跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 17:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李峻霣
研究生(外文):Jiun-Yun Li
論文名稱:鋅鎳擴散式鈮酸鋰光極化分離器之研製
論文名稱(外文):Design and fabrication of zinc and nickel diffused lithium niobate polarization splitter
指導教授:王維新王維新引用關係
指導教授(外文):Way-Seen Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:58
中文關鍵詞:鈮酸鋰鋅鎳擴散極化分離器Y分岔質子交換單極化波導訊熄比
外文關鍵詞:lithium niobatezinc and nickel diffusionpolarization splitterY-branchproton exchangesingle-polarized waveguideextinction ratio
相關次數:
  • 被引用被引用:8
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在研究利用鋅鎳擴散式和質子交換式鈮酸鋰光波導來製作高訊熄比之光極化分離器。元件之基本架構為一非對稱Y形分叉,其入射波導可導任意極化方向的光,兩分支波導則分別為僅導垂直極化(TM)和僅導水平極化(TE)的光波導。我們以鋅、鎳兩種金屬做為擴散源,製作出可導任意極化方向的入射波導。藉由改變不同的製程參數如鋅與鎳的厚度,擴散的溫度與時間得到僅導TE極化方向的光波導;並且利用質子交換法製作僅導TM極化的分支波導。在Y形分叉結構中,兩分支採用單極化波導,可增加元件之訊熄比。由實驗可得TE與TM極化光的訊熄比分別為25分貝(dB)與22分貝(dB)。
The thesis is to study the fabrication of polarization splitter with high extinction ratio by using zinc and nickel co-diffused and annealed proton exchange lithium niobate. The polarization splitter is an asymmetric Y-branch structure. The input waveguide can
guide randomly polarized waves, and the output branches only guide TM and TE polarized waves, respectively. We use zinc and
nickel as diffusion sources to fabricate input waveguide with randomly polarized waves. By changing the fabrication parameters
such as the thicknesses of zinc and nickel, diffusion temperature and time, we can fabricate single-TE polarized optical waveguides
and by using proton exchange method to obtain the single-TM polarized optical waveguides. In the Y-branch structure, the extinction
ratios can be increased by using single-polarized waveguides. Experiments have shown that the extinction ratios are 25 dB and 22 dB
for TE and TM polarizations, respectively.
第一章 積體光學簡介 1
1-1 光波導的歷史回顧 2
1-2 光波導製程 5
1-3 內容簡介 7
第二章 鋅鎳擴散式鈮酸鋰光波導 9 9
2-1 鋅擴散式鈮酸鋰光波導 10
2-2 鎳擴散式鈮酸鋰光波導 11
2-3 鋅鎳同步擴散式鈮酸鋰光波導 13
第三章 極化分離器 16
3-1 簡介 16
3-2 高訊熄比極化分離器之設計 19
3-3 實驗結果與討論 20
第四章 結論 22
附表 23
附圖 31
參考文獻 55
中英文名詞對照表 58
[1] S.J. Chang, C.L. Tsai, Y.B. Lin, J.F. Liu, and W.S. Wang, “Improved electrooptic modulator with ridge structure in x-cut LiNbO3,” J. Lightwave Technol., vol.17, no.5, pp.843-847, 1999.
[2] H.B. Lin, J.Y. Su, P.K. Wei, and W.S.Wang, “Design and application of very low-loss abrupt bends in optical waveguides,” IEEE J. Quantum Electron., vol.30, no.12, pp.2827-2835, 1994.
[3] L.E. Myers and W.R. Bosenberg, “Periodically poled lithium noibate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron., vol.33, no.10, pp.1663-1672, 1997.
[4] I. Baumann, S. Bosso, R. Brinkmann, R. Corsini, M. Dinand, A. Greiner, K. Schafer, J. Sochtig, W. Sohler, H. Suche, and R. Wessel, “Er-doped integrated optical devices in LiNbO3,” IEEE. J. Select. Topics Quantum Electron., vol.2, no.2, pp.355-366, 1996.
[5] R.V. Schmidt and I.P Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., vol.25, no.8, pp.458-460, 1974
[6] I.P. Kaminow and J.R. Carruthers, “Optical waveguiding in LiNbO3 and LiTaO3,” Appl. Phys. Lett., vol.22, no.7, pp.326-328, 1973.
[7] J.L. Jackel, C.E. Rice, and J.J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett., vol.41, pp.607-608, 1982.
[8] Edwin Y.B. Pun, K.K. Loi, and P.S. Chung, ”Proton-exchanged optical waveguide in Z-cut LiNbO3 using phosphoric acid,” IEEE Trans. on Lightwave Technol., vol.11, no.2, pp.277-284, 1993.
[9] A. Loni, R.W. Keys, R.M. De La Rue, M.A. Foad, and J.M. Winfield, “Optical characterisation of Z-cut proton exchanged LiNbO3 waveguides fabricated using orthophosphoric and pyrophosphoric acid,” IEE proceeding., vol.136, Pt. J, no.6, pp.297-300, 1989.
[10]K.K. Loi, E.Y.B. Pun, and P.S. Chung, “Proton-exchanged optical waveguides in z-cut LiNbO3 using toluic acid,” Electron. Lett., vol.28, no.6, pp.546-548, 1992.
