跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 07:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁震良
研究生(外文):Chen-Liang Weng
論文名稱:鈦酸鋇及鈦酸鋇/鎳複合材料可靠度及電性之研究
論文名稱(外文):Reliability and dielectric properties of barium titanate and barium titanate/nickel composites ceramics
指導教授:段維新段維新引用關係
指導教授(外文):Wei-Hsing Tuan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:95
中文關鍵詞:鈦酸鋇高加速壽命測試絕緣電阻退化電阻係數可靠度平均破壞時間鈦酸鋇/鎳複合材料
外文關鍵詞:HALTIRdegradationreliabilityMFFTinsulation resistanceBaTiO3
相關次數:
  • 被引用被引用:15
  • 點閱點閱:596
  • 評分評分:
  • 下載下載:129
  • 收藏至我的研究室書目清單書目收藏:1
摘要
鈦酸鋇陶瓷因具有高介電常數因此廣泛的被使用於陶瓷電容器中,為達高電容值,介電層厚度越來越薄,而為求達此體積效率,當前應用最廣泛者,即為多層陶瓷電容器(multi-layers ceramic capacitor, MLCC),為達高電容值,介電層厚度越來越薄,已達10mm以下,而目前鈦酸鋇介電層大多都為多晶的微結構下,對於目前普遍所採用的銀或銀鈀電極,其厚度約為1mm,在長期使用環境的影響下,研究指出電極的遷移造成電容器絕緣電阻(insulation resistance, IR)的降低而損壞。因為高絕緣電阻代表陶瓷電容器的高可靠度(reliability),本研究以一高濕-高負荷壽命測試(humidity load life test)即所謂高加速壽命測試(Highly accelerated life test, HALT),來檢測鈦酸鋇電容器之可靠度(reliability),為一般工業界中普遍所使用之方法,而造成可靠度的降低最少有兩個因素第一個因素為原本存於微結構中的缺陷,另一個因素則是陶瓷介電體材料本身在電場應力下所產生的退化。
在空氣中燒結之鈦酸鋇試樣其絕緣電阻的退化(degradation)歸因於銀電極在高濕-高電場應力(electrical field stress)下,銀經由晶界處緩慢的遷移以及crack處的快速遷移,也就是所謂晶界模式(grain boundary model)退化。且經由韋伯分佈可知大晶粒結構具有較佳的可靠度,另外根據Prokopowicz and Vaskas 所提壽命方程式(lifetime equation)可由在高加速壽命測試下(HALT)估計出可在一般環境下產品之使用壽命,研究的結果顯示出小晶粒結構具有較高的平均破壞時間(mean time to failure, MTTF)。
多層陶瓷電容器(multi-layers ceramic capacitor,MLCC)所使用之內電極大多為銀及銀鈀電極,為降低電容器價格,目前已有以鎳為內電極之產品,為防止鎳電極的氧化,須於一低氧分壓環境中燒結以避免鎳電極的氧化,在5%H2/95%N2的氣氛中,可將氧化鎳還原為鎳金屬。含鎳之鈦酸鋇之電性受到微結構以及鎳含量的影響,室溫下的介電常數值隨晶粒大小的減小而增高,而在居禮溫度點的介電常數值,則隨晶粒大小的變大而增加,同時居禮溫度也隨晶粒大小減小而往低溫移動(shift)。此外,含鎳之鈦酸鋇其電阻係數隨鎳含量的增加而增高,換句話也就是含鎳之鈦酸鋇電阻係數隨晶粒大小的減小而增高,含鎳之鈦酸鋇電阻係數可達1013ohm-cm以上。
含鎳之鈦酸鋇由韋伯分佈可知有較佳的可靠度,但是其平均破壞時間低於未添加鎳之鈦酸鋇,含鎳鈦酸鋇絕緣電阻的退化模式與未添加鎳者不同,其退化模式應屬於原存於微結構中的缺陷,在鎳顆粒與鎳顆粒之間形成的有效電場較大之下,導致介電質較易崩潰(breakdown)。
Abstract
BaTiO3 is widely used in ceramic capacitors, because for its high dielectric constant, in order to reach this, dielectric layer thickness must be thinner to get a high permittance. Multi-layers ceramic capacitors (MLCC) can be capable of the volume efficiency is used more extensively now. The electrode of Ag, Ag/Pd are used popularly now, its thickness is about 1μm. But some researches have indicated that the migration of electrode made insulation resistance (IR) of ceramic to get down and destroyed the ceramics after long time operation and environmental effect. Because of a high insulation resistance is concerned with high reliability of ceramic capacitors. In my research, I inspect the reliability of BaTiO3 ceramic capacitor by using humidity load life test, HALT, which is used in industry widely.
