跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 04:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李中元
研究生(外文):Jung-Yuan Lee
論文名稱:反射式干涉成像微影術初期研究與次微米相位光罩之製作
論文名稱(外文):Preliminary study of reflection type imaging interferometric lithography and fabrication of sub-quarter-micron phase mask
指導教授:王倫
指導教授(外文):Lon Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:109
中文關鍵詞:干涉成像微影術相位光罩石英蝕刻電漿蝕刻
外文關鍵詞:imaging interferometrc lithographyphase maskfused-silica-etchingplasma etching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
我們設計了一個全反射式光學系統用以研究干涉成像微影術,干涉成像微影術利用偏軸照射來增加傳統光學系統的數值孔徑並改善解析度以達成任意形狀的微影成像。加入偏向鏡及傾斜兩個成像的凹球面鏡以改進反射式光學系統固有的遮敝問題,並利用空間濾波器以改善隨傾斜產生之像差,進一步形成一個繞射極限之成像系統。在傳統光學微影術中的系統的數值孔徑無法將2μm的線寛成像的情況下,而利用全反射式光學干涉微影術卻可達成。
我們結合干涉微影術與電漿蝕刻技術來研發次四分之一微米的相位光罩。用干涉微影術產生次四分之一微米的光阻結構並利用溼蝕刻的方式轉移到鍍鉻的石英基板上,再利用CHF3/O2電漿蝕刻石英基板上。此外,我們利用田口玄一法(Taguchi method)來最佳化光阻結構,並在蝕刻鍍鉻的石英基板前,產生良好品質的光阻結構,並再度利用田口玄一法來分析石英基板的蝕刻特性,以取得邊壁垂直的結果。最後,利用最佳化的條件,我們已達到波長193奈米的相位光罩所需的蝕刻深度170奈米。
An all-reflective optical system is designed to study imaging interferometric lithography (IIL). For arbitrary pattern imaging lithography, IIL is applied to enhance resolution by off-axis illumination to enlarge the numerical aperture of an conventional optical system. Inherent obscuration problems for reflective optical components are solved by using a folding mirror and by tilting of two concave spherical mirrors, and the incurred aberrations can be reduced by using a spatial filter, which leads to a diffraction-limited image system. A 2 mm pattern is printed by an all-reflective IIL optical system with low NA, which cannot be obtained by conventional optical lithography with the same NA.
A method of combining interferometric lithography (IL) and plasma-etching techniques to fabricate sub-quarter-micron phase masks is studied. The sub-quarter-micron PR pattern is formed by IL and transferred to a chromium-on-fused-silica substrate by wet-etching. Then reactive ion etching in CHF3/O2 plasma is used to etch a fused silica substrate. Furthermore, the Taguchi method is applied to optimizing the process of patterning photoresist (PR). A good quality PR pattern is obtained on the chromium-on-fused-silica substrate before etching the fused silica. The analysis results of etching fused silica by the Taguchi method also points out the trends to forming vertical sidewalls. By applying the optimized condition, we achieve an etched depth of ~170 nm which is close to the depth required for the phase masks working at 193 nm.
Contents
摘要 I
Abstract II
Contents III
Figure List VI
Abbreviation List
Chapter 1 Introduction 1
1.1 Background 1
1.2 Chapter outline 4
Chapter 2 Theoretical Modeling for Interferometric Imaging Lithography 5
2.1 Introduction 5
2.2 Fresnel and Fraunhofer Diffraction 6
2.3 Fourier Transforming Properties of Concave Mirrors 8
2.4 Imaging Calculation 11
2.5 Models for Imaging Interferometric Lithography and Off-Axis Illumination 14
Chapter 3 Simulation and Experiment of Reflective-type Imaging Interferometric Lithography 23
3.1 Introduction 23
3.2 Advantages and Disadvantages of Reflective Optical System 25
3.3 Experiment Setup 26
3.4 System Analysis by ZEMAX 27
3.5 Simulated and Measured Results 29
Chapter 4 Fabrication Process of Sub-Quarter-Micron Phase Mask 50
4.1 Introduction 50
4.2 Phase Mask Characterization and Theory 50
4.2.1 Utilization as holography grating masks 53
4.2.2 Utilization as phase masks 53
4.3 Fabrication Process of Phase Masks 54
4.3.1 Pre-treatment 54
4.3.2 Fabrication of photoresist pattern 55
4.3.3 Transfer to chromium 57
4.3.4 Transfer to fused silica 58
4.4 Reproduction of PR pattern 61
Chapter 5 Using TAGUCHI Method as an Optimization Tool 72
5.1 Introduction 72
5.1.1 Background 72
5.1.2 TAGUCHI philosophy 72
5.1.3 Orthogonal arrays 74
5.2 Optimization of Photoresist Patterning Process 75
5.2.1 Controllable factors and selection of their levels 75
5.2.2 Analysis of results 77
5.2.3 Main effect 78
5.2.4 Projection of optimum performance 79
5.3 ANOVA 79
5.3.1 ANOVA terms 80
5.3.2 Apply ANOVA for PR patterning process 87
5.4 Optimization of Fused Silica Etching Process 89
Chapter 6 Conclusion and Future Work 103
Reference 105
Reference
Chapter 1.
