跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊文源
研究生(外文):Wen-Yuan Chuang
論文名稱:聚乙烯醇薄膜結構形成機制的探討及其於生醫材料應用的評估
論文名稱(外文):Studies on the mechanism of poly(vinyl alcohol) membrane formation and the evaluation of application for biomedical materials
指導教授:邱文英邱文英引用關係
指導教授(外文):Wen-Yen Chiu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:139
中文關鍵詞:聚乙烯醇不對稱薄膜添加劑三成分相圖液液相分離人工胰臟細胞培養幾丁聚醣
外文關鍵詞:Poly (vinyl alcohol)Asymmetric membraneAdditivesTernary phase digramLiquid-liquid demixingArtificial pancreasCell cultureChitosan
相關次數:
  • 被引用被引用:22
  • 點閱點閱:633
  • 評分評分:
  • 下載下載:120
  • 收藏至我的研究室書目清單書目收藏:1
薄膜的型態結構,基本上為薄膜分離技術應用中之重要關鍵。本文經由對薄膜機制的建立,進而控制聚乙烯醇薄膜的型態結構,以符合各種應用之需要。首先,添加了酸到鑄造液後,描述在鑄造液和沈澱液之間親和力的改變,用來決定薄膜的形成機制;另外,添加了高分子添加劑到鑄造液後,描述添加劑與鑄造液及添加劑與沈澱液之間的親和力,用來研究不同高分子添加劑對薄膜形成的影響;實驗結果也看出,不同的添加劑對薄膜的結構與穿透能力有不同的影響。
研究了聚乙烯醇在水與二甲基亞風的混合溶劑中,25℃時的平衡相行為。利用Flory-Huggins 的兩成分作用力參數及外加的三成分作用力參數後,可將理論計算與實驗結果得到較佳的逼近;也可從相圖中證實,聚乙烯醇在混和溶劑中,會發生液液相分離。
最後,因為聚乙烯醇具有生物不活潑的性質,故將其應用在生物醫學領域。利用半透膜包覆蘭氏小島,抵抗宿主免疫系統的免疫攻擊,是目前治療第一型糖尿病的方法;因而添加聚乙二醇使得薄膜皮層產生孔洞,改善薄膜的擴散性質;再利用數學模式與實驗數據探討,可得到相當滿意的結果。並且,為了改進聚乙烯醇的生物適應性,摻合了幾丁聚醣,探討聚乙烯醇與聚乙烯醇/幾丁聚醣摻合薄膜之物性與化性,如電子顯微鏡、熱示差掃瞄分析儀、X射線光電子分光儀,另外,也以細胞貼附及細胞成長,來評估摻合前後生物適合性的改變。
From the technological point of view, the most important problem is to obtain the optimum morphological structure of membranes to meet with the requirements for a wide range of application. In this study, the membrane formation mechanisms are proposed to control the morphology structure of poly (vinyl alcohol) (PVA) membrane, which prepared by phase inversion process. First, a mechanism describing the affinity between the casting solution and the coagulant medium is proposed to estimate PVA membrane structure by adding the acid in the complex system. Second, a mechanism describing that the affinity between additive and casting solution as well as between additive and coagulant medium is proposed to investigate the effect of dextran and PVP additives in the formation of PVA membranes. Experimental results show that the additives exert a different influence on the structure and filtration properties of membranes.
The equilibrium phase behavior of semicrystalline PVA was studied at 25 ℃ by using two solvents (water and dimethylsulfoxide) for one year observation. When the ternary interaction parameter (T) in the modified Flory-Huggins theory was considered, the good agreement was found between the theoretical predictions and experimental findings. From the ternary phase diagram, it was proved that the liquid-liquid demixing could occur in the mixtures of water and DMSO.
Finally, the PVA is developed for biomedical applications because of its bioinertness. Islets of Langerhans surrounded by a semipermeable PVA membrane to prevent an immune response by the host immunosystem is a potential way of treating type I diabetes mellitus. PVA tubular membranes with added polyethylene glycol to create pores in the skin layer were prepared to improve their diffusion property. And a mathematical mass transfer model of insulin release was developed and compared with the perifusion data. In addition, the properties of poly (vinyl alcohol) (PVA) and PVA/chitosan blended membranes were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and electron spectroscopy for chemical analysis (ESCA). These reflect the PVA membrane can be modified by blending with chitosan that in turn may affect the biocompatibility of the blended membrane. Therefore, adhesion and growth of fibroblasts on the PVA as well as PVA/chitosan blended membranes were investigated.
