跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 06:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:童世煌纷
研究生(外文):Shih-Huang Tung
論文名稱:PBT/PAr(I27-T73)二元結晶性高分子摻合物相容性、結晶行為與形態學之研究
論文名稱(外文):Studies on Miscibility, Crystallization Behavior and Morphology in Binary Crystalline Polymer Blends PBT/PAr(I27-T73)
指導教授:廖文彬廖文彬引用關係
指導教授(外文):Wen-Bin Liau
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:107
中文關鍵詞:聚對苯二甲酸丁二酯聚芳香酯摻合物相容性結晶行為形態學
外文關鍵詞:blendPBTPArmiscibilitycrystallizationmorphology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用微分掃瞄卡計(DSC)與偏光顯微鏡(POM)探討聚對苯二甲酸丁二酯/聚芳香酯(PBT/PAr)二元結晶系統的相容性、結晶行為與形態學。PAr主鏈上間/對苯二甲酸根比例為27/73。DSC結果顯示系統在所有組成皆呈單一且隨組成改變的玻璃轉移溫度(Tg),以PBT平衡熔點下降求得其相互作用參數(χ12)為-0.96,故為熱力學相容系統。高Tg的PAr加入低Tg的PBT中造成PBT分子運動能力降低,PBT對PAr的影響則正好相反,故PBT的結晶速率隨PAr組成增加而下降,PAr結晶速率則隨PBT組成提高而加快。從POM觀察推測,PBT結晶時,無定形PAr將陷在球晶內;PAr結晶時無定形PBT則排出PAr球晶外。主要是因為PBT結晶速率快而PAr結晶速率極慢所致。另外,PAr先行結晶後,其晶體將限制PBT晶體成長,造成PBT結晶速率減緩且熔點大幅下降。
The miscibility, crystallization behavior and morphology of binary crystalline blends of poly(butylenes terephthalate) [PBT] and polyarylate based on Bisphenol A and a 27/73 mole ratio of isophthalic and terephthalic acids [PAr(I27-T73)] have been investigated by differential scanning calorimetry (DSC) and polarizing optical microscope (POM). The results of DSC revealed that the blend system exhibited a single composition-dependent glass-transition temperature over the entire composition range. The equilibrium melting point depression of PBT was observed, and Flory interaction parameter c12=-0.96 was obtained. This indicated that the blends were thermodynamically miscible in the melt. The crystallization rate of PBT decreased as amounts of PAr increased and a contrary trend was found when PAr crystallized with increasing amounts of PBT. The addition of high-Tg PAr would suppress the segmental mobility of PBT while low-Tg PBT would have promotional effect toward PAr. From the observation of POM, it could be supposed that owing to effect of crystallization rate, amorphous PAr was trapped in PBT spherulites when PBT crystallized and amorphous PBT was excluded out of the PAr spherulites when PAr crystallized. The crystallization rate and melting point of PBT was significant decreased when PAr crystal was previously formed. It is due to the constraint of the PAr crystal phase.
第一章 緒論
1-1 前言…………………………………………………….…1
1-2 簡介……………………………………………………….2
1-3 高分子摻合物的製備方式……………………………….4
1-4 高分子摻合物研究方法………………………………….7
第二章 理論背景
2-1 高分子熱力學…………………………………………..10
2-2 等溫結晶理論
2-2-1 簡介………………………………………………14
2-2-2 成核理論…………………………………………16
2-2-3 等溫結晶動力學…...………………………….24
第三章 文獻回顧
3-1 聚對苯二甲酸丁二酯(PBT)性質介紹………………….30
3-2 聚芳香酯(PAr)性質介紹………….…………………..30
3-3 高分子摻合物相容性的研究………….……………...31
3-4 高分子摻合物結晶行為研究………….……………...32
3-5 PBT/PAr聚摻系統的研究………………..…………….36
第四章 實驗
4-1 藥品與溶劑……………………….…………………...40
4-2 實驗儀器………………………….…………………...40
4-3 實驗方法
4-3-1 PAr的合成………………….……………………43
4-3-2 聚摻的製備………………………………………43
4-3-3 化學結構鑑定……………………………………44
4-3-4 X光繞射(WAXD)分析…….….………………….44
4-3-5 玻璃轉移溫度(Tg)……………………………..44
4-3-6 結晶熔點(Tm)………………….……………….45
4-3-7 等溫結晶…………………………………………45
4-3-8 球晶成長速率(G)………………….…………..45
第五章 結果與討論
5-1 聚芳香酯的鑑定……………………………………..….47
5-2 酯交換反應探討………………………………………...51
5-3 PBT/PAr摻合物的融熔行為……...…………….…....57
5-4 PBT/PAr摻合物的相容性
5-4-1 PBT/PAr摻合物的玻璃轉移溫度………………..59
5-4-2 PBT/PAr摻合物的平衡熔點與相互作用參數
5-4-2-1平衡熔點…………………………………62
5-4-2-2 相互作用參數………………………...64
5-5 PBT/PAr摻合物中PBT對PAr結晶速率影響………......69
5-6 PBT/PAr摻合物中PBT的結晶速率與晶核數目變化.....77
5-7 PBT/PAr摻合物形態學與微結構…………...…….....83
5-8 PBT/PAr摻合物結晶相對另一成分結晶行為的影響....98
第六章 結論………………………………………………....……......102
參考文獻…………………………………………………………….......104
1.B. D. Favis, The Canadian journal of chemical engineering, 69, 619 (1991).
