跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 12:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張捷雲
研究生(外文):CHANG CHIEN YUN
論文名稱:燒結條件對鈦鋯系儲氫合金性質之影響
論文名稱(外文):The effect of sintering conditions on the hydriding behaviors and microstructures of Ti-Zr based hydrogen stroge alloys
指導教授:陳立業陳立業引用關係
指導教授(外文):CHAN SAMMY LAP IP
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:88
語文別:中文
論文頁數:99
中文關鍵詞:儲氫合金燒結熱處理
外文關鍵詞:Hydrogen storage alloySinteringHeat treatment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用組成Ti0.5Zr0.5V0.2Mn0.7Cr0.5Ni0.6的儲氫合金,研究燒結對合金性質的影響。燒結極片的特性是不添加黏結劑,因此適用於高速率放電。合金鑄錠以電弧熔煉法製作,利用反覆吸放氫的方式使鑄錠碎化以獲得粉末。燒結溫度為400℃、600℃、800℃,燒結時間一小時,實驗結果顯示Ti0.5Zr0.5V0.2Mn0.7Cr0.5Ni0.6合金隨燒結溫度增加可增加放電量,600℃燒結的極片與800℃燒結的極片在15 mA/g的放電量下有相近的最大電量,分別是231 mAh/g與227 mAh/g,但是800℃燒結的極片可承受大電流放電,在240 mA/g的電流密度下,電容量仍有100 mAh/g,顯示燒結溫度增加使合金間的結合性增加,提昇強度與粉末間的導電性,因此有較佳的高速率放電能力。
由於合金無電鍍前需先以酸洗液去除粉末表面的氧化物,提供活性表面以利後續無電鍍製程中鎳的沈積,為研究酸洗對合金電性的影響,製作粉末酸洗後的極片並於600℃燒結,經充放電測試的結果可知其最大電容量與原合金粉在600℃燒結時相同,顯示使用的酸洗溶液並不會影響最大電容量。
實驗的另一部份研究燒結對無電鍍鎳粉末的影響。實驗製備兩種無電鍍粉末,一種可獲得鎳磷鍍層,另一種為複合鍍鎳(duplex coated)-粉末先鍍上少量鎳磷,再鍍純鎳。由於400℃燒結時,兩種鍍鎳方式在合金表面幾乎仍是以鎳存在,因此可增加放電量,最大電容量分別是73 mAh/g與200 mAh/g。燒結溫度為600℃時,複合鍍鎳合金有最大的電容量,為295 mAh/g,燒結溫度增加至800℃時,兩種鍍鎳合金的放電量均降低,複合鍍鎳的最大電容量是180 mAh/g,鍍鎳磷合金衰退最多,只有50 mAh/g的電容量,這是因為表面的鎳因高溫發生擴散,改變表面合金組成,降低放電量,顯示鍍鎳合金不適合800℃燒結。經由複合鍍鎳600℃燒結時的的高速率放電曲線可知複合鍍鎳確可提昇合金的高速率放電能力,顯示鍍層因燒結而與合金間的結合性增加,除了增加導電性,亦使合金不易崩落,因此提昇高速率放電能力。實驗結果可知600℃為最適合的燒結溫度。
The effect of sintering on the charging/discharging of an AB2-type hydrogen storage alloy (Ti0.5Zr0.5V0.2Mn0.7Cr0.5Ni0.6) has been investigated. The reasoning behind the use of sintering is that no binder additives are needed in the process, thus the negative electrodes of Ni-MH batteries so prepared have a lower electrical resistance compared to that of pasted electrodes, making them suitable for high-rate charging/discharging applications. The alloy in this study was prepared by arc melting, and pulverized by repeating hydrogen absorption-desorption cycles. The powder was then sintered at different temperatures (400℃, 600℃ and 800℃) under argon for one hour. The capacity of the electrodes was found to improve when higher sintering temperatures were used. The electrodes sintered at 600℃ and 800℃have similar capacities, i.e. 231 mAh/g and 227 mAh/g, respectively. However, the electrodes sintered at 800℃ have a better high-rate dischargeability compared to that sintered at 600℃: its capacity remained at the 100 mAh/g level when a discharge current of 240 mA/g was used. It is believed that an increase in sintering temperature enhanced the bridging of the powder, and the electric conductivity was improved, resulting in a better high-rate dischargeability. In this study an etching treatment in HNO3+HF solution was found to have no effect on the capacity of the sintered electrode.