The decrease of reliability results from two factors, one is that defects in the microstructure, and the other is that the degradation in the electric fields stress. The degradation of insulation resistance of BaTiO3 samples sintering in the air is resulted from the Ag-electrode in high humidity and high electrical fields stress was slowly migrated from grain boundary and was quickly migrated in cracks, this is the degradation model of grain boundary. We could know the large grain structure has better reliability. Besides, Prokopowicz and Vaskas had mentioned “Lifetime Equation”. We can use HALT to understand the general life of product in general environment.
This research reveals that small grain structure has large mean time to failure than large grain structure. The electrode of MLCC is almost Ag or Ag/Pd. To reduce the prices of capacitors, products having inner electrode with Ni have application in the market. To avoid from oxidation, sintering of Ni electrode must be in low oxygen partial pressure. Nickel oxide reduced to nickel metal in the 5%H2/95%N2 mixed gas. The electric properties of BaTiO3 containing nickel are affected by microstructure and nickel content. Dielectric constant in room temperature increase with grain size decreasing, and that in Curie temperature increase with grain size enlarging. At the same time, the Curie temperature reduces with grain size decreasing and shifts to a lower temperature. In addition, the electric resistance of BaTiO3 containing nickel increases with nickel content. In other words, the electric resistance of BaTiO3 containing nickel increases with grain size reducing. So, the electric resistance of BaTiO3 containing nickel at least can reach 1013 ohm-cm.
According to Weibull Modulus, we could know that BaTiO3 containing nickel has better reliability, but the mean time to failure is lower than BaTiO3 without nickel. The degradation model of insulation resistance of BaTiO3 containing nickel is different from BaTiO3 without nickel. The degradation model of BaTiO3 containing nickel is belonged to original defects in microstructure. There is a larger efficient electric field between two nickel particles, so breakdown in dielectric field is caused easily.
Key words: BaTiO3、BaTiO3/Ni composites、Highly accelerated life time test、HALT、insulation resistance、IR、degradation、reliability、mean time to failure、MFFT。
目錄
致謝…………………………………………………………………………………Ι
摘要 ………………………………………………………….…………………….Ⅱ
英文摘要……………………………………………………………………………Ⅳ
目錄…………………………………………………………………………………Ⅶ
圖目錄………………………………………………………………………………Ⅹ
表目錄………………………………………………………………………………ⅩⅢ
第一章 前言……………………………………………………………………… 1
第二章 文獻回顧………………………………………………………………… 3
2-1鈦酸鋇微結構與電性特性 …………………………………………………… 3
2-2 鈦酸鋇電容器絕緣電阻 (Insulation resistance)之退化及其可靠度 ………… 8
2-3 添加物對鈦酸鋇微結構及電性的影響……………………………………… 13