封面
誌謝
中文摘要
英文摘要
目錄
圖目錄
表目錄
第一章 前言
1-1 研究動機
1-2 研究內容
第二章 文獻回顧
2-1 薄膜
2-2 聚乙烯醇
2-3 添加劑
2-4 三成分相圖
2-5 人工胰臟
2-6 生物適應性
第三章 醋酸對聚乙烯醇薄膜的影響
3-1 實驗材料與方法
3-2 結果與討論
3-3 本章結論
第四章 高分子添加劑對聚乙烯醇薄膜的影響
4-1 實驗材料與方法
4-2 結果與討論
4-3 本章結論
第五章 聚乙烯醇再 Water-DMSO 混合溶劑的平衡相行為
5-1 三成分相圖的理論計算
5-2 實驗方法
5-3 結果與討論
5-4 本章結論
第六章 聚乙烯醇管子應用於人工胰臟之探討
6-1 實驗材料與方法
6-2 結果與討論
6-3 本章結論
第七章 PVA/Chitosan 摻合性質及生物適合性之研究
7-1 實驗材料與方法
7-2 結果與討論
7-3 本章結論
第八章 總結與建議
第九章 參考資料
作者簡介
1. S. Loeb, and S. Sourirajan, “Sea water demineralization by means of an osmotic membrane”, Adv. Chem. Ser., 1963; 38: 117
2. M. Zborowski, P. S. Malchesky, and Y. Nose, “Temperature dependent protein removal by large pore membrane filtration”, ASAIO Transactions, 1989; 35: 572-575
3. C. Charcosset, Y. Michel, Jeffrin, and D. Luhui, “Time and pressure dependence of sieving coefficients during plasma fractionation”, ASAIO Transactions, 1990; 36: M594-M597
4. M. Zborowski , and P. S. Malchesky, ASAIO Transactions, 1990; 36: M730-733
5. H. Strathmann and K. Kock, Desalination, 1977; 21: 241-255
6. H. Strathmann, Desalination, 1975; 16:179-203
7. H. Strathmann, J. membr. sci. 1981; 9: 121-189
8. R. E. Kesting. “Synthetic Polymeric Membranes”. John Wiley and Sons, New York, NY, 1985.
9. R. Bloch, and M. A. Frommer. “The mechanism for formation of skinned membranes.” Desalination , 1970; 7: 259-264.
10. A. Apicella, H. B. Hopfenberg, and S. Piccarolo. “Low temperature thermal aging of ethylene vinyl alcohol copolymers.” Polymer Engineering and Science 1982;22:382-7
11. R. M. Boom, I. M. Wienk, T. V. d. Boomgaard and C. A. Smolders, “Microstructures in phase inversion membranes. Part 2. The role of polymeric additive”, J. membr. Sci., 1992; 73: 277-292
12. A. C. Balazs, M. C. Gempe, and A. P. Lentvoski, “The effect of polymer geometry on polymer-surfactant association in solution”, J. chem. Phys., 1991; 95: 8467-8473
13. F. C. Lin, D. M. Wang, C. L. Lai, and J. Y. Lai, “Effect of surfactants on the structure of PMMA membranes”, J. membr. Sci., 1997; 123:281-291
14. D. M. Wang, F. C. Lin, T. T. Wu, and J. Y. Lai, “Formation mechanism of the macrovoids induced by surfactant additives”, J. membr. Sci., 1998; 142: 191-204
15. H. Wood, and S. Sourirajan, “The effect of additives, solvent type, and polymer concentration on macromolecule dimensions”, J. Appl. Polym. Sci., 1991; 43: 213-217
16. Y. Termonia, “Molecular modeling of phase-inversion membranes: effect of additives in the coagulant”, J. membr. Sci., 1995; 104: 173-180
17. I. M. Wienk, R. M. Boom, M. A. M. Beerlage, A. M. W. Bulte, C. A. Smoders, and H. Strathmann, “Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers”, J membr. Sci., 1996; 113: 351-371
