跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 06:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:涂瑞清
研究生(外文):Ruey-Ching Twu
論文名稱:長波長鋅擴散式鈮酸鋰光波導元件之研製
論文名稱(外文):Fabrication of Long-Wavelength Znic-Indiffused Lithium Niobate Optical Waveguide Devices
指導教授:王維新王維新引用關係
指導教授(外文):Way-Seen Wang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:100
中文關鍵詞:鋅擴散鈮酸鋰光波導元件方向耦合器耦合係數光調變器光開關極化分離器波導極化器
外文關鍵詞:Znic-indiffusionlithium niobate optical waveguide devicedirectional couplercoupling coefficientoptical modulatoroptical switchpolarization splitterwaveguide polarizer
相關次數:
  • 被引用被引用:9
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是利用極化相依損耗量測系統,深入的探討鋅擴散波導,在長波長區域(λ=1.32μm及1.55μm),關於其製程相依的極化導光特性,並首次在y切晶片上製作出高訊熄比的波導極化器,而其最佳的單位長度極化訊熄比,對於操作在λ=1.32μm及1.55μm時,分別為29dB/cm及32dB/cm,而其直波導的傳播損耗約在0.9dB/cm。除了利用單極化波導,製作馬赫任德光調變器外,也以量測到的模態場形,配合電極結構及光場與電場重疊積分的計算,反推其在y及z切晶片上的r33電光係數,也發現其仍保有未損的電光係數。而在方向耦合器的應用上,則是首次以熱退火的步驟,研究其對元件輸出特性的影響,也發現在適度的熱退火條件下,能夠具有事後微調的彈性,同時對於熱退火對波導的損耗量測,則可以作為此方法的適用範圍參考。而利用此熱退火微調的方式,應用在2’2馬赫任德光開關的製作上,使其整體元件長度可以縮短至18mm,而其輸出比仍可達23dB。
除了研究鋅波導元件之特性外,也利用鎳波導的單極化特性,進一步與兩極化均導的鈦波導結合,製作出異質耦合式的極化分離器(λ=1.55μm),由實驗結果證實,相較於之前的異質耦合式極化分離器,具有更多的製作彈性及優點。
封面
摘要
目錄
第一章 緒論
1-1 積體光學簡介
1-2 研究動機
1-3 內容簡介
第二章 鈮酸鋰晶體及金屬擴散式波導特性
2-1 鈮酸鋰晶體的基本特性
2-2 光折效應簡介
2-3 電光效應簡介
第三章 波導製程與量測
3-1 波導製程
3-2 波導特性量測
第四章 鋅波導製程相依導光特性
4-1 鋅擴散鈮酸鋰光波導簡介
4-2 元件製作與量測
4-3 實驗結果與分析
第五章 鋅擴散馬赫任德光調變器
5-1 元件製作與量測
5-2 實驗結果與分析
第六章 鋅擴散方向耦合器
6-1 元件製作及量測
6-2 實驗結果與分析
第七章 2×2鋅擴散馬赫任德光開關
7-1 元件製作及量測
7-2 實驗結果與分析
第八章 鈦及鎳異質耦合波導極化分離器
8-1 耦合波導結構在極化分離器之應用
8-2 元件製作及量測
8-3 實驗結果與分析
第九章 結論及展望
附表
附圖
參考文獻
中英文名詞對照表
[1]A. Opilski, R. Rogozinski, M. Blahut, P. Karasinski, K. Gut, and Z. Opilski, "Technology of ion exchange in glass and its application in waveguide planar sensor," Opt. Eng. , vol. 36, no. 6, pp. 1652-1638, 1997.
[2]A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," J. Selected Topics in Quantum Electron., vol. 5, no. 5, pp. 1227-1236, 1999.
[3]R. G. Walker, "High-speed III-V electrooptic waveguide modulators," J. Quantum Electron., vol. 27, no. 5, pp. 654-667, 1991.
[4]M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshimura, M. Usui, T. Yoshida, and S. Imamura, "Polymeric optical waveguide films for short-distance optical interconnects," J. Selected Topics in Quantum Electron., vol. 5, no. 5, pp. 1237-1242, 1999.