2-4 金屬鎳對鈣鈦礦結構的影響………………………………………………… 14
2-4.1 鎳的特性………..……………………………………………………………16
2-4.2 添加金屬鎳對鈦酸鋇微結構及電性之影響 ……………………………18
2-5 鈦酸鋇/鎳複合材料絕緣電阻 (Insulation resistance)之退化及其可靠度 …23
第三章 實驗流程………………………………………………………………… .24
3-1鈦酸鋇粉體之製備 ……………………………………………………………24
3-1.1 實驗材料 ……………………………………………………………………24
3-1.2 實驗流程 ..…………………………………………………………………24
3-1.3 粉體的相鑑定 ………………………………………………………………..24
3-1.4 試片的成型、燒結與加工……………………………………………………26
3-1.5 試片的相鑑定…………………………………………………………………26
3-1.6 拋光面的觀察…………………………………………………………………26
3-1.7 晶粒之量測……………………………………………………………………26
3-1.8 密度的測量……………………………………………………………………27
3-1.8.1 視密度之量測 .……………………………………………………………27
3-1.8.2 理論密度之量測 ...…………………………………………………………28
3-1.8.3 相對密度之量測 …………………………………………………………...28
3-1.9 電性之量測……………………………………………………………………28
3-1.9.1 介電性質的量測 …..……………………………………………………….28
3-1.9.2 絕緣電阻之量測…………………………………………………………….28
3-1.9.3 鈦酸鋇之可靠度…………………………………………………………….29
3-1.10 退化結構之觀察……………………………………………………………29
3-2 鈦酸鋇/鎳複合材料 ……………………………………………………………29
3-2.1實驗材料 .……………………………………………………………………29
3-2.2 實驗流程 ……………………………………………………………………30
3-2.3 粉體之相鑑定 ………………………………………………………………..30
3-2.4 試片的成型、燒結與加工 ………………………………………………30
3-2.5 試片的相鑑定 ………………………………………………………………30
3-2.6 拋光面的觀察 ………………………………………………………………30
3-2.7 密度的測量 …………………………………………………………………30
3-2.7.1 視密度之量測……………………………………………………………….30
3-2.7.2 理論密度之量測……………………………………………………………..31
3-2.7.3 相對密度之量測……………………………………………………………..31
3-2.8 電性之量測…………………………………………………………………….31
3-2.8.1 介電性質的量測……………………………………………………………..31
3-2.8.2 絕緣電阻之量測……………………………………………………………..31
3-2.8.3 鈦酸鋇/鎳複合材料之可靠度……………………………………………….31
3-2.9 退化微結構之觀察…………………………………………………………….31
第四章 結果與討論………………………………………………………………….35
4-1 純鈦酸鋇…………………………………………………………………………35
4-1.1 粉體之相鑑定………………………………………………………………….35
4-1.2 試片之相鑑定………………………………………………………………….35
4-1.3 拋光面的觀察………………………………………………………………….35
4-1.4 晶粒之量測…………………………………………………………………….40
4-1.5 密度之量測…………………………………………………………………….40
4-1.6 電性之量測…………………………………………………………………….45
4-1.6.1 介電性質的量測……………………………………………………………..45
4-1.6.2 鈦酸鋇絕緣電阻之量測……………………………………………………..47
4-1.6.3 鈦酸鋇之可靠度……………………………………………………………..50
4-1.7 退化微結構之觀察…………………………………………………………….57
4-2 鈦酸鋇/鎳複合材料……………………………………………………………..64
4-2.1 粉體之相鑑定…………………………………………………………………64
4-2.2 試片之相鑑定…………………………………………………………………64
4-2.3 拋光面的觀察…………………………………………………………………64
4-2.4 晶粒之量測 …………………………………………………………………72
4-2.5 密度之量測 …………………………………………………………………72
4-2.6 電性之量測 …………………………………………………………………75
4-2.6.1 介電性質的量測 ………………………………………………………….75
4-2.6.2 絕緣電阻之量測 ...…………………………………………………………82
4-2.6.3鈦酸鋇/鎳複合材料之可靠度 ……………………………………………82
4-2.7 退化微結構之觀察 .…………………………………………………………86
第五章 結論 …………………………………………………………………….90
5-1 純鈦酸鋇 ………………………………………………………………………90
5-2 含鎳之鈦酸鋇 …………………………………………………………………91
參考文獻 .…………………………………………………………………………..92
參考文獻
Arlt, G., Hennings, D. & de With, G., “Dielectric Properties of Fine-Grained Barium
Titanate,” J. Appl. Phys., 58, 1619-25 (1985).
