跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 18:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇朝達
研究生(外文):Chau-Da Su
論文名稱:摻鉺超螢光光纖光源的模擬與加入長周期光纖光柵的效應
論文名稱(外文):Modeling of Er-doped Superfluorescent Fiber Sources and Effects of Adding Long-Period Fiber Gratings
指導教授:王倫
指導教授(外文):Lon A. Wang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:144
中文關鍵詞:超螢光光纖光源複行後向長周期光纖光柵多波長光纖光源
外文關鍵詞:Superfluorescent fiber sourceDouble-pass backwardLong-period fiber gratingMulti-wavelength fiber source
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
我們利用數值模擬來分析複行後向超螢光摻鉺光纖光源的特性,包含有平均波長穩定性、光源頻寬、以及輸出功率等特性;並探討光纖長度、泵源波長、光纖鏡面反射率、輸出回饋量、鉺原子濃度等對超螢光光纖光源特性的影響。從分析結果中顯示複行後向超螢光光纖光源有潛力可應用於航太等級之光纖陀螺儀。
我們進一步提出長周期光纖光柵在複行超螢光光纖光源上的應用,包含光源頻寬的改善與多波長光纖光源的產生。藉由加入適當之長周期光纖光柵,複行後向超螢光光纖光源的頻寬可以提升到40奈米,此方法在泵源功率頗大範圍內都有效果,尤其對於具有單峰頻譜之摻鉺超螢光光纖光源更有效。從分析三種頻譜中,我們發現在以1558奈米為主要波帶之複行後向摻鉺超螢光光纖光源所使用的長周期光纖光柵有較高的容忍度。
當我們加入兩個串聯的長周期光纖光柵到複行摻鉺光纖光源中,成功地在1525至1560奈米間產生20個頻道輸出,每一個頻道的對比度都大於10dB,由於所使用的方式可讓功率在頻譜間轉換,因此每一個頻道的功率較利用頻譜切割技術產生的多波長光纖光源來的高。我們並提出另一個方式來改善此多波長光纖光源輸出功率的差異,預期此光源將可適用於高密度多波長光纖光源系統。
A theoretical model of a double-pass backward (DPB) Er-doped superfluorescent fiber source (SFS) pumped near 980 nm is used to analyze the characteristics including mean wavelength stability, linewidth, and output power. The effects of the variations in fiber length, pump wavelength, fiber mirror reflectance, optical feedback, and erbium concentration on the characteristics are also investigated. The analysis results show that an SFS in DPB configuration may serve as light source for the navigation-grade fiber-optic gyroscope application.
We also propose the applications of the long period fiber grating (LPFG) in the double-pass Er-doped SFS, including the spectrum broadening of an SFS and the generation of multi-wavelength fiber source (MWFS). By inserting an appropriate LPFG in a DPB Er-doped SFS, the output spectrum can be broadened up to 40 nm. The spectrum broadening using an LPFG is shown effective over a large pump power range, especially for a single-humped DPB SFS. After the analysis of three types of output spectra, the tolerances of LPFG’s characteristics are found larger for a single-humped DPB SFS having the dominant band in 1558 nm.
By inserting cascaded long period fiber gratings (LPFG’s) in double-pass Er-doped SFS, twenty channels with extinction ratios larger than 10 dB can be obtained between 1525 to 1560 nm with appropriate EDF lengths. The power density in each channel for the proposed MWFS is larger than that obtained by using the spectrum slicing technique because of power redistribution. We also propose a method by using another LPFG in such a source to reduce the power variation among the desired channels. The proposed MWFS may be served as light source for dense WDM system application.