[5]R. C. Alferness, "Guided-wave devices for optical communication," J. Quantum Electron., vol. 17, no. 6, 1981.
[6]P. Baldi, M. P. De Micheli, K. El Hadi, S. Nouh, A. C. Cino, P. Aschieri, P. Aschieri, and D. B. Ostrowsky, "Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters," Opt. Eng. , vol. 37, no. 4, pp. 1193-1202, 1998.
[7]J. Gates, D. Muehlner, M. Cappuzzo, M. Fishteyn, L. Gomez, G. Henein, E. Laskowski, I. Ryazansky, J. Shmulovich, D. Syvertsen, and A. White, "Hybrid integrated silicon optical bench planar lightguide circuits," IEEE Electronic Components & Technology Conference, 48th., pp. 551-559, 1998.
[8]K. Noguchi, O. Mitomi, and H. Miyazawa, "Millimeter-wave Ti:LiNbO3 optical modulators," J. Lightwave Technol., vol. 16, no. 4, pp. 615-619, 1998.
[9]P. R. Pedersen, J. L. Nightingale, B. E. Kincaid, J. S. Vrhel, and R. A. Becker, "A high-speed 4’4 Ti:LiNbO3 integrated optic switch at 1.5μm," J. Lightwave Technol., vol. 8, no. 4, pp. 618-622, 1990.
[10]F. Heismann, "Compact electro-optic polarization scramblers for optically amplified lightwave systems," J. Lightwave Technol., vol. 14, no. 8, pp. 1801-1814, 1996.
[11]K. Schafer, I. Baumann, W. Sohler, H. Suche, and S. Westenhofer, "Diode-pumped and packaged acoustooptically tunable Ti:Er:LiNbO3 waveguide laser of wide tuning range," J. Quantum Electron., vol. 33, no. 10, pp. 1636-1641, 1997.
[12]P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, "Low-loss high-extinction polarizers fabricated in LiNbO3 by proton exchange," Opt. Lett., vol. 13, no. 2, pp. 172-174, 1988.
[13]P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, "Stable low-loss proton exchanged LiNbO3 waveguide devices with no electro-optic degradation," Opt. Lett., vol. 13, no. 11, pp. 1050-1052, 1988.
[14]W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, "Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3," Opt. Lett., vol. 16, no. 13, pp. 995-997, 1991.
[15]W. M. Young, M. M. Fejer, M. J. F. Digonment, A. F. Marshall, and R. S. Feigelson, "Fabrication, characterization, and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate," J. Lightwave Technol., vol. 10, no. 9, pp. 1238-1246, 1992.
[16]F. Schiller, B. Herreros, and G. Lifante, "Optical characterization of vapor Zn-diffused waveguides in lithium niobate," J. Opt. Soc. Amer. A, vol. 14, no. 2, pp. 425-429, 1997.
[17]R.Nevado and G. Lifante, "Characterization of index profiles of Zn-diffused LiNbO3 waveguides," J. Opt. Soc. Amer. A, vol. 16, no. 10, pp. 2574-2580, 1999.
[18]V. A. Fedorov, Y. N. Korkishko, F. Vereda, G. Lifante, and F. Cusso, "Structure characterization of vapor Zn-diffused waveguides in lithium niobate," J. Crystal Growth, 194, pp. 94-100, 1998.
[19]T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, "Comparison of photorefractive index change in proton-exchanged and Ti-diffused," Opt. Lett., vol. 18, no. 5, pp. 346-348, 1993.
[20]C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, "Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides," IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 872-875,1992.
[21]Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, "Nickel-diffused lithium niobate optical waveguide with process-dependent polarization," IEEE Photon. Technol. Lett., vol. 8, no. 4, pp. 548-550, 1996.
[22]魏培坤, "金屬擴散式鈮酸鋰光波導之製造及應用," 國立台灣大學電機工程學研究所博士論文, 1994.