Armstrong T. R., Morgens L. E., Maurice A. K., and Buchanan R. C., “Effect of
Zirconia on Microstructure and Dielectric Properties of Barium Titanate Ceramics,” J. Am. Ceram. Soc. 72 [4] 605-11 (1989).
Buessern W. R., Cross L. E. and Goswami A. K., “Phenomenological Theory of
High Permittivity in Fine-Grained Barium Titanate,” J. Am. Ceram. Soc. 49 [l]
33-36 (1966).
Burn I., “Mn-Doped Polycrystalline BaTiO3,” J. Mater. Sci. Vol. 14, 2453-58
(1979).
Chiang Y.-M., Bimie D., III, and Kingery W. D., Physical Ceramics-Principles for
Ceramic Science and Engineering, John Wiley & Sons, New York, (1997).
Emoto H. And Hojo J., “Sintering and Dielectric Properties of BaTiO3-Ni Composite
Ceramics,” J. Am. Ceram. Soc. 100 [4] 553-57 (1992).
Enomoto Y. And Yamaji A., “Preparation of Uniformly Small-Grained BaTiO3,” Am
Ceram. Soc. Bull. 60 [5] 566-70(1981).
Goodman G., Buchanan R. C., and Reynolds T. G., III, “Ceramic Capacitor
Materials,” Chap. 2, in Ceramic Materials for Electronics ─Processing,
Properties, and Applications, Second Edition, edited by R. C. Buchanan, Marcel
Dekker, New York, (1991)
G. KOSCHEK and E.KUBALEK,”Grain boundary Characteristics and Their in
Influence on the Electrical Resistance of Barium Titanate
Ceramics”,J.AM.Ceram.,68[11]582-86(1995)
Harkulich T. M., Magder J., Vukasovich M. S„ and Lockhart R. J., “Ferroelectrics of
Ultrafine Particle Size: II," J. Am. Ceram. Soc. 54 [11] 548-53 (1971).
Hennings D. F. K., Janssen R. and Reynen P. J. L., “Control of
Liquid-Phase-Enhanced Discontinuous Grain Growth in Barium Titanate,” J. Am.
Ceram. Soc.70 [l] 23-27 (1987).
Hennings D. F. K.,Schreinemacher,B&Schreinemacher,H.”High-Permittivity
Dielectric Ceramics with High Endurance”J.of the European Ceramic Society
13(1994)81-88.
Hideyuki Kanai,OsamuFurukawa”Effect of stoichiometry on the dielectric properties
and life performance of (Pb0.875Ba0.125)[(Mg1/3Nb2/3)0.5(Zn1/3Nb2/3Ti0.2)O3 Relaxor dielectric ceramic:Part ІІ ,life performance.”J.AM.Ceramic.Soc. 76[2]459-64(1993)
Hae Jin Hwang, Motohiro Toriyama”In-situ Fabrication of ceramic/metal
nanocomposites by reduction reaction in Barium Titanate-Metal Oxide
System.”J.OF Europeam Ceamic Society18(1998)2193-2199.
Hennings D., and Rosenstein G., “Temperature-Stable Dielectrics Based on
Chemically Inhomogeneous BaTiO3,” J. Am. Ceram. Soc. 67 [4] 249-54 (1984).
Hillert M., “On the Theory of Normal and Abnormal Grain Growth,” Acta Metall.,
13 [3] 227-38 (1965).
Hwang J.H., Watari K., Sando M., Toriyama M., and Niihara K., “Low- Temperature
Sinterina and High-Strength Pb(Zr,Ti)O3-Matrix Composites Incorporating Silver
Particles,” J. Am. Ceram. Soc. 80 [3] 791-93 (1997).