封面
Contents
摘要
Abstract
List of Figures
List of Acronyms
List of Symbols
Chapter 1 Introduction
1-1 Fiber optic gyroscope
1-2 Optical low-coherent reflectometry
1-3 Spectrum sliced fiber source
1-4 Organization of the dissertation
Chapter 2 Analyzing of a Double-Pass Backward Er-Doped Super-fluorescent Fiber Source
2-1 Background
2-2 Modeling of an Er-Doped DPBSFS
2-3 Simulation Results
2-4 Summary
Chapter 3 Spectrum Broadening of a DPB Er-doped SFS Utilizing an LPFG
3-1 Long period fiber grating
3-2 Experimentsetup
3-3 Experiment results
3-4 Simulation results
3-4 Summary
Chapter 4 Multi-wavelength Fiber Sources Using Cascaded LPFG''s in Double-Pass Er-Doped SFS
4-1 Filtering effect of cascaded long period fiber gratings
4-2 Experiment Setup
4-3 MWFS''s based on DPB SFS
4-4 MWFS''s based DPF SFS''s
4-4 Discussion
4-6 Summary
Chapter 5 Conclusion
References
Chapter 1
R.P. Moeller, W.K. Burns, and N.J. Frigo, “Open-loop output and scale factor stability in fiber-optic gyroscope,” J. Lightwave Tech., vol. 7, pp. 262-269,1989.
P.R. Morkel, R.I. Laming, and D.N. Payne, “Noise characteristics of high-power doped-fiber superluminscent sources,” Electron. Lett., vol. 26, pp. 96-98, 1990.
K. Iwatsuki, “Excess niose reduction in fiber gyroscope using broader spectrum linewidth Er-doped superfluorescent fiber laser,” IEEE Photon. Tech. Lett., vol. 3, pp. 281-283, 1991.
K. Takada, T. Kitagawa, M. Shimizu, and M. Horiguchi, “High-sensitivity low coherence reflectometer using erbium-doped superfluorescent fiber source and erbium-doped power amplifier,” Electron. Lett., vol. 29, pp. 365-367, 1993.
U. Wiedmann, P. Gallion, and G.h. Duan, “A generalized approach to optical low-coherent reflectometry including spectral filtering effects,” J. Lightwave Tech., vol. 16, pp. 1343-1347, 1998.
J.S. Lee, Y.C. Chung, and C.S. Shim, “Bandwidth optimization of a spectrum-sliced fiber amplifier light source using an angle-tuned Fabry-Perot filter and a double-stage structure,” IEEE Photon. Tech. Lett., vol. 6, pp. 1197-1199, 1994.
W.T. Holloway, A.J. Keating, and D.D. Sampson, “Multiwavelength source for spectrum-sliced WDM access networks and LAN''s,” IEEE Photon. Tech. Lett., vol. 9, pp. 1014-1016, 1997.
H. C. Lefevre, The fiber-optic gyroscope, Artech House, 1993.
C.C. Cutler, S.A. Newton, and H.J. Shaw, “Limitation of rotation sensing by scattering,” Opt. Lett., vol. 5, pp. 488-490, 1980.
W.K. Burns, and R.P. Moeller, “Polarizer requirements for fiber gyroscopes with high-birefringence fiber and broad-band sources,” J. Lightwave Tech., vol. LT-2, pp. 430-435, 1984.
R.A. Bergh, B. Culshaw, C.C. Cutler, H.C. Lefevre, and H.J. Shaw, “Source statistics and the Kerr effect in fiber —optic gyroscopes,” Opt. Lett., vol. 7, pp. 563-565, 1982.
S.R. Chinn and E.A. Swanson, “Blindness limitations in optical coherence domain reflectometry,” Electron. Lett., vol. 29, no. 23, pp. 2025-2027, 1993.
B.L. Danielson and C.D. Whittenberg, “Guided-wave reflectometry with micrometer resolution,” Appl. Opt., vol. 26, pp. 2836-2842, 1987.
G. Sagnac, “L’ether lumineux demontre par l’effet du vent relatif d’ether dans un interferometre en rotation uniforme,” Compte-rendus de l’Academie des Sciences, vol. 95, pp. 708-710, 1913.
W.R. Leeb, G. Schiffner, and E. Scheiterer, “Optical fiber gyroscopes: Sagnac or Fizeau effect,” Appl. Opt., vol. 18, pp. 1293-1295, 1979.
