跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 07:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳英田
研究生(外文):Ying-Tien Chen
論文名稱:數種常見氧化物陶瓷之主導燒結曲線及其應用
論文名稱(外文):Master Sintering Curves and Their Applications of Some Common Oxides Ceramics
指導教授:鄧茂華鄧茂華引用關係
指導教授(外文):Mao-Hua Teng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:112
中文關鍵詞:燒結氧化鋁氧化鋅氧化鈦氧化鋯主導燒結曲線
外文關鍵詞:sinteringMSCYTZPZnOAl2O3TiO2
相關次數:
  • 被引用被引用:7
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
主導燒結曲線(Master Sintering Curve, MSC)是個數年之前才發展出來的燒結模型,可以預測陶瓷材料在燒結中的整個變化過程;此模型不僅在基礎科學上是重大的突破,也有實際的應用價值。本研究將主導燒結曲線跟一般常見的固態燒結模型來比較,發現許多一般固態燒結模型也都可以用變數分離的方法將主要方程式分成Θ函數與跟幾何變化相關的函數兩項。也就是說,雖然眾多固態燒結模型所注重的重點不同,推論及使用計算的方法也不同,但都可以轉化成跟主導燒結曲線一樣的關係式。
本研究的主要工作是在建立一些常見陶瓷粉末的MSC,並利用所建立的MSC來分析各陶瓷粉末之視燒結活化能。實驗所使用的材料有α-氧化鋁、氧化鋅及氧化鈦等單純的單相氧化物陶瓷材料。我們將幾組等升溫速率燒結方式所獲得的燒結資料,經過MSC的分析處理後,就可以獲得α-氧化鋁、氧化鋅及氧化鈦等三系統的最佳視燒結活化能分別為481 kJ/mol、331 kJ/mol及365 kJ/mol。此外我們也採用添加3 mol%Y2O3的ZrO2粉末(Yttria tetragonal zirconia polycrystal, YTZP)來進行較複雜成分之燒結研究。MSC分析的結果顯示,YTZP仍適用MSC模型,且得到其視燒結活化能為662 kJ/mol。依據此YTZP的唯一MSC,我們設計不同的燒結路徑並可以事先預測燒結體的幾何變化,結果發現MSC的預測確實跟實驗結果十分吻合。
為進一步探討MSC在使用上的範圍與限制,我們也用雙成分Al2O3-YTZP系統來進行更複雜系統的燒結研究。雖然雙成分系統明顯地在擴散機構和幾何變化的關係上並不符合在建立MSC時所提的假設,但是實驗結果卻顯示仍可建立兩相成分系統的MSC。不僅如此,若以一條奇特的升溫路徑去驗證其MSC的唯一性,令人非常驚異的是結果仍能吻合。我們認為MSC因為具有部分阿瑞尼斯方程式(Arrhenius equation)的特徵,有可能是一種可以更廣泛應用之數據分析方法。但是這個推測仍有待後續研究證實。
Master sintering curve (MSC) is a recently developed model, and is capable of predicting the density variations of ceramic compacts throughout the sintering process. It had been proved earlier that this model worked for simple ceramic material, i.e., alumina. In this study we discovered that the final equations of several solid state sintering models can be separated into two parts on either side of an equal sign, just like in MSC, the one that comprises all geometric terms is ; and another that comprises only the temperature, time, and an apparent activation energy Qa is . Although these sintering models emphasized on different characteristics of sintering process, they appear to have the similar MSC-like relationships hidden inside the mathematical equations.
The main work of this study is to establish the MSC of some common ceramic powders, including α-Al2O3, ZnO and TiO2. Using the MSC to analyze the data of different sintering path, we found the best apparent activation energies of α-Al2O3, ZnO and TiO2 were 481 kJ/mol、331 kJ/mol and 365 kJ/mol respectively. The YTZP (yttria tetragonal zirconia polycrystal) powder was also analyzed in this study, and its activation energy is 662 kJ/mol. Using the unique MSC of YTZP, we designed various sintering paths and predicted the densities of samples, which were later confirmed by experiments.
We used the binary Al2O3-YTZP system to further investigate the abilities and limitations of MSC. Multi-component system should be more complex on the mass transportation mechanisms because of the existence of many different crystal surfaces and surface energies. Although the two-phase system obviously did not fit to the assumptions of MSC, surprisingly the results show that the MSC can still be applied. Therefore, it is possible that the MSC is a more general analytical method that can be used in more extensive areas; however, further investigations are needed to confirm this conjecture.