Kahn M., “Influence of Grain Growth on Dielectric Properties of Nb-Doped
BaTiO3,” J. Am. Ceram. Soc. 54 [9] 455-57 (1971).
Kahn M., “Preparation of Small-Grained and Large-Grained Ceramics from Nb-
Doped BaTiO3,” J. Am. Ceram. Soc. 54 [9] 452-54 (1971).
Kingery W. D., Bowen H. K. and Uhlmann D. R., Introduction to Ceramics, 2nd ed.,
pp. 461-62, Wiley, New York, 1976.
Kulcsar F., “A Microstructure Study of Barium Titanate Ceramics,” J. Am. Ceram.
Soc. 39 [l] 13-17 (1956).
Hyuga H. Hayashi, Sejino.T, Niihara.K ” Fabrication process and electrical
properties of BaTiO3/Ni nanocomposites.” Nanos Etured materials, Vol,
9.pp.547-550,1997
Lewis G. V., Catlow C. R. A. & Casselton R. E. W., “PCTR Effect in BaTiO3,” J.
Am. Ceram. Soc. 68 [68] 555-58 (1985).
Ling H. C., & Jackson A. M., “Correlation of Silver Migration with
Temperature-Humidity-Bias (THB) Failures in Multilayer Ceramic
Capacitors,”IEEE Transactions on Components, Hybrids, And Manufacturing
Technology, Vol. 12, No. 1, March 130-37 (1989).
Loh,H, ”A Model of dc Leakage in Ceramic Capacitors”J.Appl.Phys.,
53[9]6229-35(1982)
B.W.Lee “effect of grain size and mechanical processing on the dielectric properties
of BaTiO3”,J.Mater. Res.,Vol. 10, No.6, Jun 1995
Maher G. H., “Effect of Silver Doping on the physical and Electrical Properties of
PLZT Ceramic,” J. Am. Ceram. Soc. 66[6] 408-13 (1983).
Martirena H. T. and Burfoot J. C., “Grain-Size Effect on Properties of Some
Ferroelectric Ceramics,” J. Phys., c7, 3182-92 (1974).
Matsuo Y. and Sasaki H., “Exaggerated Grain Growth in Liquid Phase Sintering of
BaTiO3,” J. Am. Ceram. Soc. -Discussion and Note, 54[9] 471 (1971).
M. Demartin, C. Herard , C. Carry, ”Dedensification and Anomalous Grain Growth
during sintering of Undoped Barium Titanate.”J.AM.Ceram.Soc,
80[5]1079-84(1997)
Munikoti.R.Dher.P”Highly Accelerated Life Testing(HALT) for Multilayer Ceramic
Capacitor Qualification.”IEEE. Trans. on comp, Hybrid, and Manufacturing
Tech.Vol.11, NO, 4,DEC,1988.
Nomura. T., Akira SATO, Yukie NAKANO and Shigeki SATO “Reliability of
Multilayer Capacitors with Ni Electrodes ” The 3rd International conterence ,
Akito, Japan, OCT, 1998.
O''Bryan H. M., Jr. and Thomson J., Jr., "Phase Equilibria in the TiO2-Rich Region of
the System BaO-TiO2," J. Am. Ceram. Soc. 57[12] 522-26 (1974).
Pepin J. G., Borland W., O’Callaghan., & Young R. J. S., “Electrode-Based Causes
of Delaminations in Multilayer Ceramic Capacitors,” J. Am. Ceram. Soc.
72[12]2287-91 (1989).
Rawal B. S.. Kahn M., and Buessern W. R., “Grain Core- Grain Shell Structures in
BaTiO3 Based Dielectrics,” in Advance in Ceramics, edited by L. M. Levinson
(The American Ceramic Society, Westerville, OH, 1981), Vol. 1.