V. Vali and R.W. Shorthill, “Fiber ring interferometer,” Appl. Opt., vol. 15, pp. 1099-1100, 1976.
W.K. Burns, R.P. Moeller, and A. Dandridge, “Excess noise in fiber gyroscope sources,” IEEE Photon. Tech. Lett., vol. 2, pp. 606-608, 1990.
K. Iwatsuki, “Excess noise reduction in fiber gyroscope using broader spectrum linewidth Er-doped superfluorescent fiber laser,” IEEE Photon. Tech. Lett., vol. 3, pp. 281-283, 1991.
D.C. Hall, W.K. Burns, and R.P. Moeller, “High-stability Er-doped superfluorescent fiber sources,” J. Lightwave Tech., vol. 13, pp. 1452-1460, 1995.
I.N. Duling III, W.K. Burns, and L. Goldberg, “High-power superfluorescent fiber sources,” Opt. Lett., vol. 15, 00. 33-35, 1990.
L.A. Wang, and C.D. Chen “Stable and Broadband Er-Doped Superfluorescent Fiber Sources Utilizing Double-Pass Backward Configuration,” Electronics Letters, vol. 32, no. 19, pp. 1815-1817, 1996.
R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating,” Electron. Lett., vol. 29, pp. 154-156, 1993.
C.W. Hodgson and A.M. Vengsarkar, “Spectrally shaped high-power amplified spontaneous emission sources incorporating long-period gratings,” in Optical Fiber Communication Conference, Technical Digest, paper TuG3, 1996.
D.M. Dagenais, L. Goldberg, R.P. Moeller, and W.K. Burns, “Wavelength stability characteristics of a high-power, amplified superfluorescent source,” J. Lightwave Tech., vol. 17, pp. 1415-1422, 1999.
B.L. Danielson and C.D. Whittenberg, “Guided-wave reflectometry with micrometer resolution,” Appl. Opt., vol. 26, pp. 2836-2842, 1987.
K. Takada, H. Yamada, and M. Horiguchi, “Loss distribution measurement of silica-based waveguides by using a jaggedness-free optical low coherent reflectometer,” Electron. Lett., vol. 30, pp. 1441-1442, 1994.
W.V. Sorin and D.M. Baney, “Measurement of Rayleigh backscattering at 1.55 m with 32 m spatial resolution,” IEEE Photon. Tech. Lett., vol. 4, pp. 374-376, 1992.
R.C. Youngquist, S. Carr, and D.E.N. Davies, “ Optical coherent domain reflectometry: A new optical evaluation technique,” Opt. Lett., vol. 12, pp. 158-160, 1987.
T. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt., vol. 26, pp. 1603-1606, 1987.
K. Takada, M. Yamada, and S. Mitachi, “Optical low coherent reflectometer with a 47-dB dynamic range achieved by using a fluoride-based erbium-doped fiber amplifier,” J. Lightwave Tech., vol. 16, pp. 593-597, 1998.
P.Y. Fonjallaz, H.G. Limberger, R.P. Salathe, C.H. Zimmer, and H.H. Gilgen, “Direct determination of main fiber Bragg grating parameters using OLCR,” IEE Pro.-Optoelectron., vol. 141, pp. 141-144, 1994.
U. Wiedmann, P. Gallion, Y. Jaouen, and C. Chabran, “Analysis of distributed feedback lasers using optical low-coherent reflectometry,” J. Lightwave Tech., vol. 16, pp. 864-869, 1998.
M.C. Farries, A.C. Carter, G.G. Jones, and I. Bennion, “Tunable multiwavelength semiconductor laser with single fiber output,” Electron. Lett., vol. 27, pp. 1498-1499, 1991.
A. Hamakawa, T. Kato, G. Sasaki, and M. Shigehara, “A four-channel multiwavelength fiber-grating external cavity-laser array,” in Proc. Optic. Fiber Commun. Conf., Tech. Dig., 1997, paper ThM3.
M.H. Reeve, A.R. Hunwicks, W. Zhao, S.G. Methley, L. Bickers, S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett., vol. 24, pp. 389-340, 1988.
P.D. Kilkelly, P.J. Chidgey, and G. Hill, “Experimental demonstration of a three channel WDM system over 110 km using superluminscent diodes,” Electron. Lett., vol. 26, pp. 167-169, 1990.