18. I. Sakurada, Polyvinyl alcohol fibers, Marcel Dekker, New York and Basel, 1985.
19. M. Ohkura, T. Kanaya, and K. Kaji,” Gels of poly (vinyl alcohol) from dimethyl sulphoxide/water solutions.”, Polymer, 1992; 33: 3686-3690
1. K. Yamaura, K. Karasawa, T. Tanigami, and S. Matsuzawa, “Gels of poly (vinyl alcohol) solutions at low temperatures 20 to —78 ℃) and properties of gels.”, J. Appl. Polym. Sci., 1994; 51: 2041-2046
21. W. I. Cha, S. H. Hyon, and Y. Ikada, “Gel spinning of poly (vinyl alcohol) from dimethyl sulfoxide/water mixture.” J. Polym. Sci., Polym. Phys., 1994; 32: 297-304
22. T. H. Young, J. Y. Lai, W. M. You, and L. P. Cheng, “Equilibrium phase behavior of the membrane forming water-DMSO-EVAL copolymer system.” J. Membr. Sci., 1997; 128: 55-65
23. H. G. Schild, M. Muthukumar, and D. A. Tirrell, “Cononsolvency in mixed aqueous solutions of poly (n-isopropylacrylamide).” Macromolecules, 1991; 24: 948-952
24. S. Hirotsu, “Phase transition of a polymer gel in pure and mixed solvent media.”, J. Phys. Soc. Jap., 1987; 56: 233-242
25. T. H. Young, L. P. Cheng, C. C. Hsieh, and L. W. Chen, “Phase behavior of EVAL polymers in water-2-propanol cosolvent.”, Macromolecules, 1998; 31: 1229-1235
26. F. Lim, and A. M. Sun, “Microencapsulated islets as bioartificial endocrine pancreas”, Science, 1980; 210: 908-910
27. J.J. Altman, A. Houlbert, P. Callard, P. McMillan, B.A. Solomon, J. Rosen, and P.M. Galetti, “Long term plasma glucose normalization in experimental diabetic rats with macroencapsulated implants of benign human insulinomas”, Diabetes, 1986; 35: 625-633
28. S.J. Sullivan, T. Maki, K.M. Borland, M.D. Mahoney, B.A. Solomon, T.E. Muller, A.P. Monaco, and W.L. Chick, “Biohybrid artificial pancreas: long-term implantation studies in diabetic, pancreatectomized dogs”, Science, 1991; 252: 718-721
29. P.E. Lacy, O.D. Hegre, A.G. Vazeou, F.T. Gentile, and K.E. Dionne,“ Maintenance of Normoglycemia in Diabetic Mice by Subcutaneous Xenograft of encapsulated islets”, Science, 1991; 254: 1782-1784
30. R.P. Lanza, A.M. Beyer, and W.L. Chick ,.”Xenogenic humoral responses to islets transplanted in biohybrid diffusion chambers”, Transplantation, 1994; 57: 1371-1375
31. K. Inoue, T. Fujisato, Y.J. Gu, K. Burczak, S. Sumi, M. Kogire, T. Tobe, K. Uchida, I. Nakai, S. Maetani, and Y. Ikada, “Experimental hybrid islet transplantation: application of polyvinyl membrane for entrapment islets”, Pancreas, 1992; 7: 562-568
32. L. Kessler, G. Legeay, C. Jesser, C. Damge, and M. Pinget, “Influence of corona surface treatment on the properties of an artificial membrane used for Langerhans islets encapsulation: permeability and biocompatibility studies”, Biomaterials, 1995; 16: 185-191
33. T.H. Young, N.K. Yao, R.F. Chang, and L.W. Chen, “Evaluation of Asymmetric Poly (vinyl alcohol) Membranes for Use in the Artificial Islets”, Biomaterials, 1996; 17: 2131-2137
34. G. M. Antonios, G. P. Maria, K. U. Stylianos, L. I. Susan, and C. T. Robert, “Mini-review : Islet Transplantation to Create a Bioartificial Pancreas”, Biotechnology and Bioengineering, 1994; 43: 673-677
35. T. Tsuruta, T. Hayashi, K. Kataoka, K. Ishihara, Y. Kimura, Biomedical Application of Polymeric Materials, CRC Press, 1993
