跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/24 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳澄瑋
研究生(外文):Cheng-Wei Wu
論文名稱:鎂擴散氮化鎵光激發螢光光譜及光調制反射率光譜
論文名稱(外文):Photoluminescence and photoreflectance study on Mg-diffused GaN
指導教授:詹國禎詹國禎引用關係
指導教授(外文):Gwo-Jen Jan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:54
中文關鍵詞:光激發螢光光譜光調制反射率光譜鎂擴散氮化鎵
外文關鍵詞:PhotoluminesencePhotoreflectanceMg-diffusedGaN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文,重點在於探討p型氮化鎵的光學特性。論文中,氮化鎵磊晶層是以有機金屬化學氣相沈積(metalorganic chemical vapor deposition)的磊晶方法製作而成, 此時氮化鎵仍為n型。然後,把氮化鎵和氮化鎂(Mg3N2)的粉末一起封裝在真空石英管中,接著,放入950oC的爐管中做擴散。有四個樣品做相同的製程,擴散時間分別是15分鐘,1小時,4小時,16小時。四個樣品做SIMS (second ion mass spectroscopy)實驗的結果,p型載子濃度大約是1018~1020 cm-3。
我們對這些樣品做溫變光激發螢光光譜實驗。我們觀察到了被電中性施體所束縛的激子的躍遷(DoX, neutral donor bound exciton) ; 施體-受體對的躍遷(DAP, donor to acceptor pair) ; 施體-受體對,經由一個縱向光聲子輔助躍遷(DAP-1LO, longitudinal optical phonon) ; 施體-受體對,經由兩個縱向光聲子輔助躍遷(DAP-2LO)。在 D0X附近(3.41eV,溫度50K),我們觀察到了另外一個躍遷,我們把它歸因於能帶尾部(band tail)躍遷或者是立方型態(cubic phase)氮化鎵的躍遷。不過,真正的原因到目前為止尚無法清楚確認。 DoX, DAP, 以及額外的躍遷的活化能也被提出來。利用簡單的速率公式,我們解釋了這些躍遷隨溫度升高而快速減弱(quenching)的機制。
我們同時也做了室溫光調製反射率光譜的實驗。光譜經由三次微分勞倫茲譜型(third-order derivative Lorentzian line-shape)去吻合。吻合的能量歸因於靠近帶邊緣的躍遷(near-band-edge transition). 此次實驗並未觀察到能帶間距重整(band gap renormalization)的現象。我們建立了一個模型來解釋這個現象,由於鎂擴散的過程會讓氮化鎵的晶格缺陷擴大,使的能帶間距重整現象並未發生。我們附上一張顯微鏡拍攝的照片來證明晶格缺陷擴大的效應。
In this paper, we report the study of optical properties of p-type GaN that was formed by Mg diffusion into MOCVD grown undoped n-type GaN using Mg3N2 as the Mg source. The MOCVD GaN was sealed with Mg3N2 powder in a vacuum quartz ampoule, then the ampoule was put in a furnace for 15 min, 1 hr, 4hrs, and 16 hrs diffusion process. The SIMS measurement showed the carrier concentration over entire GaN layer were at the range of 1018~1020 cm-3.
The GaN samples were carried out and characterized by temperature dependent photoluminescence (PL) experiment. The transitions of D0X ( neutral donor bound exciton ), DAP ( donor to acceptor pair), DAP-1LO ( longitudinal phonon), DAP-2LO were abserved. An additional peak (3.41eV at 50K) near D0X is attributed to the band tail transition or band-gap transition of cubic phase GaN. However, the origin of this peak is not clear so far. The activation energies of D0X, DAP, and the additional peak were reported. The mechanism of quenching of all peaks was interpreted by simple rate equation.
Room temperature PR (photoreflectance) experiment was performed. The spectra were fitted by third-order derivative Lorentzian line-shape function and the fitted Eg values were attributed to near-band-edge transition. Band-gap renormalization effect was not observed from these Eg values. A model of defect enhanced by Mg-diffusion process was proposed to interpret the phenomenon. Microscopic photos were given to prove the defect enhancement effect caused by diffusion process.
Contents
中文摘要…………………………………………………………………I
英文摘要…………………………………………………………………II
List of Figures…………………………………………………………V
List of Tables…………………………………………………………VII
I. Introduction…………………………………………………1
II. Theory…………………………………………………………4
2.1. Photoluminescence……………………………………4
2.1.1. Radiative Recombination……………4
2.1.2. Band-to-Band Recombination………4
2.1.3. Free-to-Bound Transition……………6
2.1.4. Donor Acceptor Pair Transition……8
2.1.5. Exciton Related Recombination ……11
2.2 Modulation Spectra and Dielectric Function………12
2.2.1. Photoreflectance………………………15
2.2.2. Temperature Dependence…………………18
III Experiment Details……………………………………………22
3.1 Sample Preparation………………………………………22
3.2 Experimental System of PL……………………………22
3.3 Experimental System of PR……………………………23
IV Results and Discussion………………………………………27
4.1 Temperature-dependent Photoluminescence…………27
4.2 Photoreflectance…………………………………………30
V Conclusion………………………………………………………51
References…………………………………………………………………52
References
1 S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Part 2 32, L8, 1993.
2 S. Nakamura, S. Masayuki, S. Nagahama, N. Iwasa, T. Yamada, T. Mat-sushita,Y. Sugimoto, and K. Hiroyuki, Appl. Phys. Lett. 70, 1417, 1997.