Another objective of this work has been to study the effect of different electroless nickel coating on the charging /discharging behavior of the sintered electrodes. Two types of electroless coatings, namely Ni-P coating, and duplex coating consisting of Ni-P and pure Ni layers, have been preformed on the powder before sintering. When sintered at 400℃, both types of coatings improved the discharge capacity as compared with that of powder without Ni-coating. The improvement in discharge capacity can be attributed to the existence of a Ni-rich surface, which acted as a catalysts for hydrogen adsorption and desorption. For electrodes sintered at 600℃, the one with a duplex coating has the maximum capacity of 295 mAh/g, the largest obtained in this study. When the sintering temperature was raised to 800℃, the capacity of electrodes with Ni-coating deteriorated to 180 mAh/g for duplex coated electrodes, and to 50 mAh/g for Ni-P coated electrodes. This was because of the nickel diffusion into the bulk, which reduced its catalytic effect on the surface. It has also been suggested in other''s work that a high nickel concentration in the powder may also be detrimental to the charging/discharging of the electrodes. When sintered at 600℃, the duplex coating improved the high-rate dischargeability of electrodes. It is suggested that the pure nickel layer on the powder surface can be bonded together effectively with the 600℃ sintering, thus increasing the electrical conductivity of the electrode. The strong bonding of the nickel on the powder''s surface also prevented the electrode from pulverization, hence a higher rate dischargeability can be achieved.
摘要……………………………………………………………………….I
目錄……………………………………………………………………..III
表目錄…………………………………………………………………..VI
圖目錄………………………………………………………………….VII
第一章 前言 1
第二章 理論背景與文獻回顧
2.1 儲氫合金及其特性..………….……………………….…4
2.2 儲氫合金的熱力學特性 6
2.3 儲氫合金電極 8
2.4 燒結對儲氫合金的影響 10
2.5 無電鍍鎳原理 12
2.5.1 鍍液組成及特性 12
2.5.2 無電鍍鎳的反應機構 13
2.6 混合金屬粉對電池性質的影響 14
2.7 無電鍍鎳對電池性質的影響 17
2.8 粉末酸洗對於合金性質的影響 25
第三章 實驗方法
3.1 儲氫合金製備 26
3.2 吸氫粉化 26
3.3 實驗設計 29
3.4 無電鍍鎳 32
3.5 電極製備 35
3.6 燒結 36
3.7 電化學性質量測 39
3.7.1 電池的製作 39
3.7.2 測試項目 40
3.8 X光繞射分析 41
3.9 金相顯微組織觀察 41
3.10 EPMA分析 42
第四章 結果與討論
4.1 合金成分分析 43
4.2 燒結前的SEM顯微組織觀察 45
4.3 溫度對合金微結構之影響 56
4.3.1 原合金粉熱處理 56
4.3.2 無電鍍鎳磷後熱處理 60
4.3.3 複合鍍鎳後熱處理 63
4.4 燒結對合金電化學性質之影響 66
4.4.1 原合金粉燒結 66
4.4.2 無電鍍鎳磷後燒結 68
4.4.3 複合鍍鎳後燒結 76
4.4.4 無電鍍鎳後燒結對合金性質之影響 81
4.5 高速率放電對於合金電化學性質的影響 88
第五章 結論與未來工作
5.1 結論 92
5.2 未來工作 95
第六章 參考文獻 96
[1] Y. Moriwaki, T. Gamo, H. Seri and T. Iwaki; J. Less-Common metals, 172-174(1992)1221.
[2] S. Wako, H. Sawa, J. Furukawa, J. Less-Common Met. 172(1991)1219.
[3] S. R. Kim, J.-Y. Lee, J. Alloys Comp. 210(1994)109.
[4] H. Sawa, M. Ohta, H.Nakano, S. Wakao, J. Phys. Chem. N.F. 164(1989)1527.
[5] M. Backhaus-Ricoult, J.L. Vignes, G. Lorang, B, Knosp, J. Alloys Comp. 253-254(1997)492.
[6] B.-H. Liu, J.-Y. Lee, J. Alloys Comp. 255(1997)43.
[7] J. Chen, D.H. Bradhurst, S.X. Dou, H.K. Liu, J. Alloys Comp. 265(1998)281.
[8] S.N. Jenq, H.W. Yang, Y.Y. Wang, C.C. Wan, J. Power Sources(1995)111.
[9] J. Chen, S.X. Dou, H.K. Liu, J. Alloys Comp. 256(1997)49.
[10] K. Girgris, "Physical metallurgy", R. W. Chan and P. Haasen, eds., 3rd., Amsterdam, New York, 240, 1983.
[11] J. J. G. Willems, Philips J. Res., 39 Vol.1 (1984)13.
[12]黃鐵生,工業材料111期,91, 85年3月.
[13] M. Tsukahara, K. Takahashi, T. Mishima, A. Isomura, T. Sakai, Journal of Alloys and Compounds 236(1996)151.
[14] M. McCormack, M. E. Badding, B. Vyas, S. M. Zahurak and D. W. Murphy, J. Electrochem. Soc. Vol.143, No.2, L31,1996.