[23]陳瑞鑫, "利用溼式蝕刻法研製之脊型鈮酸鋰光波導元件," 國立台灣大學電機工程學研究所博士論文, 1996.
[24]張世軍, "鈮酸鋰電光調變器之改良研究," 國立台灣大學電機工程學研究所博士論文, 1999.
[25]T. Volk, N. Rubinina, and M. Wohleche, "Optical-damage-resistant impurities in lithium niobate," J. Opt. Soc. Amer. B, vol. 11, no. 9, pp.1681-1687, 1999.
[26]S. H. Lin, M. L. Hsieh, K. Y. Hsu, T. C. Hsieh, S. P. Lin, T. S. Yeh, L. J. Hu, C. H. Lin, and H. Chang, "Photorefractive Fe: LiNbO3 crystal thin plates for optical information processing," J. Opt. Soc. Amer. B, vol. 16, no. 7, pp. 112-1119, 1999.
[27]Ch. Becker, A. Greiner, Th. Oesselke, A. Pape, W. Sohler, and H. Suche, "Integrated optical Ti:Er:LiNbO3 distributed Bragg reflector laser with a fixed photorefractive grating," Opt. Lett., vol. 23, no. 15, pp. 1194-1196, 1998.
[28]G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, "The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe,M (M=Mg2+, Zn2+, In2+) crystals" J. Appl. Phys., vol. 83, no. 8, pp. 4392-4396, 1998.
[29]D. K. Schroder, Semiconductor material and device characterization, ch. 10, pp. 538-540, John Wiley & Sons, Inc., 1990.
[30]K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol., vol. 3, no. 2, pp. 385-391, 1985.
[31]I. P. Kaminow and L. W. Stulz, "Loss in cleaved Ti-diffused LiNbO3 waveguides," Appl. Phys. Lett., vol. 33, no. 1, pp. 62-64, 1978.
[32]J. E. Goell and R. D. Standley, "Sputtered glass waveguide for integrated optical circuitss," Bell. Syst. Technol. J., vol. 48, no. 10, pp.3445, 1969.
[34]O. Eknoyan, H. F. Taylor, W. Matous, T. Ottinger, and R. R. Neugaonkar, "Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488nm wavelength," Appl. Phys. Lett., vol. 71, no. 21, pp. 3051-3053, 1997.
[35]T. Suzuki, O. Eknoyan, and H. F. Taylor, "Electrooptic coefficient measurements in LiTaO3 and LiNbO3 waveguides," J. Lightwave Technol., vol. 11, no. 2, pp. 285-288, 1993.
[36]E. L. Wooten and W. S. C. Chang, "Test structure for characterization of electrooptic waveguide modulators in lithium niobate," J. Quantum Electron., vol. 29, no. 1, pp. 161-169, 1993.
[37]R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, and L. L. Buhl, "Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for λ=1.32 μm," J. Quantum Electron., vol. 18, no. 10, pp. 1807-1813, 1982.
[38]T. Fujiwara, A. Watanabe, and H. Mori, "Polarization dependent loss in a Ti:LiNbO3 polarization scrambler/controller," IEEE Photon. Technol. Lett., vol. 8, no. 4, pp. 542-544, 1996.
[39]T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol., vol. 10, no. 1, pp. 51-56, 1992.
[40]C. H. Huang and L. McCaughan, 袤-nm-pumped Er-doped LiNbO3 waveguide amplifier: a comparison with 1484-nm pumping," J. Selected Topics in Quantum Electron., vol. 2, no. 2, pp. 367-372, 1996.
[41]R. C. Twu, C. C. Huang, and W. S. Wang, "Zn indiffusion waveguide polarizer on a y-cut LiNbO3 at 1.32 mm wavelength," IEEE Photon. Technol. Lett., vol. 12, no. 2, pp. 161-163, 2000.
[42]R. C. Twu and W. S. Wang, "Comparison of process-dependent properties of Zn-diffused waveguides on y-cut LiNbO3," will be submitted.