J.S. Lee, Y.C. Chung, and D.J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Tech. Lett., vol. 5, pp. 1458-1461, 1993.
W.T. Holloway, A.J. Keating, and D.D. Sampson, “Multiwavelength source for spectrum-sliced WDM Access Networks and LAN’s,” IEEE Photon. Tech. Lett., vol. 9, pp. 1014-1016,1997.
K.Y. Liou, J.B. Stark, U. Koren, E.C. Burrows, J.L. Zyskind, and K. Dreyer, “System performance of an eight-channel WDM local access network employing a spectrum-sliced and delay-line-multiplexed LED source,” IEEE Photon. Tech. Lett., vol. 9, pp. 696-698, 1997.
J.H. Han, S.J. Kim, and J.S. Lee, “Transmission of 4 x 2.5-Gb/s spectrum-sliced incoherent light channels over 240 km of dispersion-shifted fiber with 200-GHz channel spacing,” IEEE Photon. Tech. Lett., vol. 11, pp. 901-903, 1999.
J.H. Han, J.S. Lee, S.S. Lee, T.Y. Yun, H.K. Kim, C.H. Lee, and S.Y. Shin, “2.5Gbit/s transmission of spectrum-sliced fiber amplifier light source channels over 200 km of dispersion-shifted fiber,” Electron. Lett., vol. 31, pp. 989-991, 1995.
M. Zirngibl, C.R. Doerr, and L.W. Stulz, “Study of spectral slicing for local access applications,” IEEE Photon. Tech. Lett., vol. 8, pp. 721-723, 1996.
D.K. Jung, S.K. Shin, C.H. Lee, and Y.C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-sliced techniques,” IEEE Photon. Tech. Lett., vol. 10, pp. 1334-1336, 1998.
Chapter2
P.F. Wysocki, M.J.F. Digonnet, B.Y. Kim, and H.J. Shaw “Characteristics of Erbium-doped superfluorescent fiber sources for interferometric sensor applications,” IEEE J. Lightwave Tech., vol.12, pp.550-567, 1994.
D.C. Hall, W.K. Burns, and R.P. Moeller “High-stability Er-doped superfluorescent fiber sources,” IEEE J. Lightwave Tech., vol.13, pp.1452-1460, 1995.
P.F. Wysocki, M.J.F. Digonnet, and B.Y. Kim “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm,” Opt. Lett., vol.16, pp.961-963, 1991.
D.C. Hall and W.K. Burns “Wavelength stability optimisation in Er-doped superfluorescent fiber sources,” Electron. Lett., vol.30, pp.653-654, 1994.
L.A. Wang, and C.D. Chen “Stable and Broadband Er-Doped Superfluorescent Fiber Sources Utilizing Double-Pass Backward Configuration,” Electron. Lett., vol. 32, pp. 1815-1817, 1996.
K. Iwatsuki, “Er-doped superfluorescent fiber baser pumped by 1.48 m laser diode,” IEEE Photon. Tech. Lett., vol. 2, pp. 237-238, 1990.
P.F. wysocki, K. Fesler, K. Liu, M.J.F. Digonnet, and B.Y. Kim, “Spectrum thermal stability of Nd- and Er-doped fiber sources,” Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1373, pp. 234-235, 1990.
K. Liu, M. Digonnet, H.J. Shaw, B.J. Ainslie, and S.P. Craig, “10 mW superfluorescent single-mode fiber source at 1060 nm,” Electron. Lett., vol. 23, pp. 1320-1321, 1987.
P.F. Wysocki, M.J.F. Digonnet, and B.Y.Kim, “Spectral characteristics of high-power 1.5 m broadband superluminescent fiber sources,” IEEE Photon. Tech. Lett., vol. 2, pp. 178-180, 1990.
I.N. Duling III, W.K. Burns, and L. Goldberg, “High-power superfluorescent fiber sources,” Opt. Lett., vol. 15, 00. 33-35, 1990.
