跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳嘉信
研究生(外文):Chia Hsin Wu
論文名稱:以電腦模擬及實驗探討顯微組織對鉬/鎢-銅複合材料之物理性質的影響
指導教授:黃坤祥黃坤祥引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:127
中文關鍵詞:鉬-銅鎢-銅電接觸點散熱體熔滲導電度熱膨脹係數
外文關鍵詞:Mo-CuW-Cuelectrical contactheat sinkinfiltrationthermal expansion coefficientconductivityW-Cuelectrical contactheat sinkinfiltrationthermal expansion coefficientconductivity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
鉬-銅及鎢-銅複合材料由於具有高導熱導電度、低熱膨脹係數及耐磨耗性、耐電弧性良好,因此常被使用在電接觸點及散熱體等應用上。本實驗的目的是採用不同的原料及製程製作顯微組織相異的鉬-銅及鎢-銅複合材料,並且由顯微組織及銅含量的差異去探討其對材料性質如導電度、熱膨脹係數及硬度的影響。
另外本研究針對二種截然不同的顯微組織,根據其各別特徵以建立具代表性之理論模型,並且模擬二種極端的顯微組織下不同銅含量之複合材料其熱膨脹係數及導電度的理論值,模擬結果顯示不同之顯微組織將對材料之熱膨脹係數及導電度值造成些微之差異,而由不同製程所得到之不同顯微組織之試片間之物性差異並不大,均在實驗誤差之內,但其值均與模擬值相近,顯示本研究所建立之模型比以往者佳。
Because of the high thermal and electrical conductivity, low thermal expansion coefficient, good erosion and arcing resistance, and reasonable mechanical strength at high temperatures, Mo-Cu and W-Cu composites are often used in many engineering applications, such as electrical contacts and heat sinks. The first objective of this research is to make Mo-Cu and W-Cu composites with different micro-structures by using different powders and manufacturing processes. The next objective is then to correlate the micro-structures with thermal expansion coefficient , hardness and electrical conductivity.
Two models are constructed to simulate the theoretical values of thermal expansion coefficient and electrical conductivity of compacts with different copper contents and different micro-structures. The experimental data agree well with the simulation results.
摘要 i
Abstract ii
目 錄 iii
表目錄 vii
圖目錄 viii
第一章、簡介………………………………..…………………………1
1-1 鉬的特性與用途………………………………………………1
1-1-1 鉬的特性及與鎢之比較………………………………..1
1-1-2 鉬的製造與加工………………………………………..1
1-1-3 鉬的用途………………………………………………..1
1-2 鉬銅及鎢銅複合材料…………………………………………3
1-2-1 鉬銅及鎢銅複合材料之製作與特性…………………..3
1-2-2 鉬銅複合材料及鎢銅複合材料之比較……………….4
1-2-3 鉬(鎢)-銅複合材料的應用……………………………4
1-2-4 預混法製作鉬-銅複合材料……………………………6
1-2-5 添加物對Mo(W)-Cu複合材料燒結緻密化的影響……7
1-2-6 銅對鉬(鎢)潤溼性之探討…………………………….8
1-2-7 熱傳導係數和電傳導係數的關係…………………….9
1-2-8 液相燒結的理論模型…………………………………10
1-2-9 鉬粉表面鍍銅…………………………………………13
1-2-10 升溫曲線與降溫曲線……………………………….14
1-2-11 孔隙率與材料性質的關係………………………….14
1-3 本研究之目的………………………………………………..14
第二章、實驗設計與流程………..…………………………………..34
2-1原料…...………………………………………………………34
2-1-1 鉬粉…...……………………………………………….34
2-1-2 鎢粉…...……………………………………………….35
2-2粉末原料分析…...……………………………………………35
2-3 鉬銅及鎢銅複合材料的製作…...…………………………...36
2-3-1 成形…...……………………………………………….36
2-3-2 RTP造粒鉬粉的預燒結…...…………………………..37
2-3-3 燒結…...……………………………………………….38
2-3-4 熔滲…...……………………………………………….39
2-4 金相…...……………………………………………………...40
2-5 性質測試及分析…...………………………………………...40
2-5-1 密度…...……………………………………………….40
2-5-2 導電度值…...………………………………………….40
2-5-3 熱膨脹係數值…...…………………………………….41
2-5-4 硬度值…...…………………………………………….42
2-5-5 連續性…...…………………………………………….42
2-6 熱循環試驗…...……………………………………………...42
2-7 標準試片的製作….. …...……………………………………43
第三章、理論模型的建立及分析…….……………………………...55
3-1 模型建立的根據及分類…...………………………………...55
3-2 熱膨脹係數的分析…...……………………………………...56