[43]A. Campari, C. Ferrari, G. Mazzi, C. Summonte, S. M. Al-Shukri, A. Dawar, R. M. De La Rue, and A. C. G. Nutt, "Strain and surface damage induced by proton exchange in Y-cut LiNbO3 ," J. Appl. Phys., vol. 58, pp. 4521-4524, 1985.
[44]S. S. Lee, M. C. Oh, Y. K. Jhee, and S. Y. Shin, "Y-cut LiNbO3 directional coupler with a self-aligned electrode," J. Lightwave Technol., vol. 12, no. 5, pp. 872-875, 1994.
[45]L. Sun and G. L. Yip, "Analysis of metal-clad optical waveguide polarizers by the vector beam propagation method," Appl. Opt., vol. 33, no. 6, pp. 1047-1050, 1994.
[46]B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, "Integrated optical Mach-Zehnder biosensor," J. Lightwave Technol., vol. 16, no. 4, pp. 583-592, 1998.
[47]D. H. Naghski, J. J. Boyal, H. E. Jackson, S. Sriram, S. A. Kingsley, and J. Latess, "An integrated photonic Mach-Zehnder Interferometer with the no electrodes for sensing electric fields," J. Lightwave Technol., vol. 12, no. 6, pp. 1092-1097, 1994.
[48]H. Porte, V. Gorel, S. Kiryenko, J.-P. Goedgebuer, W. Daniau, and P. Blind, "Imbalanced Mach-Zehnder Interferometer integrated in micro machined silicon substrate for pressure sensor," J. Lightwave Technol., vol. 17, no. 2, pp. 229-233, 1999.
[49]E. I. Ackerman, "Broad-band linearization of a Mach-Zehnder electrooptic modulator," IEEE Trans. Microwave Theory Tech., vol. 47, no. 12, pp. 2271-2279, 1999.
[50]H. Nagata, N. Mitsug, T. Sakamoto, K. Shimo, M. Tamai, and E. M. Haga, "Undesirable contaminants possibly introduced in LiNbO3 electro-optic devices," J. Appl. Phys., vol. 86, no. 11, pp. 6342-6350, 1999.
[51]H. Nagata, M. Shiroishi, T. Kitanobou, and K. Ogura, "DC drift reduction in LiNbO3 optical modulators by decreasing the water content of vacuum evaporation deposited SiO2 buffer layers," Opt. Eng., vol. 37, no. 10, pp. 2855-2858, 1998.
[52]G. E. Betts, F. J. O''Donnell, and K. G. Ray, "Effect of annealing on photorefractive damage in titanium-indiffused LiNbO3 modulators," IEEE Photon. Technol. Lett., vol. 6, no. 1, pp. 211-213, 1994.
[53]S. K. Korotky and J. J. Veselka, "An RC network analysis of long term Ti:LiNbO3 bias stability," J. Lightwave Technol., vol. 14, no. 12, pp. 2687-2697, 1996.
[54]J. Sochtig, H. Schutz, R. Widmer, R. Corsini, D. Hiller, C. Carmannini, G. Consonni, S. Bosso, and L. Gobbi, "Monolithically integrated DBR waveguide laser and intensity modulator in erbium doped LiNbO3," Electron. Lett., vol. 32, no. 10, pp. 899-900, 1996.
[55]K. Yoshido, Y. Kanda, and S. Kohjiro, "A traveling-wave-type LiNbO3 optical modulator with superconducting electrodes," IEEE Trans. Microwave Theory Tech., vol. 47, no. 7, pp. 1201-1205, 1999.
[56]T. Fujiwara, S. Sato, and H. Mori, "Wavelength dependence of photorefractive effect in Ti-indiffused LiNbO3 waveguide," Appl. Phys. Lett., vol. 54, no. 11, pp. 975-977, 1989.
[57]J. A. Lazaro, J. A. Valles, and M. A. Rebolledo, "In situ measurement of absorption and emission cross sections in Er3+-doped waveguides for transitions involving thermalized states," J. Quantum Electron., vol. 35, no. 5, pp. 827-831, 1999.