[15] D. Linden, Handbook of batteries, McGraw-Hill, 33.2.
[16] H. Fujii, S. Orimo and K. Yamamoto, Journal of the Less-Common Metals, 175(1991)243.
[17] K. Yamamoto, S. Tanioka, Y. Tsushio, T. Shimizu, T. Morishita, S. Orimo, H. Fujii, Journal of Alloys and Compounds 243(1996)144.
[18] N. Cui, B. Luan, H. J. Zhao, H. K. Liu, S. X. Dou, Journal of Alloys and Compounds 240(1996)229.
[19] P. Mandal and O.N. Srivastava, Journal of Alloys and Compounds 205(1994)111.
[20] N. Cui, B. Luan, H.K. Liu, H.J. Zhao, S.X. Dou, Journal of Power Sources 55(1995)263.
[21] Dong-Myung Kim, Ki-Young Lee, Jai-Young Lee, Journal of Alloys and Compounds 231(1995)650.
[22] Ji-Sang Yu, Ki-Young Lee, Jai-Young Lee, Journal of Alloys and Compounds 259(1997)270.
[23]柏宏基,無電鍍鎳耐性之研究, 逢甲大學化學工程研究所碩士論文(1985).
[24]陳宏生, 銅基材無電鍍鎳磷性質之研究, 逢甲大學材料科學研究所碩士論文(1996).
[25] R.M. Lukes, Plating 51, 969(1964).
[26] T. Sakai, A. Yuasa, H. Ishikawa, H. Miyamura and N. Kuriyama, Journal of the Less-Common Metals, 172-174(1991)1194.
[27] A. Zuttel, F. Meli and L. Schlapbach, Journal of Alloys and Compounds 203(1997)235.
[28] D. Lupu, P. Marginean, A. R. Biris, Journal of Alloys and Compounds 231(1995)621.
[29] D. Sun, Y. Lei, W. Liu, J. Jiang, J. Wu, Q. Wang, Journal of Alloys and Compounds 282(1999)220.
[30] J. H. Jung, S.M. Lee, D. M. Kim, K.J. Jang, J. Y. Lee, Journal of Alloys and Compounds 266(1998)271.
[31] D. M. Kim, H. Lee, K. Cho, J. Y. Lee, Journal of Alloys and Compounds 282(1999)261.
[32] Z. Y. Tang, W. X. Chen, Z. L. Liu, H. T. Guo, Journal of Applied electrochemistry 26(1996)1201.
[33] J. Chen, D. H. Bradhurst, S. X. Dou, H. K. Liu, Journal of Alloys and Compounds 280(1998)290.
[34] D. Sun, M. Latroche, A. Percheron-Guegan, Journal of Alloys and Compounds 257(1997)302.
[35] H. Miyamura, T. Sakai, N. Kuriyama, K. Oguro, A. Kato and H. Ishikawa, Electrochemical Society Proceedings Volume 92-5, 179.
[36] S. N. Jenq, H. W. Yang, Y. Y. Wang, C. C. Wan, Journal of Power Sources 57(1995)111.
[37] A. Zuttel, F. Meli, L. Schlapbach, Journal of Alloys and Compounds 209(1994)99.
[38] J. Chen, D. H. Bradhurst, S. X. Dou, H. K. Liu, Journal of Alloys and Compounds 265(1998)281.
[39] F. J. Liu, G. Sandrock and S. Suda, Journal of Alloys and Compounds 190(1992)57.
[40] F. J. Liu, S. Suda, G. Sandrock, Journal of Alloys and Compounds 232(1996)232.
[41]陳永輝, 鋯錳鎳基AB2型儲氫合金電極之改良及其性能研究, 清華大學材料科學工程研究所碩士論文(1996).
[42]莊惠真, 鈦鋯系儲氫合金之微結構及其儲氫性質研究, 台灣大學材料科學與工程學研究所博士論文(1999).
[43] H. S. Lim, G. R. Zelter, Journal of Power Sources 66(1997)97.
[44] T. Sakai, H. ishikawa, K. Oguro, C. Iwakura and H. Yoneyamo, Journal of the Electrochemical Society, 134(1987)558.
[45] H. W. Yang, S. N. Jenq, Y. Y. Wang, Journal of Alloys and Compounds 227(1996)69.
[46] M. A. Fetcenko, S. Venkatesan, S. R. Ovshinsky, Electrochemical Society Proceedings, Vol. 92-5, 141.
[47] US Patent No. 4980 342(1988) .
[48] P. R. Krishnamoorthy, B. H. Narayana, T. V. Ramakrishna and M. Shekhar Kumar, Metal Finishing, Vol. 90, Nov(1992), 17.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top