3-2-1 軟體的選用與介紹…...……………………………….56
3-2-2 幾合外形的建立…...………………………………………………………....57
3-2-3 基本假設…...………………………………………….57
3-2-4 元素選用…...………………………………………….58
3-2-5 建構網格…...………………………………………….58
3-2-6 材料參數…...………………………………………….59
3-2-7 邊界條件…...………………………………………….59
3-2-8 分析程式…...………………………………………….60
3-2-9 模型的應用…...……………………………………….60
3-3 導電度值的分析…...………………………………………...60
第四章、實 驗 結 果…...………………………………..………….71
4-1 鉬銅複合材料製作及其物理性質…...……………………...71
4-1-1 試片的成形及預燒…...……………………………….71
4-1-2 預燒結溫度之選定…...……………………………….72
4-1-3 燒結…...……………………………………………….73
4-1-4 熔滲…...……………………………………………….74
4-1-5 顯微組織…...………………………………………….75
4-1-6 連續性…...…………………………………………….76
4-1-7 導電度值…...………………………………………….76
4-1-8 由導電度值換算之熱傳導係數值…...……………….77
4-1-9 熱膨脹係數值…...…………………………………….77
4-1-10 硬度值…..……………………………………………78
4-2 鎢銅複合材料製作及其物理性質…..………………………78
4-2-1 試片的成形及預燒…...……………………………….78
4-2-2 熔滲…...……………………………………………….79
4-2-3 顯微組織…...………………………………………….79
4-2-4 連續性…...…………………………………………….80
4-2-5 導電度值及熱傳導係數值…...……………………….80
4-2-6 熱膨脹係數值…...…………………………………….81
4-2-7 硬度值…...…………………………………………….81
4-3 理論模型的建立及分析結果…...…………………………...81
4-3-1 熱膨脹係數分析…...………………………………….81
4-3-2 導電度值分析…...…………………………………….82
4-3-3 模型的應力分析…...………………………………….82
第五章、討論…...……………………………………………………109
5-1 實驗值和模型理論值之比較…...…………………………..109
5-1-1 熱膨脹係數的比較…...………………………………109
5-1-2 導電度值比較…...……………………………………109
5-2 孔隙率對熱膨脹係數及導電度的影響…...………………..110
5-3 燒結氣氛對熔滲結果的影響…...…………………………..111
5-4 熱循環處理對試片緻密化的影響…...……………………..112
5-5 連續性與複合材料性質的關係…...………………………..112
第六章、結 論…....……………………………………………….…124
參考文獻…...…………………………………………………………125
1. 黃坤祥, “高熔點金屬材料”, 粉末冶金技術手冊第十七章, 中華民國粉末冶金協會出版, 1994, pp.359-376.
2. Y. Hiraoka and M. Ogasa, “Weldability of Powder Metallurgy Molybdenum with Low Oxygen Content”, Zeitschrift Fuer Matallkunde, vol.78, no.3, 1987, pp.197-200.
3. R. M. Jones, “Molybdenum for Semiconductor Heat Sinks”, Physical Metallurgy and Technology of Molybdenum and Its Alloy, Proceeding of a Symposium held at AMAX Materials Research Center 1985.
4. I. N. Frantsevich, “Electrical Contacts Produced by Powder Metallurgy Methods”, Poroshkovaya Metallurgiya, vol.212, no.8, Aug, 1980, pp.36-47
5. T. B. Massalski, “Binary Alloy Phase Diagrams,”2nd ed., 1990, Materials Park, OH, ASM International. pp.1437, 1503.
6. E. Kny, “Properties and Uses of the Pseudobinary Alloys of Cu with Refratory Metals”, 12th International Plansee Seminar ’89, vol.1, Refratory Metals and Related Topics, Superconductors, Reutte, Tirol, Austria, May, 1989, pp.8-12.
7. R. M. German, K. F. Hens, and J. L. Johnson, “Powder Metallurgy Processing of Thermal Management Materials for Microelectronic Applications”, The International Journal of Powder Metallurgy, vol.30, no.2, 1994, pp.205-215.
8. T. W. Kirk, S. G. Caldwell, J, J, Oakes, “Mo-Cu Composites for Electronic Packaging Applications”, Particulate Materials and Processes Advances in Powder Metallurgy, Vol.9,1992, pp.115-122.
9. R. Klemencic, E. Kny and W. Schmidt, “Multilayer Circuit Board with Molybdenum-Copper Metal Cores”, Circuit World, vol.15, no.4, 1989, pp.5-8.