[58]G. Lifante, E. Cantelar, J. A. Munoz, R. Nevado, J. A. Sanz-Garcia, and F. Cusso, "Zn-diffused LiNbO3:Er3+/Yb3+ as a waveguide laser material," Optical Materials, 13, pp. 181-186, 1999.
[59]C. T. A. Brown, J. Amin, D. P. Shepherd, A. C. Tropper, M. Hempstead, and J. M. Almeida, ?-nm Nd:Ti:LiNbO3 waveguide laser," Opt. Lett., vol. 22, no. 23, pp. 1778-1780, 1997.
[60]I. Baumann, S. Bosso, R. Brinkmann, R. Corsini, M. Dinand, A. Greiner, K. Schafer, J. Sochtig, W. Sohler, H. Suche, and R. Wessel," Er-doped integrated optical devices in LiNbO3," J. Selected Topics in Quantum Electron., vol. 2, no. 2, pp. 356-366, 1996.
[61]D. Sciancalepore, S. Balsamo, and I. Montrosset, "Theoretical modeling of FM mode locking in Er:Ti:LiNbO3 waveguide lasers," J. Quantum Electron., vol. 35, no. 3, pp. 400-409, 1999.
[62]C. T. Lee and L. G. Sheu, "Analysis of end-pumped Nd::Ti:LiNbO3 microchip waveguide Fabry-Perot lasers," J. Lightwave Technol., vol. 15, no. 11, pp. 2147-2153, 1997.
[63]R. C. Twu and W. S. Wang, "A Zn-diffused Mach-Zehnder modulator on lithium niobate at 1.55mm wavelength," will be submitted.
[64]R. C. Twu and W. S. Wang, "A Zn-diffused ridge Mach-Zehnder modulator on LiNbO3 at 1.55mm wavelength," will be submitted.
[65]S. L. Chuang, "A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation," J. Lightwave Technol., vol. 15, no. 1, pp. 174-183, 1987.
[66]E. Marom, O. G. Ramer, and S. Ruschin, "Relation between normal-mode and coupled-mode analyzes of parallel waveguides," J. Quantum Electron., vol. 20, no. 12, pp. 1311-1318, 1984.
[67]R. Hereth and G. Schiferener, "Broad-band optical directional couplers and polarization splitters," J. Lightwave Technol., vol. 7, no. 6, pp. 925-930, 1989.
[68]R. C. Aflerness, "Waveguide electrooptic switch arrays," J. Selected Topics in Communications, vol. 6, no. 7, pp. 1117-1130, 1988.
[69]H. C. Chang and R. V. Ramaswamy, "Symmetrical directional couplers as a wavelength multiplexer-demultiplexer: theory and experiment," J. Quantum Electron., vol. 27, no. 3, pp. 567-574, 1991.
[70]B. E. Little, "Filter synthesis for coupled waveguides," J. Lightwave Technol., vol. 15, no. 7, pp. 1149-1155, 1997.
[71]H. Murata, M. Izutsu, T. Sueta, "Optical bistability and all-optical switching in novel waveguide junctions with localized optical nonlinearity," J. Lightwave Technol., vol. 16, no. 5, pp. 833-840, 1998.
[72]S. J. Al-Bader, "Application of etched grooves in integrated-optics channel isolation," IEEE Photon. Technol. Lett., vol. 8, no. 8, pp. 1044-1046, 1996.
[73]D. Bosc and C. Purovary, "A new experimental method to improve parameter determination of integrated optical components," IEEE Photon. Technol. Lett., vol. 9, no. 5, pp. 648-650, 1997.
[74]W. Charczenko, I. Januar, and A. R. Mickelson, "Modeling of proton-exchanged and annealed channel waveguides and directional couplers," J. Appl. Phys., vol. 73, no. 7, pp. 3139-3148, 1993.
[75]I. Januar, R. J. Feuerstein, A. R. Mickelson, and J. R. Sauer, "Wavelength sensitivity in directional couplers," J. Lightwave Technol., vol. 10, no. 9, pp. 1202-1209, 1992.
[76]H. C. Cheng and R. V. Ramaswamy, "Determination of the coupling length in directional coupler from spectral response," IEEE Photon. Technol. Lett., vol. 2, no. 11, pp. 823-825, 1990.