36. M.Y. Fan, Z. P. Lum, X. W. Fu, L. Levesque, I. T. Tai, and A. M. Sun, “Reversal of Diabetes in BB Rats by Transplantation of encapsulated Pancreatic islets”, Diabetes, 1990; 39: 519-522
37. P. L. Robert, M. K. Willem, E. Dawn, E. S. James, and L. C. William, “Xenotransplantation of Porcine and Bovine Islets Without Immunosuppression Uncoated Alginate Microspheres”, Transplantation, 1995; 59: 1377-1384
38. L. Kessler, M. Pinget, M. Aprahamian, P. Dejardin and C. Damge, “In vitro and in vivo studies of the properties of an artificial membrane for Pancreatic islet Encapsulation”, Horm. metab. Res., 1991; 23: 312-317
39. K. Inoue,T. Fujisato, Y. J. Gu, K. Burczak, S. Sumi, M. Kogire, T. Tobe, K. Uchida, I. Nakai, S. Maetani and Y. Ikada, Pancreas, 1992; 7: 562-568
40. L. L. H. Huang, D. T. Chenung, and M. E. Nimmi, Journal of Biomedical materials Research, 1990; 24: 1185-1201
41. T. Maki., C. S. Ubhi, H. S. Farpon, S. J. Sultan, K. Borland, T. E. Muller, B. A. Solomon, W. L. Chick and A. P. Monaco, Transplantation, 1991; 51: 43-51
42. Y. Moussy, and F. Moussy, “Analysis of Glucose and Insulin mass transfer in a novel 2-channel Bioartificial Pancreas”, Art. Cells, Blood Subs., and Immob. Biotech., 1995; 23: 163-173
43. T. H. Young, N. K. Yao, R. F. Chang, and L. W. Chen. “Evaluation of asymmetric poly(vinyl alcohol) membranes for use in artificial islets.” Biomaterials 1996;17:2139-45
44. T. H. Young, W. Y. Chuang, N. K. Yao, and L. W. Chen. “Use of a diffusion model for assessing the performance of poly(vinyl alcohol) bioartificial pancreas”, J. Biomed. Mater. Res. 1998;40:385-91
45. K. Inoue, T. Fujisato, Y. J. Gu, K. Burczak, S. Sumi, M. Kogire, T. Tobe, K. Uchida, I. Nakai, S. Maetani, and Y. Ikada. “Experimental hybrid islet transplantation: application of polyvinyl alcohol membrane for entrapment of islets.”, Pancreas. 1992;7:562-8
46. W. Paul, and C. P. Sharma. “Acetylsalicylic acid loaded poly (vinyl alcohol) hemodialysis membranes: effect of drug release on blood compatibility and permeability.”, J. Biomed. Sci., Polym. Edit. 1997;8:755-64
47. Y. Hara, S. Kamiya, K. Nishioka, M. Saishin, S. Nakao, and A. Yamauchi. “Behavior of poly (vinyl alcohol) hydrogel in the vitreous body of albino rabbits.”, Nippon Ganka Gakkai Zasshi- Acta Societatis Ophthalmologicae Japonicae. 1979;83:1478-85
48. K. Burczak, E. Gamian, and A. Kochman. “Long-term in vivo performance and biocompatibility of poly (vinyl alcohol) hydrogel macrocapsules for hybrid-type artificial pancreas.”, Biomaterials 1996;17:2351-6
49. R. Rajaraman, D. E. Rounds, S. P. S. Yen, and A. Rembaum. “A scanning electron microscope study of cell adhesion and spreading in vitro. “, Experimental Cell Research 1974;88: 327-39
50. T. Inoue, J. E. Cox, R. M. Pilliar, and A. H. Melcher. “Effect of the surface geometry of smooth and porous-coated titanium alloy on the orientation of fibroblasts in vitro.”, J. Biomed. Mater. Res. 1987;21:107-26
51. K. Iio, N. Minoura, S. Aiba, M. Nagura, M. Kodama. “Cell growth on poly(vinyl alcohol) hydrogel membranes containing biguanido groups.”, J. Biomed. Mater. Res. 1994;28:459-62