[11]E.Y.B. Pun, K.K. Loi, and P.S. Chung, “Index profile of proton-exchanged waveguide in lithium niobate using cinnamic acid,” Electron. Lett., vol.27, no.14, pp.1282-1283, 1991.
[12]E.Y.B. Pun, S.A. Zhao, K.K. Loi, and P.S. Chung, “Proton-exchanged LiNbO3 optical waveguides using stearic acid,” IEEE. Trans. on Photon. Technol. Lett., vol.33, no.11, pp.1006-1008, 1991.
[13]Y.N. Korkishko, V.A. Fedorov, and F. Laurell, “The SHG-response of different phase in proton exchanged lithium niobate waveguides,” IEEE Select. Topics Quantum Electron., vol.6, no.1, pp.132-142, 2000.
[14]A.M Glass, “The photorefractive effect,” Opt. Eng, vol.17, no.5, pp.470-479, 1978.
[15]S. Thaniyavarn, “Wavelength indepent, optical damage immune z-propagation LiNbO3 waveguide polarizatoin converter,” Appl. Phys. Lett., vol.47, no.7, pp.674-677, 1985.
[16]T. Fujiwara, X. Cao, R. Srivastava, and R.V. Ramaswamy, “ Photorefractive effect in annealed proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett., vol.61, no.7, pp.743-745, 1992.
[17]T.R. Volk, V.I. Pryalkin, and N.M Rubinina, “Optical-damage-resistant LiNbO3: Zn crystal,” Opt. Lett., vol.15, no.18, pp.996-998, 1990.
[18]H. Wang, J.K. Wen, J. Li, and H.F, Wang, “Photoinduced hole carriers and enhanced resistance to photorefraction in Mg-doped LiNbO3 crystals,” Appl. Phys. Lett., vol.57, no.4, pp.344-345, 1990.
[19]W.M. Young, R.S. Feigelson, M.M. Fejer, M.J.F. Digonnet, and H.J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett., vol.16, no.13, pp.995-997, 1991.
[20]W.M. Young, M.M Fejer, M.J.F. Digonnet, A.F. Marshall, and R.S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO : lithium niobate,” J. Lightwave Technol., vol.10, no.9, pp.1238-1246, 1992.
[21]B. Herreros and G. Lifante, “LiNbO3 optical waveguide by Zn diffusion from vapor phase,” Appl. Phys. Lett., vol.66, no.12, pp.1449-1451, 1995.
[22]R. Nevado and G. Lifante, “Characterization of index profiles of Zn-diffused LiNbO3 waveguides,” J. Opt. Soc. Am. A, vol.16, no.10, pp.2574-2580, 1999.
[23]F.Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wohlecke, “ Influence of Zn doping on electrooptical properties and structure of lithium niobate crystals,” Appl. Phys. B, vol.68, pp.795-799, 1999.
[24]F. Schiller, B. Herreros, and G. Lifante, “Optical characterization of vapor Zn-diffuse waveguides in lithium niobate,” J. Opt. Soc. Am. A, vol.14, no.2, pp.425-429, 1997.
[25]Y.P. Liao, D.J. Chen, R.C. Lu, and W.S. Wang, “Nickel-diffused lithium niobate optical waveguide with process dependent polarization,” IEEE Photon. Technol. Lett., vol.8, no.4, pp.548-550, 1996.
[26]W.L Chen, R.S Chen, J.H. Lee, and W.S. Wang, “Lithium niobate ridge waveguides by nickel diffusion and proton exchange wet etching,” IEEE. Photon. Technol. Lett., vol.7, no.11, pp.1318-1320, 1995.
[27]W.C. Chang, C.Y. Sue, H.C. Hou, S.J. Chang, and P.K. Wei, “ A novel self-aligned fabrication process for nickel-indiffused lithium niobate ridge optical waveguides,” J. Lightwave Technol., vol.17, no.4, pp.613-620, 1999.
[28]P. Ganguly, J.C. Biswas, S. Das, and S.K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun., vol.168, pp.349-354, 1999.
[29]H. Maruyama, M. Haruna, and H. Nishihara, “TE-TM mode splitter using directional coupling between heterogenous waveguides in LiNbO3,” J. Lightwave Technol., vol.13, no.7, pp.1550-1554, 1995.
[30]P.K. Wei and W.S. Wang, “ A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett., vol.6, no.2, pp.245-248, 1994.
[31]Jos.J.G.M. van der Tol and Jan H. Laarhuis, “A polarization splitter on LiNbO3 using only titanium diffusion,” J. Lightwave Technol., vol.9, no.7, pp.879-886, 1991.
[32]N. Goto and G.L. Yip, “A TE-TM mode splitter in LiNbO3 by proton exchange and Ti diffusion,” J. Lightwave Technol., vol.7, no.10, pp.1567-1574, 1989.
[33]G. Lifante, E. Cantelar, J.A. Munoz, R. Nevado, J.A. Sanz-Garcia, and F. Cusso, “Zn-diffused LiNbO3:Er3+/Yb3+ as a waveguide laser material,” Optical Material, vol.13, pp.181-186, 1999.
[34]C.H. Huang and L. McCaughan, “Photorefractive-damage-resistant Er-indiffused MgO:LiNbO3 ZnO-waveguide amplifiers and lasers,” Electron. Lett., vol.33, no.19, pp.1639-1640, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