I.N. Duling III, R.P. Moeller, W.K. Burns, C.A. Villarruel, L.Goldberg, E. Snitzer, and H. Po, “Output characteristics of diode pumped fiber ASE sources,” IEEE J. Quantum Electron., vol. 27, pp. 995-1003, 1991.
L.A. Wang and C.D. Chen, “Characteristics comparison of Er-doped double pass superfluorescent fiber sources pumped near 980 nm,” IEEE Photon. Tech. Lett., vol. 9, pp. 446-448, 1997.
L.A. Wang and C.D. Chen, “Comparison of efficiency and output power of optimal Er-doped superfluorescent fiber sources in different configurations,” Electron. Lett., vol. 33, pp. 703-704, 1997.
R. Paschotta, J. Nilsson, A.C. Tropper, and D.C. Hanna, “Efficient superfluorescane light source with broad bandwidth,” IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 1097-1099, 1997.
S.D. Dyer and K.B. Rochford, “Spectral tailoring of erbium superfluorescent fiber source,” Electron. Lett., vol. 34, pp. 1137-1139, 1998.
P.F. Wysocki, J.L. Wagener, M.J.F. Digonnet, and H.J. Shaw, “Evidence and modeling of paired ions and other loss mechanisms in erbium-doped silica fibers,” Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1789, pp. 66-79, 1992.
E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Tech. Lett., vol. 5, pp. 73-75, 1993.
J.L. Wagener, P.F. Wysocki, M.J.F. Digonnet, and H.J. Shaw, “Effects of concentration and clusters in erbium-doped fiber lasers,” Opt. Lett., vol. 18, pp. 2014-2016, 1993.
R.S. Quimby, W.J. Miniscalco, and B. Thompson, “Upconversion and 980-nm excited state absorption in erbium-doped glass,” Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1789, pp. 50-57, 1992.
Chapter 3
L.A. Wang and C.D. Chen, “Stable and broadband Er-doped superfluorescent fiber sources utilizing double-pass backward configuration,” Electron. Lett., vol.32, pp. 1815-1817, 1996.
M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. McKee, “D-fiber filter for erbium gain spectrum flattening,” Electron. Lett., vol. 28, pp. 131-132, 1992.
R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating,” Electron. Lett., vol. 29, pp. 154-156, 1993.
C.W. Hodgson and A.M. Vengsarkar, “Spectrally shaped high-power amplified spontaneous emission sources incorporating long-period gratings,” in Optical Fiber Communication Conference, Technical Digest, paper TuG3, 1996.
J.R. Qian and H.F. Chen, “Gain flattening fiber filters using phase-shifted long period gratings,” Electron. Lett., vol. 34, pp. 1132-1133, 1998.
R. Paschotta, J. Nilsson, A.C. Tropper, and D.C. Hanna, “Efficient superfluorescent light source with broad bandwidth,” IEEE J. Selected Topics in Quantum Electronics, vol. 3, pp. 1097-1099, 1997.
S.D. Dyer and K.B. Rochford, “Spectral tailoring of erbium superfluorescent fiber source,” Electron. Lett., vol. 34, pp. 1137-1139, 1998.
A.M. Vengsarkar, P.J. Lemaire, J.B. Judkins, V. Bhatia, T. Erdogan, and J.E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Tech. Lett., vol. 14, pp. 58-65, 1996.
A.M. Vengsarkar, J.R. Pedrazzani, J.B. Judkins, and P.J. Lemaire, “Long-period fiber-grating-based gain equalizers,” Opt. Lett., vol. 21, pp. 336-338, 1996.
P.F. Wysocki, J.B. Judkins, R.P. Espindola, M. Andrejco, and A.M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Tech. Lett., vol. 9, pp. 1343-1345, 1997.
J.R. Qian and H.F. Chen, “Gain flattening fiber filters using phase-shifted long period fiber gratings,” Electron. Lett., vol. 34, pp. 1132-1133, 1998.
V. Bhatia, M.K. Burford, L.A. Murphy, and A.M. Vensarkar, “Long-period fiber grating sensors,” in Optical Fiber Communication Conference, Technical Digest, paper ThP1, 1996.