52. Y. Tamada, and Y. Ikada. “Fibroblast growth on polymer surfaces and biosynthesis of collagen.”, J. Biomed. Mater. Res. 1994;28:783-9
53. T. Mori, M. Okumura, M. Matsuura, K. Ueno, S. Tokura, Y. Okamoto, S. Minami, and T. Fujinaga. “Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro.”, Biomaterials 1997;18:947-51
54. S. B. Rao, and C. P. Sharma. “Use of chitosan as a biomaterial : studies on its safety and hemostatic potential.”, J. Biomed. Mater. Res. 1997;34:21-8
55. S. Chang, J. Puryear, E. A. Funkhouser, R. J. Newton, and J. Cairney. “Cloning of a cDNA for a chitinase homologue which lacks chitin- binding sites and is down-regulated by water stress and wounding.”, Plant Molecular Biology. 1996;31:693-9
56. T. Chandy, and C. P. Sharma. “Chitosan-as a biomaterial.”, Biomaterial Artificial Cells Artificial Organs 1990;18:1-24
57. Y. Okamoto, S. Minami, A. Matsuhashi, H. Sashiwa, H. Saimoto, Y. Shigemasa, T. Tanigawa, Y. Tanaka, and S. Tokura. “Application of polymeric N-acetyl-D-glucosamine (chitin) to veterinary practice.”, J. Vet. Med. Sci. 1993;55:743-7
58. G. Yunlin, L. Xiaofei, Z. Yingping, and K. Yao. “Study of phase behavior on chitosan / viscose rayon blend film.”, J Appl. Polym. Sci. 1998;67:1965-72
59. S. Mochizuki, and A. L. Zydney, “Dextran transfer through asymmetric ultrafiltration membrane: comparison with hydrodynamic models.”, J. membr. sci. 1991; 68: 21-41
60. F.C. Lin, D.M. Wang, C.L. Lai, and J.Y. Lai, “Effect of surfactants on the structure of PMMA membranes.”, J. Membr. Sci., 1997; 123: 281-291.
61. A.J. Reuvers, J.W.A. van der Berg and C.A. Smolders, “Formation of membranes by means of immersion precipitation. Part I. A model to describe mass transfer during immersion precipitation.”, J. Membr. Sci., 1987; 34: 45-65.
62. F.G. Paulsen, S.S. Shojaie and W.B. Krantz, “Effect of evaporation step on macrovoid formation in wet-cast polymeric membranes.”, J. Membr. Sci., 1994; 91: 265-282
63. H. Strathmann, K. Kock and P. Amar, “The formation mechanism of asymmetric membranes.”, Desalination, 1975; 16: 179-203
64. Y. Termonia, “Molecular modeling of phase-inversion membranes: effect of additives in the coagulant”, J. Membr. Sci. 1995; 104: 173-180
65. H. D. Balmann, and R. Nobrega, “The deformation of dextran molecules causes and conseqences in ultrafiltration.”, J. Membr. Sci., 1989; 40: 311-327
66. S. Mochizuki, and A. L. Zydeny, “Dextran transport through asymmetry ultrafiltration membranes: comparison with hydrodynamic models”, J. Membr. Sci. 1992; 41: 21-41
67. Y.S. Kang, H.J. Kim, and U.Y. Kim, “Asymmetric membrane formation via immersion precipitation method. I. Kinetic effect”, J. Membr. Sci., 1991; 60: 219-232.
68. T.H. Young and L.W. Chen, “A two step mechanism of diffusion-controlled ethylene vinyl alcohol membrane formation”, J Membr. Sci., 1991; 57: 69-81.
69. C.A. Smolders, A.J. Reuvers, R.M. Boom, and I.M. Wienk, “Microstructures in phase-inversion membranes, 1: Formation of macrovoids.”, J. Membr. Sci., 1992; 73: 259-275.
70. T.H. Young, N.K. Yao, R.F. Chang, and L.W. Chen, “Evaluation of asymmetric poly(vinyl alcohol) membranes for use in artificial islets”, Biomaterials, 1996; 17: 2139-2145.