中文摘要 Ⅰ
Abstract Ⅱ
目 錄 Ⅲ
表目錄 Ⅴ
圖目錄 Ⅶ
第一章 研究目的 1
第二章 文獻回顧 4
2-1 固態燒結 4
2-2 固態燒結模型 7
2-3 主導燒結曲線模型 12
2-4 主導燒結曲線模型的最新發展 16
2-5 氧化物的燒結 17
2-5-1 α-氧化鋁 17
2-5-2 氧化鋅 18
2-5-3 氧化鈦 20
2-5-4 氧化鋯 21
2-6 兩相氧化物與層狀結構陶瓷的燒結 26
第三章 實驗步驟與方法 30
第四章 結果與討論 41
4-1 固態燒結模型的比較 41
4-2 氧化鋁系統 50
4-3 氧化鋅系統 53
4-4 氧化鈦系統 53
4-5 氧化鋯系統 57
4-5-1 XRD分析 57
4-5-2 SEM觀察與分析 57
4-5-3 MSC模型的預測 57
4-6 氧化鋁-氧化鋯系統及層狀結構陶瓷系統 65
第五章 結論 69
第六章 未來工作 70
致謝 73
參考文獻 74
附錄目錄 81
References
1. H. Su and D. L. Johnson (1996) “Master Sintering Curve: a Practical Approach to Sintering,” Journal of the American Ceramic Society., 79[12], p.3211-17.
2. H. Su and D. L. Johnson (1997) “A Practical Approach to Sintering,” The American Ceramic Society Bulletin, 76[2], p.72-76.
3. 吳慶豐 “氧化鋁陶瓷之主導燒結曲線研究”碩士論文, 1999, 6月。
4. 吳慶豐,鄧茂華 “微細顆粒陶瓷粉末之主導燒結曲線”化工冶金, 20卷增刊,1999, p401-404。
5. 鄧茂華, 吳慶豐 (1999) “Using Master Sintering Curve Model To Predict the Sintering Behaviors of Alumina”中國材料科學學會1999年度年會論文集,11月。
6. 杜正恭, “氧化鋯” 陶瓷技術手冊 第二十一章, 汪建民主編,中華民國粉末冶金協會, 台灣, 1994。
7. K. Haberko and R. Pampuch (1983) “Influence of Yttria on Phase Composition and Mechanical Properties of Y-PSZ,” Ceramics International, Vol. 9, n. 1, p8~12.
8. R. Ruh, K. S. Mazdiyasni, P. G. Valentine and H. O. Bielstein (1986) “Phase Relations in the System ZrO2-Y2O3 at Low Y2O3 Contents,” Journal of the American Ceramic Society., 69[7], C-190~C-192.
9. J. Wang and R. Raj (1991) “Activation Energy for the Sintering of Two-Phase Alumina/Zirconia Ceramics” Journal of the American Ceramic Society., 74[8], p.1959-63.
10. D. Fan and L. Q. Chen (1997) “Computer Simulation of Grain Growth and Ostwald Ripening in Alumina-Zirconia Two-Phase Composites,” Journal of the American Ceramic Society., 80[7], p.1773-80.
11. T. Chartier, D. Merle and J. L. Besson (1995) “Laminar Ceramic Composites,” Journal of the European Ceramic Society., 15, p.101-107.
12. P. Z. Cai, D. J. Green and G. L. Messing (1996) “Pressureless Co-Sintering of Al2O3-ZrO2 Multilayers and Bilayers,” Materials Research Society Symposium Proceeding, 434, p.93-98.
13. J. She, S. Scheppokat, R. Janssen and N. Claussen (1998) “Reaction-Bonded Three-Layer Alumina-Based Composites with Improved Damage Resistance” Journal of the American Ceramic Society., 81[5], p.1374-76.
14. J. M. Manuel, C. Carolina and D. R. Arturo (1997) “Microstructure and High-Temperature Mechanical Behavior of Alumina/Alumina─Yttria-Stabilized Tetragonal Zirconia Multilayers Composites,” Journal of the American Ceramic Society., 80[8], p.2126-30.
15. P. Z. Cai, D. J. Green and G. L. Messing (1997) “Constrained Densification of Alumina/Zirconia Hybrid Laminates, Ⅱ: Viscoelastic Stress Computation,” Journal of the American Ceramic Society., 80[8], p.1940-48.
16. M. P. Harmer, H. M. Chan and G. A. Miller (1992) “Unique Opportunities for Microstructural Engineering with Duplex and Laninar Ceramic Composites,” Journal of the American Ceramic Society., 75[7], p.1715-28.
17. R. M. German "Sintering Theory and Practice" Ch.1, p.1-22, John Wiley & Sons, Inc., New York, (1996).
18. R. L. Coble (1958) “Initial Sintering of Alumina and Hematite,” Journal of the American Ceramic Society., 41, p.55-62.