Tzing W.H. and W.H.Tuan,H.L.Lin.”The effect of microstructure on the electrical
properties of NiO-doped BaTiO3”.Ceramics International 25(1999)425-430
William.J. MINFORD.“Accelerated Life Testing and Reliability of High K
Multilayer Ceramic Capacitors” IEEE TRANS. ON COMPONENTS, HYBRIDS,
AND MANUF.TECH. vol.chmt-5,NO.3,SEPTEMBER 1982.
R.Waser,T.Baiatu and K.H.Haraft,”dc ELECTRICAL degradation of
Perovskite-Type Titantates:I,Ceramics”,Am.Ceram.Soc.,73[6]1645-53(1990)
Xue L. A., “Thermodynamic Benefit of Abnormal Grain Growth in Pore Elimination
During Sintering,” J. Am. Ceram. Soc. 72 [8] 1536-37 (1989)
Yainaji A., Enomoto Y., Kinoshita K., and Murakami T., “Preparation,
Characterization, and Properties of Dy-Doped Small-Grained BaTiO3 Ceramics,” J.
Am. Ceram. Soc. 60 [3-4] 97-101 (1977).
Zhi J., Chen A., Zhi Y., Vilarinho P. M., & Baptista J. I., “Incorporation of Yttrium in
Barium Titanate Ceramics,” J. Am. Ceram. Soc. 82[5]1345-48 (1999).
林世凱”鈦酸鋇之微結構控制與機械性質研究” 國立台灣大學材料科學與工程
學研究所碩士論文,1993.
陳錦毅, “添加銀元素對鈦酸鋇性質影響之研究,”國立台灣大學材料科學與工程
學研究所碩士論文,1995.
曾偉雄, “含鎳之鈦酸鋇陶瓷的燒結行為、微結構及電性之研究,” 國立台灣大學
材料科學與工程學研究所博士論文,1998.
傅勝利, “介電陶瓷,”經濟部技術處發行,中華民國產業科技發展協進會及中華民
國粉末冶金協會出版之陶瓷技術手冊.
吳朗,”電子陶瓷-介電”全欣科技圖書.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳仁炫 丁美幸 1993 土壤pH及磷肥施用對酸性和石灰質土壤磷生物有性效性的影響. 中國農業化學會誌. 31:653-666.
2. 陳仁炫 1996 酸性和石灰質土壤之inositol hexaphosphaet. Glucose-6-phosphate和磷酸鉀吸附特性之研究. 中國農業化學會誌 34:102-117.
3. 陳仁炫 1995 pH、鈣和鍶對強酸性土壤磷有效性及磷酸型態的影響. 中國農業化學會誌. 33:269-309.
4. 陳仁炫 1993 台灣強酸性土壤磷吸附特性之研究. 中國農業化學會誌 31:399-411.
5. 洪阿田 羅瑞生 鄭榮賢 郭淑德 陳志聖 許讚全 1993 飛灰對強酸性土壤及水稻和豆科作物之效果研究. 台電工程月刊 553:24-35.
6. 林錫錦、簡宣裕 1985 落花生根瘤固氮活性與產量之關係及品種間與根瘤菌之親和性研究. 中華農業研究 34:164-172.
7. 莊作權 楊明富 1992 水稻-田菁-玉米輪作制度下施用堆肥對土壤肥力之影響. 中國農業化學會誌 30:553-568.
8. 林家棻 1978 本省中部若干土壤中鉀釋放特性之研究. 中華農業研究 274:297-308.
9. 王慰劬 1981 種子石灰包粒對酸性土壤的補救. 科學農業 29:170-171.
10. 詹國連、丁曉芙 1971 豆科作物營養缺乏之症狀. 科學農業 19:324-332.
11. 楊藹華 梁文實 魏夢麗 劉大江 1983 二期作稻光合成物質的生產分配及與產量間的關係. 中華農業研究 32:209-218.
12. 魏夢麗 劉大江 1983 期作間水稻光合成物質生產分配及產量之比較. 中華農業研究 32:303-311.