71. T. Kobayashi, T. Miyamoto, T. Nagai and N. Fujii, “Polyacrylonitrile ultrafiltration membranes containing negatively charged groups for permeation and separation of dextran and dextransulfate”, J. Appl. Polym. Sci., 1994; 52: 1519-1528.
72. H. Strathmann, K. Kock, and P. Amar, “The formation mechanism of asymmetric membranes.”, Desalination, 1975; 16: 179-203.
73. Y.S. Kang, H.J. Kim, and U.Y. Kim, “Asymmetric membrane formation via immersion precipitation method. I. Kinetic effect”, J. Membr. Sci., 1991; 60: 219-232.
74. S.N. Cassu and M.I. Felisberti, “Poly (vinyl alcohol) and poly (vinyl pyrrolidone) blends: miscibility, microheterogeneity and free volume change.”, Polymer, 1997; 38: 3907-3911.
75. S.N. Cassu, M.S. thesis, University Estadual d Campinas, Campinas-Brasil, 1995.
76. F.D. Miles, Cellulose nitrate, Imperial Chem. Industries Ltd., Oliver and Boyd, Edinburgh, London, 1955, Chapter V.
77. G. Schild, M. Muthukumar, and D. A. Tirrell, “Cononsolvency in mixed aqueous solutions of poly (n-isopropylacrylamide).”, Macromolecules, 1991; 24: 948-952
78. Horta, L. Gargallo and D. Radic, “Preferential adsorption determined by specific interactions. Poly(dialkyal itaconates)/1,4-dioxane/methanol.”, Macromolecules 1990; 23: 5320-5325
79. R. Gavara, R. Tejero, C. Gomez and B. Celda, “A procedure for predicting sorption equilibrium in ternary polymer systems from Flory-Huggins binary interaction parameters and the inversion points of preferential solvation.”, J. Polym. Sci., Polym. Phys. Ed. 1989; 27: 1599-1610
80. J. Pouchly, A. Zivny and K. Solc, “Thermodynamics equilibrium in the system macromolecular coil-binary solvent.”, J. Polym. Sci., Part (C), 1968; 23: 245-256
81. F. W. Altena and C.A. Smolders, “Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent.”, Macromolecules, 1982; 15: 1491-1497
82. L. Yilmaz and A. J. McHugh, “Analysis of nonsolvent-solvent-polymer phase diagrams and their relevance to membrane formation modeling.”, J. Appl. Polym. Sci., 1986; 31: 997-1018
83. L. P. Cheng, A. W. Dwan, and C. C. Gryte, “Isothermal Phase Behavior of Nylon-6, -66, and -610 Polyamides in Formic Acid-Water Systems.”, J. Polym. Sci., Polym. Phys., 1994; 32: 1183-1190
84. P. V. D. Witte, P. J. Dijkstra, J.W.A.V.D. Berg and J. Feijen, “Phase behavior of polylactides in solvent-nonsolvent mixtures.”, J. Polym. Sci., Polym. Phys., 1996; 34: 2553-2568
85. J. Gmehling, U. Onken, and W. Arlt, Vapor-Liquid Equilibrium Data Collection Aqueous Organic Systems ( supplement 1); Dechema Chemistry Data Series, Vol I, Part 1a, Dechema, N.Y., 1977, 327.
86. R. Koningsveld, and L. A. Kleintjens, Macromolecules, 1971, 4, 637.
87. R. A. Orwoll, “The polymer-solvent interaction parameter .”, Rubber chemistry and technology, 1977; 50: 451-479
88. T. Okaya, and K. Ikari, Polyvinyl alcohol-developments (Ed. Finch, C.A.); John Wiley & Sons Ltd., Chichester, England, 1982, 202.
89. J. H. Aubert, “Isotatic polystyrene phase diagrams and physical gelation.”, Macromolecules 1988; 21: 3468-3473.
90. L. P. Cheng, A. W. Dwan, and C. C. Gryte, “Membrane formation by isothermal precipitation in polyamide-formic acid-water system I. Description of membrane morphology.”, J. Polym. Sci., Polym. Phys., 1995; 33: 211-222.
91. L.P. Cheng, A. W. Dwan, and C. C. Gryte, “Membrane formation by isothermal precipitation in polyamide-formic acid-water system II. Precipitation dynamics.”, J. Polym. Sci., Polym. Phys., 1995; 33: 223-235.