2.L. A. Utracki and R.A. Weiss, Multiphase polymer: Blends and Ionomers, p. 2. American Chemical Society, Washington D. C. (1989).
3.D. J. Walsh, J. S. Higgins, and A. Maconnachie, Polymer Blends and Mixture, pp. 38-67. Martinus Nijhoff, Dordrecht Netherlands (1985)
4.M. Bank, T. Leffingwell, and C. Thies, J. Polym. Sci., (A-2) 10, 1097 (1972).
5.M. J. Folkes and P. S. Hope, Polymer Blends and Alloys, p.5. Blackie Academic & Professional, UK (1993).
6.P. J. Flory, Principle of polymer chemistry, Cornell University Press, N. Y. (1953).
7.D. Turnbull and J. C. Fisher, J. Chem. Phys., 17, 71 (1949).
8.R. Becker, Ann.de. Physik, 32, 128 (1938).
9.R. Becker and W. Doring, Ann. de. Physik, 24, 719 (1935).
10.J. M. Schultz, Polymer Material Science, Prentice Hall, Englewood Cliffs, N. J. (1974)
11.J. I. Jr. Lauritzen and J. D. Hoffman, J. Res. Nat. Bur. Std., 64A, 73, (1960).
12.D. M. Sadler and G. H. Gilmer, Polymer, 25, 1446 (1984).
13.B. Wunderlich, Macromolecular Physics, Vol. 2, Academic Press (1978).
14.W. Gedde, Polymer Physics, Chapman & Hall (1995).
15.F. W. Billmeyer, Textbook of Polymer Science, John Wiley & Son (1984).
16.H. Ulrich, Introduction to Industrial Polymers, Hanser (1982).
17.J. P. Penning and R. St. John Manley, Macromolecules, 29, 77 (1996).
18.B. S. Morra and R. S. Stein, J Polym. Sci., Polym. Phys. Ed., 20, 2243 (1982).
19.J. D. Hoffman and R. L. Miller, Macromolecules, 21, 3038 (1988).
20.M. Cortazar, M. E. Calahorra, and G. M. Guzman, Eur. Polym. J., 18, 165 (1982).
21.S. Cimmino, E. Martuscelli, and C. Silvestre, J. Polym. Sci., Polym. Phys. Ed., 27, 1781 (1989).
22.P. Pedrosa, J. A. Pomposo, E. Calanorra, and M. Cortazar, Polymer, 36, 3889 (1995).
23.M. Avella and E. Martuscelli, Polymer, 29, 1731 (1988).
24.H. L. Chen, Macromolecules, 28, 2845 (1995).
25.H. L. Chen, J. C. Hwang, C. C. Chen, R. C. Wang, D. M. Fang, and M. J. Tsai, Polymer, 38, 2747 (1997).
26.N. Avramova, Polymer, 36, 801 (1995).
27.C. K. Sham, G. Guerra, F. E. Karasz and W. J. MacKnight, Polymer, 29, 1016 (1988).
28.W. W. Doll and J. B. Lando, J. Macromol. Sci. (B), 4, 897 (1970).
29.A. Siciliano, A. Seves, T. de Macro, S. Cimmino, E. Martuscelli, and C. Silvestre, Macromolecules, 28, 8065 (1995).
30.P. Greco and E. Martuscelli, Polymer, 30,1475 (1989).
31.Z. Wang and B. Jiang, Macromolecules, 30, 6223 (1997).
32.J. A. Pomposo, R. de Juana, A. Mugixa, M. Cortazar, and M. A. Gomez, Macromolecules, 29,7038 (1996).