[1]. James R. Sheats, Bruce W. Simth, “Microlithgraphy Science and Technology”, New York. Basel. Hong Kong: Marcel Dekker, Inc.
[2]. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving Resolution in Photolithography with a Phase-shifting Mask”, IEEE Trans. Electron Devices, ED-29 No.12, pp.1828, 1982
[3]. A. Nakae, K. Kamon, T. Hanawa, K. Moriizumi, and H. Tanabe, “Precision Improvement in Optical Proximity Correction by Optimizing Second Illumination Source Shape”, Jpn. J. appl. Phys.(35) pp.6396, 1996
[4]. K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka and K. Horie, “Photolithography System Using Annular Illumination”, Jpn. J. Appl. Phys.(30), pp.3021, 1991
[5]. S. R. J. Brueck and X. Chen, “ Spatial frequency analysis of optical lithography resolution enhancement techniques”, J. Vac. Sci. Technol. B17(3), pp.908, 1999
[6]. S. R. J. Brueck and X. Chen, “ Experimental comparison of off-axis illumination and imaging interferometric lithography”, J. Vac. Sci. Technol. B17(3), pp.921, 1999
[7]. X. Chen and S. R. J. Brueck, “Imaging Interferometric Lithography: A Wavelength Multiplex Approach to Extending Optical Lithography”, J. Vac. Sci. Technol. B16(6), pp.3392, 1998
[8]. D. Williamson, J. McClay, etc., “ Micrascan III, 0.25 mm resolution step and scan system”, SPIE vol. 2726, pp.780
[9]. G. Pakulski, R. Moore, C. Marftan, F. Shepher, M. Fallahi, I. Templeton, and G. Champion, “Fused silica masks for printing uniform and phase adjusted gratings for distributed feedback lasers”, Appl. Phys. Lett., Vol. 62, No.3, pp. 222-224, 1993.
[10]. V. N. Gulgazov, H. Zhao, N. Nam, J. S. Major and T. L. Koch, “Tunable high-power AlGaAs distributed Bragg reflector laser diodes”, Electronics Letters, vol.33, No.1, pp.58, 1997
[11]. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson and J. Algert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask”, Appl. Phys. Lett., Vol. 62, No.10, p. 1035-1037,1993.
[12]. D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fiber gratings using a diffractive optical element”, Electron. Lett., Vol. 29, No. 6, pp. 566-568, 1993.
Chapter 2.
[1]. Joseph W. Goodman “Introduction to Fourier Optics”, 2nd edition, McGraw-Hill international editions.
[2]. Jack D. Gaskill “Linear Systems, Fourier Transforms, and Optics,” John Wiley & sons Inc.
[3]. X. Chen, A. Frauenglass and S. R. J. Brueck “Interferometric lithography pattern delimited by a mask Image”, Proc. SPIE Vol.3331, 1998
[4]. X. Chen and S. R. J. Brueck, “ Imaging Interferometric Lithography: A Wavelength Multiplex Approach to Extending Optical Lithography”, J. Vac. Sci. Technol. B16(6), pp.3392, 1998
[5]. Xiaolan Chen and S. R. J. Brueck “ Imaging interferometric lithography for Arbitrary Patterns”, Proc. SPIE Vol.3331, pp.214~224, 1998
[6]. S. R. J. Brueck and X. Chen, “ Spatial frequency analysis of optical lithography resolution enhancement techniques”, J. Vac. Sci. Technol. B17(3), pp.908, 1999
[7]. S. R. J. Brueck and X. Chen, “ Experimental comparison of off-axis illumination and imaging interferometric lithography”, J. Vac. Sci. Technol. B17(3), pp.921, 1999
Chapter 3.