19. R. L. Coble (1961) “Sintering Crystalline Solids. 1. Intermediate and Final State Diffusion Models,” Journal of Applied Physics., 32, p.787-792.
20. G. C. Kuczynski (1949) “Self-Diffusion in Sintering of Metallic Particles,” Journal of Applied Physics., 20[12], p.1160-1163.
21. C. Herring (1950)“Diffusional Viscosity of a polycrystalline Solid,” Journal of the Applied Physic., 21, p.437-445.
22. M. F. Ashby (1974) “A First Report on Sintering Diagrams,” Acta Metallurgica., 22[3], p.275-89.
23. H. E. Exner and G. Petzow (1975) “Shrinkage and Rearrangement During Sintering of Glass Spheres,” Sintering and Catalysis, G. C. Kuczynski (ed.), Plenum Press, New York, p.279-293.
24. H. E. Exner (1979) “Principles of Single Phase Sintering,” Reviews on Powder Metallurgy and Physical Ceramics., 1, p.7-251.
25. K. S. Hwang, R. M. German and F. V. Lenel (1991) “Analysis of Initial Stage Sintering Through Computer Simulation,” Powder Metallurgy International., 23[2] , p.86-91.
26. R. L. Coble (1965) “Intermediate-Stage Sintering: Modification and Correction of a Lattice Diffusion Model,” Journal of Applied Physics., 36, p.2327.
27. N. Mizutani, T. Ogihara, M. Kondo, M. Ikeda and K. Shinozaki (1994) “Slip Casting and Sintering of Monodispersed TiO2 Particles,” Journal of Materials Science., 29, p.366-372.
28. L. P. Martin and M. Rosen (1996) “Constant Heating-Rate Analysis of Densification Kinetics in Sintering Zinc Oxide” Journal of Materials Synthesis and Processing., 4, p.371-375.
29. D. L. Johnson (1969) “New Method of Obtaining Volume, Grain-Boundary, and Surface Diffusion Coefficients from Sintering Data,” Journal of Applied Physics., 40, p.192-201.
30. J. D. Hansen, R. P. Rusin, M. H. Teng, and D. L. Johnson (1992) “Combined Stage Sintering Model,” Journal of the American Ceramic Society., 75[5], p.1129-35.
31. K. An and D. L. Johnson (2000) “An Application of the Pressure-Assisted Master Sintering Surface: Hot Pressing in a Granular Medium,” Journal of the American Ceramic Society., 2000 Annual Meeting & Exposition, 102, p.171.
32. M. H. Teng, Y. C. Lai, Y. T. Chen and C. F. Wu (2000) “A Computer Program of Master Sintering Curve Model to Predict Sintering Results,” Journal of the American Ceramic Society., 2000 Annual Meeting & Exposition, 102, p.225.
33. A. R. Olszyna, P. Marchlewski and K. J. Kurzydtowski (1997)“Sintering of high-density, high-purity Alumina Ceramics,” Ceramics International, 23, p.323-328.
34. T. S. Yeh and M. D. Sacks (1988)“Low-Temperature Sintering of Aluminum Oxide,”Journal of the American ceramic society, 71[10], p.841-844.
35. H. H. Hillman and R. M. German (1992)“Constant Heating Rate Analysis of Simultaneous Sintering Mechanisms in Alumina,”Journal of Materials Science, 27, p.2641-2648.
36. J. Wang and R. Raj (1990)“Estimate of the Activation for Boundary Diffusion from Rate-Controlled Sintering of Pure Alumina, and Alumina Doped with Zirconia or Titania,” Journal of the American Ceramic Society, 73[5], p.1172-117.
37. H. Su and D. L. Johnson (1996) “Sintering of Alumina in a Microwave-Induced Oxygen Plasama,” Journal of the American Ceramic Society., 79[12], p.3199-3210.
38. M. Y. Chu, M. N. Rahaman, L. C. De Jonghe, and R. L. Brook (1991) “Effect of Heating Rate on Sintering and Coarsening,” Journal of the American Ceramic Society., 74[6], p.1217-25.
39. I. Atsushi, Z. Lab and Takatsuki (1997) “Mechanism of low temperature sintering (850 approx. 950DGR C) of ZnO ,”Journal of the Japan Society of powder and powder metallurgy , 44[12], p.1069~1074.
40. S. Masato (1996)“Effect of the sintering temperature and atmosphere on the grain growth and grain boundary phase formation of Pr-doped ZnO varistor ,” Journal of the Ceramic Society of Japan, 104, p.44-48.
41. W. Takanori, S. Univ and Saga-Shi (1993) “Grain growth of sintered ZnO with alkali oxide additions,” Journal of the Ceramic Society of Japan, International Edition, 101[10], p.1056-1060.