33.J. Huang and H. Marand, Macromolecules, 30, 1069 (1997).
34.A. A. Goodwin and G. P. Simon, Polymer, 37, 991 (1985).
35.M. Kimura and R. S. Porter, J. Polym. Sci., Polym. Phys. Ed., 21, 367 (1983).
36.B. D. Hanrahan, S. R. Angeli, and J. Runt, Polym. Bull., 15, 455 (1986).
37.R. S. Porter and L. Wang, Polymer, 33, 2019 (1992).
38.W. B. Liau, A. S. Liu, and W. Y. Chiu, J. Polym. Res., 6, 27 (1999).
39.E. Martuscelli, Polym. Eng. Sci., 24, 563 (1984).
40.O. Olabisi, L. M. Robeson, and M. T. Shaw, Polymer-Polymer Miscibility, Academic Press (1979).
41.W. A. Smith, J. W. Barlow, and Paul, D. R., J. Appl. Polym. Sci., 26, 4233 (1981).
42.G. C. Alfonso and T. P. Rusell, Macromolecules, 19, 1143 (1986).
43.S. Cimmino, E. Martuscelli, and C. Silvestre, Macromolecules, 28, 8065 (1995).
44.J. P. Penning and R. St. John Manley, Macromolecules, 29, 84 (1996).
45.A. S. Liu, W. B. Liau, and W. Y. Chiu, Macromolecules, 31, 6593 (1998).
46.D. L. Wiffong, A. Ailtner, and E. Bear, J. Mater. Sci., 21, 2014 (1986).
47.M. R. Kamal, M. A. Sahto, and L. A. Utracki, Polym. Eng. Sci., 22, 1127 (1982).
48.M. Valero, J. J. Iruin, E. Espinosa, and M. J. Fernandez-Berridi, Polym. Commun., 31, 127 (1990).
49.J. Runt, D. M. Miley, X. Zhang, K. P. Gallagher, K. MaFeaters, and J. Fishburn, Macromolecules, 25, 1929 (1992).
50.J. Runt, C. A. Barron, X. Zhang, and S. K. Kumar, Macromolecules, 24, 3466 (1991).
51.J. Runt, X. Zhang, D. M. Miley, and K. P. Gallagher, Macromolecules, 25, 3902 (1992).
52.P. P. Huo and P. Cebe, Macromolecules, 26, 3127 (1993).
53.P. P. Huo, P. Cebe, and M. Capel, Macromolecules, 26, 4275 (1993).
54.P. P. Huo and P. Cebe, Macromolecules, 26, 5561 (1993).
55.J. I. Eguiazabal, M. J. Fernandez-Berridi, J. J. Iruin, and L. Maiza, J. Appl. Polym. Sci., 51, 1463 (1994).
56.J. Jang and J. Won, Polymer, 39, 4335 (1998).
57.黃逸仁,聚芳香酯的介電鬆弛行為,碩士論文,國立台灣大學材料科學與工程學研究所 (1999)
58.D. M. Miley and Runt, Polymer, 33, 4643 (1992).
59.T. G. Fox, Bull. Am. Phys. Soc., 1, 123 (1956).
60.M. Gordon and J. S. Taylor, J. Appl. Chem., 2, 493 (1952).
61.J. D. Hoffman and J. J. Weeks, Res. Nat. Bur. Stand. A, 66, 13 (1962).
62.P. B. Rim and J. P. Runt, Macromolecules, 17, 1520 (1984).
63.R. L. Scott, J. Chem. Phys., 17, 279 (1949).
64.T. Nishi and T. T. Wang, Macromolecules, 8, 909 (1975).
65.K. H. Illers, Colloid Polym. Sci., 258, 117 (1980).
66.F. B. Khambatta, F. Warner, T. Russel, and R. S. Stein, J. Polym. Sci., Phys. Ed., 15, 2113 (1977).
67.H. D. Keith and F. J. Padden, J. Appl. Phys., 35, 1270 (1964).
68.H. L. Chen, Macromolecules, 28, 2845 (1995).
69.S. K. Kumar and D. Yoon, Macromolecules, 24, 5414 (1991).
70.H. D. Keith and F. J. Padden, J. Appl. Phys., 35, 1286 (1964).
71.J. Kim, M. E. Nichols, and R. E. Robertson, J. Polym. Sci., Polym. Phys., 32, 887 (1994).
72.H. G. Kim and R. E. Robertson, J. Polym. Sci., Polym. Phys., 36, 1757 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top