B.H. Lee and J. Nishii, “Self-interference of long-period fiber grating and its application as temperature sensor,” Electron. Lett., vol. 34, pp. 2059-2060, 1998.
A.A. Abramov, A. Hale, R.S. Windeler, and T.A. Strasser, “Temperature-sensitive long-period fiber gratings for wideband tunable filters,” in Optical Fiber Communication Conference, Technical Digest, paper ThJ5, 1999.
V. Bhatia, D.K. Campbell, T. D’Alberto, G.A.T. Eyck, D. Sherr, K.A. Murphy, and R.O. Claus, “Standard optical fiber long-period gratings with reduced temperature sensitivity for strain and refractive-index sensing,” in Optical Fiber Communication Conference, Technical Digest, paper FB1, 1997.
Y. Liu, L. Zhang, and I. Bennion, “Fiber optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fiber,” Electron. Lett., vol. 35, pp. 661-663, 1999.
H.J Patrick, C.C. Chang, and S.T. Vohra, “Long period fiber gratings for structural bend sensing,” Electron. Lett., vol. 34, pp. 1773-1775, 1998.
H.J. Patrick, A.D. Kersey, F. Bucholtz, K.J. Ewing, J.B. Judkins, and A.M. Vengsarkar, “Chemical sensor based on long-period fiber grating response to index of refraction,” Summaries of Papers Presented at the Conference on Lasers and Electro-Optics (CLEO ''97), vol. 11 , pp. 420 —421, 1997
H.J. Patrick, A.D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Tech., vol. 16, pp. 1606, 1998.
X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, “High sensitivity of dual resonant peaks of long-period fiber grating to surrounding refractive index change,” Electron. Lett., vol. 35, pp. 1580-1581, 1999.
E.M. Dianov, D.S. Starodubov, S.A. Vasiliev, A.A. Frolov, O.I. Medvedkov, and A.O. Rybaltovsky, “Germanosilicate glass refractive-index change induced by direct excitation of GODC triplet state,” in Optical Fiber Communication Conference, Technical Digest, paper WL17, 1997.
E.M. Dianov, D.S. Stardubov, S.A. Vasiliev, A.A. Frolov, and O.I. Medvedkov, “Refractive-index gratings written by near-ultraviolet radiation,” Optic. Lett., vol. 22, pp. 221-223, 1997.
D.D. Davis, T.K. Gaylord, E.N. Glytsis, and S.C. Mettler, “CO2 laser-induced long-period fiber gratings: spectral characteristics, cladding modes and polarization independent,” Electron. Lett., vol. 34, pp. 1416-1415, 1998.
D.D. Davis, T.K. Gaylord, E.N. Glytsis, S.G. Kosinski, S.C. Mettler, and A.M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser pulses,” Electron. Lett., vol. 34, pp. 302-303, 1998.
T. Enomoto, M. Shigehara, S. Ishikawa, T. Danzuka, and H. Kanamori, “Long-period fiber grating in a pure-silica-core fiber written by residual stress relaxation,” in Optical Fiber Communication Conference, Technical Digest, paper ThG2, 1998.
M.J. Yuen, “Ultraviolet absorption studies of germanosilicate glasses,” Appl. Opt., vol. 21, pp. 136-140, 1982.
Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in Ge-doped fiber,” Appl. Phys. Lett., vol. 61, pp. 2955-29257, 1992.
P.J. Lemaire, R.M. Atkins, V. Mizrahi, and W.A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitive and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett., vol. 29, pp. 1191-1193, 1993.
V. Grubsky, D.S. Starodubov, and J. Feinberg, “Photochemical reaction of hydrogen with germanosilicate glass initiated by 3.4-5.4-eV ultraviolet light,” Optic. Lett., vol. 24, pp. 729-731, 1999.
A.A. Abramov, B.J. Eggleton, J.A. Rogers, R.P. Espindola, A.Hale, R.S. Windeler, and T.A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Tech. Lett., vol. 11, pp. 445-447, 1999.
