跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 03:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭宜婷
研究生(外文):Yi-Ting Kuo
論文名稱:鈮酸鋰光波導上分散式布拉格反射器橫截面之研究
論文名稱(外文):A Study of the Cross Section of Distributed Bragg Reflector on Lithium Niobate Waveguide
指導教授:王維新王維新引用關係
指導教授(外文):Way-Seen Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:51
中文關鍵詞:分散式布拉格反射器鈮酸鋰梯形凹槽饋入損耗
外文關鍵詞:Distributed Bragg reflector (DBR)Lithium Niobatetrapezoid grooveinsertion loss
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
分散式布拉格反射器應用於摻鉺鈮酸鋰光波導雷射的共振腔反射鏡,能夠提供高反射率、窄頻寬,且能夠與其他積體光學元件整合於單一基材上。但傳統的摻鉺鈮酸鋰光波導雷射是於鈮酸鋰波導上直接蝕刻凹槽,如此得到的反射率將非常有限,如果將高折射率的矽層附著於鈮酸鋰光波導上,再於矽層上蝕刻凹槽,如此將可得到更佳的反射率,本論文針對此種結構,以耦合模態理論進行模擬分析,我們考慮模態場形不匹配所造成的饋入損耗,以及製程上所可能產生的梯形凹槽,發現其凹槽傾斜角對反射率的影響遠不如梯形截面積對反射率的影響,且對於具有相同截面積的凹槽而言,梯形的斜角愈斜,所能獲得的反射頻譜頻寬反而愈窄,而且其最大的反射率只些微下降。因此,在製程上,製作完美矩形的凹槽反而並非必要的。最後,我們應用非週期性的光柵結構改善頻寬及側峰。
Distributed Bragg reflector (DBR) can provide high reflectivity and narrow bandwidth when it is applied as the cavity mirror of an erbium-doped LiNbO3 waveguide laser. Additionally, DBR can be integrated with other integrated optical devices. However, the traditional erbium-doped LiNbO3 waveguide laser was produced by etching the groove directly on it, such that the reflectivity is limited. The reflectivity can be improved if the Si-on-LiNbO3 structure is used, and the groove is produced on Si-layer. In this thesis, this structure is analyzed by the cuopled-mode theory. The insertion loss caused by mode profile mismatch and the trapezoid shape of groove due to the processing are both considered. The simulation results show that the reflectivity is more sensitive to the cross section of the groove than to the slope of the hypotenuse of trapezoid shape grating. Furthermore, the reflection spectrum has more narrow bandwidth and suffer the maximum reflectivity reduced slightly as the slope is smaller. Thus, the perfect rectangular shape of the grating is not necessary. Finally, the aperiodic DBR structure are used to improve the bandwidth and side lobe.
第一章 簡介 1
第二章 理論架構 3
2-1 布拉格條件 3
2-2 耦合模態理論 3
2-2.1 耦合模態理論在使用上的限制 7
2-3 基本矩陣法 8
第三章 數學模型 11
3-1 DBR結構參數 11
3-2 應用有限差分法解特徵模態 12
3-2.1 TE模態 13
3-2.2 TM模態 13
3-3 邊界條件 14
3-3.1 Dirichlet邊界條件 14
3-3.2 透明邊界條件 16
第四章 模擬結果與討論 20
4-1 高折射率層厚度的影響 20
4-2 光柵凹槽深度對的影響 22
4-3 工作週期的影響 22
4-4 光柵截面積的影響 23
4-5 反射頻譜 24
4-6 非週期性光柵 25
4-6.1 漸變式凹槽深度 25
4-6.2 相位角位移 25
第五章 結論及未來展望 27
附圖 29
參考文獻 47
中英文名詞對照表 50
[1] J. Brinkman, "Continuous-wave Erbium-diffused LiNbO3 waveguide laser," Electronics Letters, vol. 27, no. 5, pp. 415-417, 1991.
[2] I. Baumann, "Er-doped integrated optical devices in LiNbO3," IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, no. 2, pp. 355-365, 1996.
[3] J. Sochtig, "DBR waveguide laser in erbium-diffusion-doped LiNbO3," Electronics Letters, vol. 31, no. 7, pp. 551-552, 1995.
[4] H. A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall. 1984.
[5] A. Yariv and Pochi Yeh, Optical Waves in Crystals, John Wiley & Sons, 1984.
[6] M. Yamada, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach," Applied Optics, vol. 26, no. 16, pp. 3474-3478, 1987.
[7] M. S. Stern, "Semivectorial polarised finite difference method for optical waveguides with arbitrary index profile," IEE Proc. J. Optoelectron, vol. J-135, pp. 56-63, 1988.
[8] 楊尚達, "分散式布拉格反射器在鈮酸鋰光波導上之研究," 國立台灣大學光電工程學研究所碩士論文, 1999.
[9] G. R. Hadley, "Transparent boundary condition for the beam propagation," Optics Letters, vol. 16, no. 9, pp.624-626, 1991.
[10] D.H. Smithgall, "Graded-index planar dielectric waveguides," IEEE J. Quantum Electronics, vol. QE-9, no. 10, pp. 1023-1028, 1973.
[11] C. Vassallo, "Highly efficient absorbing boundary condition for the beam propagating method," J. Lightwave Technology, vol. 14, pp.1570-1577, 1996.
[12] C. Vassallo, "Comparison of a few transparent boundary condition for finite-difference optical mode-solvers," J. Lightwave Technology, vol. 15, no. 2, pp. 397-402, 1997.
[13] C. F. Gerald, Applied Numerical Analysis, Addison Wesley, 1994.
[14] C. P. Hussell, "High-index overlay for high reflectance DBR gratings in LiNbO3 channel waveguides," IEEE Photonics Technology Letters, vol. 9, no. 5, pp.636-638, 1997.
[15] T. Conese, "Finite element analysis of LiNbO3 waveguides with Si or Si/SiO2 overlay," J. Lightwave Technology, vol. 16, no. 6, pp. 1113-1122, 1998.
[16] T. Erdogan, "Fiber grating spectra," J. Lightwave Technology, vol. 15, no. 8, pp. 1277-1294, 1997.
[17] F. Ouellette, "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Optics Letters, vol. 12 no. 10, pp. 847-849, 1987.
[18] R. Zengerle, "Phase-shifted Bragg-grating filters with improved transmission characteristics," J. Lightwave Technology, vol. 13, no.12, pp. 2354-2358, 1995.
[19] H. Ishii, "Multiple-phase-shift super structure grating DBR lases for broad wavelength tuning," IEEE Photonics Technology Letters, vol. 5, no. 6, pp.613-615, 1993.
[20] H. A Haus, "Antisymmetric taper of distributed feedback lasers," IEEE J. Quantum Electronics, vol. QE-12, no. 9, pp. 532-539, 1976.
[21] A. Hardy, "Analysis of second-order gratings," IEEE J. Quantum Electronics, vol. QE-25, no. 10, pp.2096-2105, 1989.
[22] A. Hardy, "Analysis of a dual grating-type surface emiting laser," IEEE J. Quantum Electronics, vol. 26, no.1, pp. 50-60, 1990.
[23] R. G. Hunsperger, Integrated Optics : Thoery and Technology, Springer-Verlag, 1991.
[24] H. Feng, "Record-high reflectance in narrow-band low-loss Bragg reflectors with Si-on LiNbO3 waveguides," Electronics Letters, vol. 35, no.19, pp. 1636-1637, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top