3 M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, Appl. Phys.Lett. 62, 1786, 1993.
4 R. Dingle, D. D. Sell, S. E. Stokowski, and M. Ilegems, Phys. Rev. B 4,1211,1971
5 H. Amano, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys., Part 2 27,L1384,1988.
6 S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Part 2 32,L8, 1993.
7 H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys., Part 2 28, L2112, 1989.
8 T. Sasaki and T. Matsuoka, J. Appl. Phys. 64, 4531, 1988.
9 M. Godlewski, J. P. Bergman, B. Monemar, U. Rossner, and A. Barski, Appl.Phys. Lett. 69, 2089, 1996.
10 C. H. Hong, D. Pavlidis, S. W. Brown, and S. C. Rand, J. Appl. Phys. 77, 1705,1995.
11 D. E. Lacklison, J. W. Orton, I. Harrison, T. S. Cheng, L. C. Jenkins, C. T.Foxon, and S. E. Hooper, J. Appl. Phys. 78, 1838, 1995.
12 K. P. Korona, A. Wysmolek, K. Pakula, R. Stepniewski, J. M. Bara-nowski,Grzegory, B. Lucznik, M. Wroblewski, and S. Porowski, Appl. Phys. Lett. 69,788, 1996.
13 R. H. Williams, V. Montgomery, and R. R. Varma, J. Phys. C11, L735, 1987.
14 Peter Y. Yu and Manuel Cardona, Fundamentals of semiconductors, p340, 1996.
15 Peter Y. Yu and Manuel Cardona, Fundamentals of semiconductors, p341, 1996.
16 B. Sermage, F. Alexandre, J. L. Lievin, R. Azoulay, M. EI. Kaim, H. LePherson, and J. A. Marzin, Inst. Phys. Conf. Ser. 74, 345, 1985.
17 Peter Y. Yu and Manuel Cardona, Fundamentals of semiconductors, p343, 1996.
18 Peter Y. Yu and Manuel Cardona, Fundamentals of semiconductors, p343, 1996.
19 Peter Y. Yu and Manuel Cardona, Fundamentals of semiconductors, p349, 1996.
20 Peter Y. Yu and Manuel Cardona, Fundamentals of semiconductors, p350, 1996.
21 B. O. Seraphin and N. Bottka, Rev. 145, 628, 1966.
22 A. Yariv, Quantum Electronics, Willey & Sons, Singapore, 1989.
23 D. E. Aspens, Handbook on Semiconductor, edited by T. S. Moss, vol. 2, p109, North-Holland, New York, 1980.
24 M. Cardona, Modulation Spectroscopy, Academic Press, New York, 1969.
25 H. Amano, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys., Part 2 27,L1384, 1988.
26 Y. P. Varshni, Physica 34, 149, 1967.
27 P. Lautenschlager, M. Garriga, and M. Cardona, Phys. Rev. B 36, 4813, 1987.
28 M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, J. Appl. Phys. 86, 3721, 1999.
29 W. Rieger, R. Dimitrov, D. Brunner, E. Rohrer, O. Ambacher, and M. Stutzmann, Phys. Rev. B 54, 17596, 1996.
30 M. Albrecht, S. Christiansen, G. Salviati, C. Zanotti-Fregonara, Y. T.Rebane, Y. G. Shreter, M. Mayer, A. Pelzmann, M. Kamp, K. J. Ebeling, M. D. Bremser, R. F. Davis, and H. P. Strunk, Mater. Res. Soc. Symp.Proc. 468, 293, 1997.
31 T. W. Kang, S. H. Park, H. Song, T. W. Kim, G. S. Yoon and C. O. Kim, J. Appl. Phys. 84, 2082, 1998.
32 G. Popovici, G. Y. Xu, A. Botchkarev, W. Kim, H. Tang, A. Salvador, and H. Morkoc, R. Strange and J. O. White, J. Appl. Phys. 82, 4020, 1997.
33 D. E. Aspnes, Surf. Sci. 37, 418, 1973.
34 Xiong Zhang, Soo-Jin Chua, Wei Liu, and Kok-Boon Chong, Appl. Phys. Lett. 72, 1890.
35 H. C. Casey and F. Stern, J. Appl. Phys. 47, 631, 1976.
36 V. Swaminathan, A. T. Macrander, Material Aspects of GaAs and InAs Based Structures, ch5, p.282, Prentice Hall, Englewoods Cliffs, New Jersey, 1991.
37 V. Swaminathan, A. T. Macrander, Material Aspects of GaAs and InAs Based Structures, ch5, p.289, Prentice Hall, Englewoods Cliffs, New Jersey, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