[1]. James R. Sheats, Bruce W. Simth, “Microlithgraphy Science and Technology”, New York. Basel. Hong Kong: Marcel Dekker, Inc.
[2]. M. Born, and E. Wolf, “Principle of Optics”, sec. 8.6.1, New York: Pergamon, 1987
[3]. Joseph W. Goodman “Introduction to Fourier Optics”, 2nd edition, McGraw-Hill international editions.
Chapter 4.
[1]. P. E. Dyer, R. J. Farley, R. Giedl, “Analysis of grating formation with excimer laser irradiation phase masks”, Optics Communications 115 (1995) 327-334.
[2]. Q. Wang, Y. Zhang, D. Gao, “Analysis of near-field interference after phase mask for fiber grating fabrication”, SPIE Vol. 2893 p422-426.
[3]. G. Chen, S. Jian, L. Yang, “Analysis of near field holographic pattern formation using phase masks”, SPIE vol. 2885 p169-174.
[4]. D. M. Tennant, T. L. Koch, P. P. Mulgrew, etc. “ Characterization of near- field holography grating masks for optoelectronics fabricated by electron beam lithography”, J. Vac. Sci Technol. B 10(6), Nov/Dec 1992 p2530-2535.
[5]. M. Born, and E. Wolf, “Principle of Optics”, sec. 8.6.1, New York: Pergamon, 1987
[6]. P. J. Paniez, G. Festes, J. P. Paniez, Proc. SPIE, 1672, 623 (1992)
[7]. M. I. Sanchez, W. D. Hinsberg, F. A. Houle, J. A. Hoffnable, etc., “Effect of aerial image contrast on resist line-edge roughness”, Microlithography World Summer 1999, p19-21.
[8]. J. R. Sheats, B. W. Smith, “Microlithography science and technology”, New York. Basel. Hong Kong: Marcel Dekker, Inc.
[9]. G. Dahm, I. W. Rangelow, P. Hudec, H. W. P. Koops, “Quartz etching for phase-shifting masks”, Microelectronic Engineering 27 (1995) p263-266.
[10]. Joubert, G. S. Oehrlein, Y. Zhang, “Fluorocarbon high density plasma. V. Influence of aspect ratio on the each rate of silicon dioxide in aan electron cyclotron resonance plasma”, J. Vac. Sci. Technol. A 12(3), may/jun 1994 p658-664.
[11]. G. Chen, S. Jian, Y. Ling, “Fabrication of fused silica phase masks by reactive ion etching”, SPIE Vol. 2885, p164-168.
[12]. M. Armacost, P. D. Hoh, R. Wise, etc., “Plasma-etching process for ULSI semiconductor circuits”, issued IBM 1999.
[13]. E. Gogolides, P. Vauvert, Y. Courtin, etc., “SiO2 and Si etching in fluorocarbon plasma: a details suface model coupled with a complete plasma and profile simulator”, Microelectronic Engineering 46 (1999) p311-314.
[14]. K. Harafuji, A. Misaka, “Dry etching topography simulator wiyh a new surface reaction model: MODERN”, IEEE. Vol. 42, No. 11, Nov. 1995 p1903-1911.
[15]. Falco C. M. J. M. van Delft and J. B. Giesbers, “Classification of impact-assisted etching mechanisms”, Microelectronic Engineering 41/42 (1998) p387-390.
Chapter 5.
[1]. Ranjit K. Roy. “A Primer to the TAGUCHI Method”, Society of Manufacturing Engineering, 1990.
[2]. Madhav, S. P. “Quality Engineering Using Robust Design”, AT&T Bell Lab., 1989.
[3]. Scheffé, H. “Analysis of Variation”, New York: John Wiley and Sons, Inc., 1959.
[4]. Searle, S. R. “Linear models”, New York: John Wiley and Sons, 1971.
[5]. Rao, C. R. “Linear Statistical Inference and its Application”, 2nd Edition. New York: John Wiley and Sons, Inc., 1973.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top