|
[1] S.J. Chang, C.L. Tsai, Y.B. Lin, J.F. Liu, and W.S. Wang, “Improved electrooptic modulator with ridge structure in x-cut LiNbO3,” J. Lightwave Technol., vol.17, no.5, pp.843-847, 1999. [2] H.B. Lin, J.Y. Su, P.K. Wei, and W.S.Wang, “Design and application of very low-loss abrupt bends in optical waveguides,” IEEE J. Quantum Electron., vol.30, no.12, pp.2827-2835, 1994. [3] L.E. Myers and W.R. Bosenberg, “Periodically poled lithium noibate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron., vol.33, no.10, pp.1663-1672, 1997. [4] I. Baumann, S. Bosso, R. Brinkmann, R. Corsini, M. Dinand, A. Greiner, K. Schafer, J. Sochtig, W. Sohler, H. Suche, and R. Wessel, “Er-doped integrated optical devices in LiNbO3,” IEEE. J. Select. Topics Quantum Electron., vol.2, no.2, pp.355-366, 1996. [5] R.V. Schmidt and I.P Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., vol.25, no.8, pp.458-460, 1974 [6] I.P. Kaminow and J.R. Carruthers, “Optical waveguiding in LiNbO3 and LiTaO3,” Appl. Phys. Lett., vol.22, no.7, pp.326-328, 1973. [7] J.L. Jackel, C.E. Rice, and J.J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett., vol.41, pp.607-608, 1982. [8] Edwin Y.B. Pun, K.K. Loi, and P.S. Chung, ”Proton-exchanged optical waveguide in Z-cut LiNbO3 using phosphoric acid,” IEEE Trans. on Lightwave Technol., vol.11, no.2, pp.277-284, 1993. [9] A. Loni, R.W. Keys, R.M. De La Rue, M.A. Foad, and J.M. Winfield, “Optical characterisation of Z-cut proton exchanged LiNbO3 waveguides fabricated using orthophosphoric and pyrophosphoric acid,” IEE proceeding., vol.136, Pt. J, no.6, pp.297-300, 1989. [10]K.K. Loi, E.Y.B. Pun, and P.S. Chung, “Proton-exchanged optical waveguides in z-cut LiNbO3 using toluic acid,” Electron. Lett., vol.28, no.6, pp.546-548, 1992. [11]E.Y.B. Pun, K.K. Loi, and P.S. Chung, “Index profile of proton-exchanged waveguide in lithium niobate using cinnamic acid,” Electron. Lett., vol.27, no.14, pp.1282-1283, 1991. [12]E.Y.B. Pun, S.A. Zhao, K.K. Loi, and P.S. Chung, “Proton-exchanged LiNbO3 optical waveguides using stearic acid,” IEEE. Trans. on Photon. Technol. Lett., vol.33, no.11, pp.1006-1008, 1991. [13]Y.N. Korkishko, V.A. Fedorov, and F. Laurell, “The SHG-response of different phase in proton exchanged lithium niobate waveguides,” IEEE Select. Topics Quantum Electron., vol.6, no.1, pp.132-142, 2000. [14]A.M Glass, “The photorefractive effect,” Opt. Eng, vol.17, no.5, pp.470-479, 1978. [15]S. Thaniyavarn, “Wavelength indepent, optical damage immune z-propagation LiNbO3 waveguide polarizatoin converter,” Appl. Phys. Lett., vol.47, no.7, pp.674-677, 1985. [16]T. Fujiwara, X. Cao, R. Srivastava, and R.V. Ramaswamy, “ Photorefractive effect in annealed proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett., vol.61, no.7, pp.743-745, 1992. [17]T.R. Volk, V.I. Pryalkin, and N.M Rubinina, “Optical-damage-resistant LiNbO3: Zn crystal,” Opt. Lett., vol.15, no.18, pp.996-998, 1990. [18]H. Wang, J.K. Wen, J. Li, and H.F, Wang, “Photoinduced hole carriers and enhanced resistance to photorefraction in Mg-doped LiNbO3 crystals,” Appl. Phys. Lett., vol.57, no.4, pp.344-345, 1990. [19]W.M. Young, R.S. Feigelson, M.M. Fejer, M.J.F. Digonnet, and H.J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett., vol.16, no.13, pp.995-997, 1991. [20]W.M. Young, M.M Fejer, M.J.F. Digonnet, A.F. Marshall, and R.S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO : lithium niobate,” J. Lightwave Technol., vol.10, no.9, pp.1238-1246, 1992. [21]B. Herreros and G. Lifante, “LiNbO3 optical waveguide by Zn diffusion from vapor phase,” Appl. Phys. Lett., vol.66, no.12, pp.1449-1451, 1995. [22]R. Nevado and G. Lifante, “Characterization of index profiles of Zn-diffused LiNbO3 waveguides,” J. Opt. Soc. Am. A, vol.16, no.10, pp.2574-2580, 1999. [23]F.Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wohlecke, “ Influence of Zn doping on electrooptical properties and structure of lithium niobate crystals,” Appl. Phys. B, vol.68, pp.795-799, 1999. [24]F. Schiller, B. Herreros, and G. Lifante, “Optical characterization of vapor Zn-diffuse waveguides in lithium niobate,” J. Opt. Soc. Am. A, vol.14, no.2, pp.425-429, 1997. [25]Y.P. Liao, D.J. Chen, R.C. Lu, and W.S. Wang, “Nickel-diffused lithium niobate optical waveguide with process dependent polarization,” IEEE Photon. Technol. Lett., vol.8, no.4, pp.548-550, 1996. [26]W.L Chen, R.S Chen, J.H. Lee, and W.S. Wang, “Lithium niobate ridge waveguides by nickel diffusion and proton exchange wet etching,” IEEE. Photon. Technol. Lett., vol.7, no.11, pp.1318-1320, 1995. [27]W.C. Chang, C.Y. Sue, H.C. Hou, S.J. Chang, and P.K. Wei, “ A novel self-aligned fabrication process for nickel-indiffused lithium niobate ridge optical waveguides,” J. Lightwave Technol., vol.17, no.4, pp.613-620, 1999. [28]P. Ganguly, J.C. Biswas, S. Das, and S.K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun., vol.168, pp.349-354, 1999. [29]H. Maruyama, M. Haruna, and H. Nishihara, “TE-TM mode splitter using directional coupling between heterogenous waveguides in LiNbO3,” J. Lightwave Technol., vol.13, no.7, pp.1550-1554, 1995. [30]P.K. Wei and W.S. Wang, “ A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett., vol.6, no.2, pp.245-248, 1994. [31]Jos.J.G.M. van der Tol and Jan H. Laarhuis, “A polarization splitter on LiNbO3 using only titanium diffusion,” J. Lightwave Technol., vol.9, no.7, pp.879-886, 1991. [32]N. Goto and G.L. Yip, “A TE-TM mode splitter in LiNbO3 by proton exchange and Ti diffusion,” J. Lightwave Technol., vol.7, no.10, pp.1567-1574, 1989. [33]G. Lifante, E. Cantelar, J.A. Munoz, R. Nevado, J.A. Sanz-Garcia, and F. Cusso, “Zn-diffused LiNbO3:Er3+/Yb3+ as a waveguide laser material,” Optical Material, vol.13, pp.181-186, 1999. [34]C.H. Huang and L. McCaughan, “Photorefractive-damage-resistant Er-indiffused MgO:LiNbO3 ZnO-waveguide amplifiers and lasers,” Electron. Lett., vol.33, no.19, pp.1639-1640, 1997.
|