L.A. Wang and C.D. Chen, “Characteristics comparison of Er-doped double pass superfluorescent fiber sources pumped near 980 nm,” IEEE Photon. Tech. Lett., vol. 9, pp. 446-448, 1997.
H. Ke, K.S. Chiang, and J.H. Peng, “Analysis of phase-shifted long-period fiber gratings,” IEEE Photon. Tech. Lett., vol. 10, pp. 1596-1598, 1998.
P.F. Wysocki, M.J.F. Digonnet, B.Y. Kim, and H.J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Tech., vol. 12, pp. 550-567, 1994.
Chapter 4
M.H. Reeve, A.R. Hunwicks, W. Zhao, S.G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett., vol. 24, pp. 389-390, 1988.
K.Y. Liou, J.B. Stark, U. Koren, E.C. Burrows, J.L. Zyskind, and K. Dreyer, “System performance of an eight-channel WDM local access network employing a spectrum-sliced and delay-line-multiplexed LED source,” IEEE Photon. Tech. Lett., vol. 9, pp. 696-698, 1997.
S.S. Wagner and T.E. Chapuran, “Broadband high-density WDM transmission using superluminescent diodes,” Electron. Lett., vol. 26, pp. 696-697, 1990.
P.D.D. Kilkelly, P.J. Chidgey, and G. Hill, “Experimental demonstration of a three channel WDM system over 110km using superluminescent diodes,” Electron. Lett., vol. 26, pp. 167-169, 1990.
J.S. Lee, Y.C. Chung, and D.J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Tech. Lett., vol. 5, pp. 1458-1461, 1993.
W.T. Holloway, A.J. Keating and D.D. Sampson, “Multiwavelength source for spectrum-sliced WDM access network and LAN’s,” IEEE Photon. Tech. Lett., vol. 9, pp. 1014-1016, 1997.
R.D.T. Lauder, J.M. Badcock, W.T. Holloway, and D.D. Sampson, “WDM ring network employing a shared multiwavelength incoherent source,” IEEE Photon. Tech. Lett., vol. 10, pp. 294-296, 1998.
P.F. Wysocki, M.J.F. Digonnet, B.Y. Kim, and H.J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Tech., vol. 12, pp. 550-567, 1994.
J.S. Lee, Y.C. Chuang, and C.S. Shim, “Bandwidth optimization of a spectrum-sliced fiber amplifier light source using an angle-tuned Fabry-Perot filter and a double-stage structure,” IEEE Photon. Tech. Lett., vol. 6, pp. 1197-1199, 1994.
D.K. Jung, S.K. Shin, C.H. Lee, and Y.C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Tech., vol. 10, pp. 1334-1336, 1998.
X.J. Gu, “Wavelength-division multiplexing fiber filter and light source using cascaded long-period fiber gratings,” Opt. Lett., vol. 23, pp.509-510, 1998.
A.M. Vengsarkar, P.J. Lemaire, J.B. Judkins, V. Bhatia, T. Erdogan, and J.E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Tech., vol. 14, pp. 58-65, 1996.
B.H. Lee and J.N. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt., vol. 38, pp. 3450-3459, 1999.
L.A. Wang and C.D. Chen, “Comparison of efficiency and output power of optimal Er-doped superfluorescent fiber sources in different configurations,” Electron. Lett., vol. 33, pp. 703-704, 1997.
J.H. Han, S.J. Kim, and J.S. Lee, “Transmission of 4x2.5-Gb/s spectrum-sliced incoherent light channels over 240 km of dispersion shifted fiber with 200-GHz channel spacing,” IEEE Photon. Tech. Lett., vol. 11, pp. 901-903, 1999.
R.D. Feldman, “Crosstalk and loss in wavelength division multiplexed systems employing spectrum slicing,” J. Lightwave Tech., vol. 15, pp. 1823-1831, 1997.
G.B. Hocker, “Fiber optic sensing of temperature and pressure,” Appl. Opt., vol. 18, pp. 1445-1448, 1979.
B.H. Lee and J. Nishii, “Self-interference of long-period fiber grating and its application as temperature sensor,” Electron. Lett., vol. 34, pp. 2059-2060, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top