42. L. P. Martin and M. Rosen (1996) “Constant Heating-Rate Analysis of Densification Kinetics in Sintering Zinc Oxide,” Journal of Materials Synthesis and Processing, Vol. 4 No. 6, p.371-375.
43. E. A. Barringer and H. K. Bowen (1982) “Formation, Packing, and Sintering of Monodisperse TiO2 Powders,” Journal of the American Ceramic Society., 65, C-199.
44. J. H. Jean and T. A. Ring (1986) “Processing Monosized TiO2 Powers Generated with HPC Dispersant,” The American Ceramic Society Bulletin., 65, p.1574-77.
45. L. E. Edelsen and A. M. Glaeser (1988) “Role of Particle Substructure in the Sintering of Monosized Titania,” Journal of the American Ceramic Society., 71, p.225-35.
46. N. Mizutani, T. Oguhara, M. Kondo, M. Ikeda and K. Shinozaki (1994) “Slip casting and sintering of monodispersed TiO2 particles,” Journal of Materials science, 29, p.366-372.
47. Y. Kishi, K. Ogura, K. Kamata, H. Saitoh and K. Uematsu (1997) “High Strength, Electrically Conductive Pore-Free Tio2 Ceramics Made by Hot Isostatic Pressing ,” Journal of Materials research, 12[4], p.1056-1060.
48. H. G. Scott (1975) “Phase Relationships in the Zirconia-Yttria System,” Journal of Materials Science, 10, p.1527~35.
49. L. Ruiz (1996) “Effect of Heat Treatment on Grain Size, Phase Assemblage, and Mechanical Properties of 3 mol% Y-TZP,” Journal of the American Ceramic Society., 79[9], p.2331~40.
50. T. K. Gupta, J. H. Bechtold, R. C. Kuznicki and L. H. Cadoff (1977) “Stabilization of Tetragonal Phase in Polycrystalline Zirconia,” Journal of Materials Science, 12, p.2421~26.
51. 栗愛綱, “相圖及其應用”陶瓷技術手冊 第十一章, 汪建民主編,中華民國粉末冶金協會, 台灣, 1994。
52. 何方元, “釔安定化正方氧化鋯(Y-TZP)膠粒製程與燒結體性質研究” 碩士論文, 1998, 7月。
53. 陳信政, “氧化鈦及氧化鋯對羰基鐵粉燒結體緻密化之影響” 碩士論文, 1994, 6月。
54. F. F. Lange (1986) “Transformaton-toughened ZrO2: Correlations Between Grain Size Control and Composition in the System ZrO2-Y2O3,” Journal of the American Ceramic Society., 69[3], p.240-242.
55. R. Ruh, K. S. Mazdiyasni, P. G. Valentine and H. O. Bielstein (1986) “Phase Relations in the System ZrO2-Y2O3 at Low Y2O3 Contents,” Journal of the American Ceramic Society., 69[7], C-190~C-192.
56. M. Weller and H. Schubert (1986) “Internal Friction, Dielectric Loss, and Ionic Conductivity of Tetragonal ZrO2-3% Y2O3 (Y-TZP),” Journal of the American Ceramic Society., 69[7], p.573~77.
57. W. H. Rhodes (1981) “Controlled Transient Solid Second-Phase Sintering of Yttria,” Journal of the American Ceramic Society., 64[1], p.13-19.
58. K. Goto, O. Hirota and O. Yamaguchi (1996) “Formation and Sintering of 75 mol% Alumina/25 mol% Zirconia (2-3.5 mol% Yttria) Composite Powder Prepared by the Hydrazine Method,” Journal of Materials Science., 31[1], p.204-208.
59. J. Requena, R. Moreno and J. S. Moya (1989) “Alumina and Alumina/Zirconia Multilayer Composites Obtained by Slip Casting,” Journal of the American Ceramic Society., 72[8], p.1511-13.
60. L. —Q. Chen and D. Fan (1996) “Computer Simulation Model for Coupled Grain Growth and Ostwald Ripening─Application to Al2O3-ZrO2 Two-Phase Systems,” Journal of the American Ceramic Society., 79[5], p.1163-68.
61. D. Fan and L. —Q. Chen (1997) “Computer simulation of grain growth using a continuum field model,” Acta Materialia 45, 2, p.611-622.
62. 吳溪煌, 林佳德 (2000)“以溶膠-凝膠法製備氧化鋯基固態電解質之電性研究,”中華民國陶業研究學會八十九年年會學術論文暨國科會陶瓷研究計畫成果發表會,論文集, p.194-199。
63. D. —J. Chen and M. J. Mayo (1996) “Rapid Rate Sintering of Nanocrystalline ZrO2-3 mol% Y2O3 ,” Journal of the American Ceramic Society., 79[4], p.906-12.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top