92. R. M. Hodge, G. H. Edward, and G. P. Simon, “Water absorption and states of water in semicrystalline poly (vinyl alcohol).”, Polymer, 1996; 37: 1371-1376
93. A. Higuchi, and T. Iijima, “D.s.c. investigation of the states of water in poly (vinyl alcohol) membranes.”, Polymer, 26: 1207-1211
94. K. Shibatani, “Gel formation and structure of junctions in poly (vinyl alcohol)-water systems.”, Polymer J., 1970; 1: 348-355
95. R. Iwamoto, M. Miya, and S. Mima, J. Polym. Sci. polym. Phys., 1979; 17: 1507
96. D. H. Rasmussen, and A. P. Mackenzie, “Phase diagram for the system water-dimethylsulphoxide.”, Nature; 220: 1315-1317
97. P.E. Lacy, and M. Kostianovski, “Method for the isolation of intact islets of Langerhans from the rat pancreas”, Diabetes, 1967; 16: 35-39
98. T. Aung, M. Kogire, K. Inoue, T. Fujisato, Y. Gu, K. Burczak, S. Shinohara, M. Mitsuo, S. Maetani, Y. Ikada, and T. Tobe, “Insulin Release from a bioartificial pancreas using a Mesh Reinforced Polyvinyl Alcohol Hydrogel Tube”, ASAIO J., 1993; 39: 93-96
99. C.H. Hsu, T.H. Hong, and K.W. Yin, “Purification of radioiodinated human insulin by high performance liquid chromatography for a sensitive radioimmunoassay”, J. Formosan Med. Assoc., 1992; 91: 9-14
100. G.M. Grodsky, “A threshold distribution hypothesis for packet storage of insulin and its mathematical modeling”, J. Clin. Invest. , 1972; 51: 2047-2059
101. E. Cerasi, G. Frick, and M. Reedemo, “A mathematical model for the glucose induced insulin release in man”, Europ. J. Clin. Invest., 1974; 4: 267-278
102. M. Nomura, M. Shichiri, R. Kawamori, Y. Yamasaki, N. Iwama, and H. Abe, “A mathematical insulin-secretion model and its validation in isolated rat pancreatic islets perifusion”, Comp. Biomed. Res., 1984; 17: 570-579
103. M.Y. Jaffrin, G. Reach, and D. Notelet, “Analysis of ultrafiltration and mass transfer in a bioartificial pancreas”, J. Biomech. Eng., 1988; 110: 1-10
104. C.J.P. Mullon, and C.A. Norton, “A mathematical analysis of the U-shaped hybrid artificial pancreas - A novel insulin release rate equation”, Biomat. Art. Cells. Art. Org., 1990; 18: 43-57
105. R. M. Berne, M. N. Levy, Principle of Physiology, Wolfe publishing limited, 1990: 72-77
106. T. Aung, K. Inoue, M. Kogire, R. Doi, H. Kaji, T. Tun, H. Hayashi, Y. Echigo, M. Wada, M. Imamura, T. Fujisato, S. Maetani, H. Iwata, and Y. Ikada, “Comparison of Various Gels for Immobilization of islets in Bioartificial Pancreas Using a Mesh-Reinforced Polyvinyl Alcohol Hydrogel Tube”, Transplantat. Proc., 1995; 27: 619-621
107. T. Mosmann. “Rapid Colorimetric Assay for Cellular Growth and Survial: Application to Proliferation and Cytotoxicity Assays.”, J. Immunol. Methods 1983; 65: 55-63
108. A. Apicella, H. B. Hopfenberg, and S. Piccarolo. “Low temperature thermal aging of ethylene vinyl alcohol copolymers.”, Polymer Engineering and Science 1982; 22: 382-7
109. S. Beatrice, and S. Mariastella. “Viscoelastic and thermal properties of collagen/poly (vinyl alcohol) blends.”, Biomaterials 1995; 16: 785-92
110. S. T. Carbonetto, M. M. Gruver, and D. C. Turnerr. “Nerve fiber growth on defined hydrogel substrates.”, Science 1982; 216: 897-9
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top