[77]D. Scarlat, S. Ruschin, and D. Brooks, "Experimental characterization of coupled waveguides by normal mode excitation," J. Quantum Electron., vol. 32, no. 7, pp. 1132-1140, 1996.
[78]R. C. Twu and W. S. Wang, "Characterizations of Zn-diffused lithium niobate directional coupler by post thermal-treatment," submitted to Optics and Photonics/Taiwan''2000 (OPT''2000), Taipei, Taiwan, ROC.
[79]T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16’16 thermooptic matrix switch," IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 810-812, 1998.
[80]F. Heismann, A. F. Ambrose, T. O. Murphy, and M. S. Whalen, "Polarization independent photonic switching system using fast automatic polarization controllers," IEEE Photon. Technol. Lett., vol. 5, no. 11, pp. 1341-1343, 1993.
[81]R. V. Ramaswamy, M. D. Divino, and R. D. Standey, "Balanced bridge modulator switch using Ti-diffused LiNbO3 strip waveguides," Appl. Phys. Lett., vol. 32, no. 10, pp. 644-646, 1978.
[82]R. C. Twu and W. S. Wang, "Zn-diffused LiNbO3 2x2 balanced-bridge optical switch with post thermal-treatment," will be submitted.
[83]D. Y. Zang and V. M. Ristic, "All-optical erasable programmable read-only memory (EPROM) based on LiNbO3 channel waveguides," IEEE Photon. Technol. Lett., vol. 1, no. 10, pp. 323-326, 1989.
[84]張昌華, "可調式光極化分離器之研製," 國立台灣大學光電工程學研究所碩士論文, 1993.
[85]H. Maruyama, M. Haruna, and H. Nishihara, "TE-TM mode splitter using directional coupling between heterogeneous waveguide in LiNbO3," J. Lightwave Technol., vol. 13, no. 7, pp. 1550-1554, 1995.
[86]P. K. Wei and W. S. Wang, "A TE-TM mode splitter on lithium niobate using Ti, Ni, MgO diffusions," IEEE Photon. Technol. Lett., vol. 6, no. 2, pp. 245-248,1994.
[87]C. Edge, R. J. Duthie, and M. J. Wale, "Passive integrated optical polarization mode-splitter in lithium niobate employing a resonant metal-loaded structure," Electron. Lett., vol. 26, no. 22, pp. 1855-1856, 1990.
[88]O. Mikami and S. Zembutsu, "Coupling-length adjustment for an optical directional coupler as a 2’2 switch," Appl. Phys. Lett., vol. 35, no. 1, pp. 38-40, 1979.
[89]O. Mikami, "LiNbO3 coupled-waveguide TE/TM mode splitter," Appl. Phys. Lett., vol. 36, no. 7, pp. 491-493, 1980.
[90]R. C. Twu, C. C. Huang and W. S. Wang, "TE-TM mode splitter with heterogeneously-coupled Ti-diffused and Ni-diffused waveguides on a Z-cut LiNbO3," Electron. Lett., vol. 36, no. 3, pp. 220-221, 2000.
[91]Y. N. Korkishko and V. A. Fedorov, "Structure phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structure properties," J. Selected Topics in Quantum Electron., vol. 2, no. 2, pp. 187-196, 1996.
[92]S. J. Chang, C. L. Tsai, Y. B. Lin, J. F. Liu, and W. S. Wang, "Improved electrooptic modulator with ridge structure in X-cut LiNbO3," J. Lightwave Technol., vol. 17, no. 5, pp. 843-847, 1999.
[93]R. S. Cheng, T. J. Wang, and W. S. Wang, "Wet-etched ridge waveguides in Y-cut lithium niobate," J. Lightwave Technol., vol. 15, no. 10, pp. 1880-1887, 1997.
[94]R. V. Schmidt and I. P. Kamimow, "Metal-diffused optical waveguides in LiNbO3" Appl. Phys. Lett., vol. 25, no. 8, pp. 458-460, 1974.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