
1.3 Review of p-type GaN Activation
1.3.1 Thermal Activation
1.4 Review of Optical Properties of InGaN
1.4.1 Indium Aggregation and Phase Separation
1.4.2 Spontaneous Emission
1.4.3 Stimulated Emission
1.5 Our Research Topics
Chapter 2 Laser-induced p-type GaN Activation
2.1 Experimental Procedures
2.1.1 Hall Effect Measurement
2.2 Experimental Results
2.3 Discussions
Chapter 3 Optical Characterization of InGaN/GaN Multiple Quantum Well Structures
3.1 Sample Structures
3.2 Experimental Setup
3.3 Results of PL Measurements
3.4 Results of Stimulated Emission Measurements
3.5 Discussions
Chapter 4 Summary
References
[1] S. Nakamura et al., "Superbright green InGaN single-quantum-well-structure light emitting diodes," Jpn. J. Appl. Phys., 134, pp. L1332-1335, 1994.
[2] S. Nakamura et al., "Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes," Appl. Phys. Lett., 69, pp.4056-4058, 1996.
[3] S. M. Sze, Physics of semiconductor devices (John Wiley & Sons, 1969), pp.369-370.
[4] S. Kurtin et al., "Fundamental transition in the electronic nature of solids," Phys. Rev. Lett. 22, pp.1433-1435, 1969.
[5] J. D. Guo et al., "Study of Schottky barriers on n-type GaN grown by low-pressure metalorganic chemical vapor deposition," Appl. Phys. Lett., 67, pp.2657-2659, 1995.
[6] S. Nakamura et al., The Blue Laser Diodes (Springer, 1997), Chap.2.
[7] M. Suzuki et al., "Low-resistance Ta/Ti Ohmic contacts for p-type GaN," Appl. Phys. Lett., 74, pp.275-277, 1999.
[8] J. K. Kim et al., "Low resistance Pd/Au Ohmic contacts to p-type GaN using surface treatment," Appl. Phys. Lett., 73, pp.2953-2955, 1998.
[9] J. -S. Jang et al., "Low-resistance Pt/Ni/Au Ohmic contacts for p-type GaN," Appl. Phys. Lett., 74, pp.70-72, 1999.
[10] V. M. Bermudez et al., "Growth of thin Ni films on GaN (0001)-(1x1)," Phys. Rev. B, 48, pp.2436-2444, 1993.
[11] J. K. Sheu et al., "The effect of thermal annealing on the Ni/Au contact on p-type GaN," J. Appl. Phys., 83, pp.3172-3175, 1998.
[12] H. Amano et al., "Growth and luminescence properties of Mg-doped GaN prepared by MOVPE," J. Electrochem. Soc., 137, pp.1639-1641.
[13] B. O. Yang et al., "High p-type conductivity in cubic GaN/GaAs(113)A by using Be as the acceptor and O as the codopant," Appl. Phys. Lett., 69, pp.2707-2709.
[14] J. Neugebauer et al., "Hydrogen in GaN: Novel aspects of a common impurity," Phys. Rev. B, 75, pp.4452-4455, 1995.
[15] H. Amano et al., "P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)," Jpn. J. Appl. Phys., 28, L2112-2114, 1989.
[16] X. Li et al., "Time-dependent study of low energy electron bean irradiation od Mg-doped GaN grown by metalorganic chemical vapor deposition," Appl. Phys. Lett., 69, pp.1605-1607, 1996.
[17] S. Nakamura et al., "Thermal annealing effects on p-type Mg-doped GaN films," Jpn. J. Appl. Phys., 31, L139-142, 1989.
[18] S. Nakamura et al., "Hole compensation mechanism of p-type GaN films," Jpn. J. Appl. Phys., 31, L1258-1266, 1989.
[19] K. Osamura et al., "Preparation and optical properties of Ga1-xInxN thin films," J. Appl. Phys., 46, pp. 3432-3437, 1975.
[20] I. Ho et al., "Solid phase immiscibility in GaInN,"Appl. Phys. Lett., 69, pp. 2701-2703, 1996.
[21] Y. Narukawa et al., "Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420nm," Appl. Phys. Lett., 70, pp. 981-983, 1997.
[22] C. -K. Sun et al., "Radiative recombination lifetime measurements of InGaN single quantum well," Appl. Phys. Lett., 69, pp.1936-1938, 1996.
[23] C. J. Sun et al., "Photoluminescence study of high quality InGaN-GaN single heterojunctions," Appl. Phys. Lett., 69, pp.668-670, 1996.
[24] S. Chichibu et al., "Spontaneous emission of localized excitons in InGaN single and multiquantum well structures," Appl. Phys. Lett., 69, pp.4188-4190, 1996.
[25] S. Chichibu et al., "Spatially resolved cathodluminescence spectra of InGaN quantum wells," Appl. Phys. Lett., 71, pp.2346-2348, 1997.
[26] K. L. Shaklee et al., "Direct determination of optical gain in semiconductor crystals," Appl. Phys. Lett., 18, pp.475-477, 1971.
[27] K. Domen et al., "Lasing mechanism of InGaN/GaN/AlGaN multiquantum well laser diode," Appl. Phys. Lett., 72, pp.1359-1361, 1998.
[28] T. J. Schmidt et al., "Energy selective optically pumped stimulated emission from InGaN/GaN multiple quantum wells," Appl. Phys. Lett., 73, pp.560-562, 1998.
[29] A. Satake et al., "Localized exciton and its stimulated emission in surface mode from single-layer InxGa1-xN," Phys. Rev. B, 57, pp.2041-2044, 1998.
[30] J. I. Pankove et al., Gallium Nitride (GaN) I (Academic Press, 1998), Chap.2, p.22.
[31] V. Swaminathan et al., Materials aspects of GaAs and InP based structures (Prentice Hall, 1991), pp.237-239
[32] L. J. van der Pauw, "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape," Philips Res. Repts., 13, pp.1-9, 1958.
[33] S. -W. Kim et al., "Reactivation of Mg acceptor in Mg-doped GaN by nitrogen plasma treatment," Appl. Phys. Lett., 76, pp.3079-3081, 1998.
[34] U. Kaufmann et al., "Nature of the 2.8eV photoluminescence band in Mg doped GaN," Appl. Phys. Lett., 76, pp.1326-1328, 1998.
[35] Y. -H. Cho et al., " "S-shaped" temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells," Appl. Phys. Lett., 73, pp.1370-1372, 1998.
[36] T. J. Schmidt et al., "Stimulated emission characteristics of InGaN/GaN multiple quantum wells: excitation length and excitation density dependence," Appl. Phys. Lett., 73, pp.3689-3691, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