10. M. R. Ehlert, E. R. Heldermam, “Heat Sink Device Using Composite Metal Alloy”, U.S.Patent 4,788,627, 1988.
11. M. Osada, A. Ohtsuka, N. Ogasa, and Y. Amano, “Substrate for Semiconductor Apparatus Having a Composite Material”, U.S.Patent 5,086,333, 1992.
12. “CMSH”, SUMITOMO Electric Industries, Ltd. Catalog.
13. 林正雄, “電接觸材料”, 粉末冶金技術手冊第十九章, 中華民國粉末冶金協會出版, 1994, pp.410-419.
14. C-H Leung and H. J. Kim, “A Comparison of Ag/W, Ag/WC, and Ag/Mo Electrical Contacts”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol.CHMT-7, no.1, Mar., 1984, pp.69-75
15. V. Behrens, T. Honig, A. Kraus, R. Michal, K. Saeger, R. Schmidberger, and T. Staneff, “An Advanced Silver/Tin Oxide Contact Material”, IEEE Transaction on Components, Packaging, and Manufacturing Techmology-Part A, vol.17,no. 1, Mar., 1994, pp.24-30.
16. P. B. Joshi, P. S. Krishnan, R. H. Patel, N. S. S. Murti, V. L. Gadgeel, and P. Ramakrishnan, “Improved P/M Silver-Zinc Oxide Electrical Contacts”, The International Journal of Powder Metallurgy, vol.34, no.4, 1998, pp.63-73.
17. A. Verma, A. Roy and T. R. Anantharaman, ”Processing and Properties of Silver-Tin Oxide-Indium Oxide Electrical Contact Materials”, The International Journal of Powder Metallurgy, vol.27, no.1 , 1991, pp.51-56.
18. V. V. Skorokhod, S. M. Solonin, and L. I. Chernyshev, “High-Porosity Tungsten-Copper Materials Produced by Liquid-Phase Sintering”, Poroshkovaya Metalluriya, no.2, Feb., 1978, pp.17-21.
19. A. G. Kostornov and V. P. Semenets, “Features of Formation of Interparticle Contacts in Sintering of Porous Molybdenum-Copper Composites”, Poroshkovaya Metallugiya, no.3, Mar. 1990, pp.25-30.
20. Yu. V. Naidich, I. A. Lavrinenko, and V. A. Evdokimov, “Densification in Liquid Phase Sintering under Pressure in the System Tunsten-Copper”, Poroshkovaya Metallurgiya, no.1, Jan., 1974, pp.34-39.
21. S. L. Lee, M. G. Yoo, T. Kyoung, I-H Moon, “Microstructure Homogenisation of Tunsten Copper Composite by Cyclic Heating”, 1998 PM World Congress Electrical Materials.
22. J. L. Johnson and R. M. German, “Chemically Activated Liquid Phase Sintering of Tungsten-Copper”, The International Journal of Powder Metallurgy, vol.30, no.1, 1994, pp.91-102.
23. T. H. Ihn, S. W. Lee, and S. K. Joo, “Effect of Transition Metal Addition on Liquid Phase Sintering of W-Cu”, Powder Metallurgy, vol37, no.4, 1994, pp.283-288.
24. E. G. West, “Copper and Its Alloys”, published by Ellis Horwood Limited, New York, U.S.A., 1982, pp.15.
25. W. Neumann and E. Kny, “Thermal Properties of Materials Used for Heat-Sink Applications”, High Temperature-High Pressure, vol.21, 1989, pp.525-532.
26. V. V. Grabuz, L. I. Kostenetskaya, V. Y. Petrishchev and M. M. Churakov, “Interaction between Boron Nitride and Molybdenum in the Conditions of Formation of Pseudoalloys”, Poroshkovaya Metallurgiya, vol.337, no.1, Jan., 1991, pp.82-84.
27. R. V. Minakova, A. P. Kresanova, N. D. Lesnik, A. A. Malyshenko and S. O. Antonov, “Structure Formation and Properties of Molybdenum-Base Powder Composites”, Poroshkovaya Metallurgiya, vol.302, no.2, Feb., 1988, pp.48-53.
28. A. V. Invanov, T. S. Ivanova, L. I. Kostenetskaya, Y. I. Smirnov and M. M. Churakov, “Wetting and Infiltration of Porous Tungsten and Molybdenum by Liguid Gallium”, Poroshkovaya Metallurgiya, vol.256, no.6, 1984, pp.56-58.
29. V. L. Yupko, G. V. Levchenko, R. B. Luban and R. I. Kryzhanovskaya, “Wetting of Molybdenum and Lanthanum Hesaboride by Alloys Cu-Bi, Cu-Sb in Various Media”, Poroshkovaya Metallurgiya, vol.287, no.11, Nov., 1986, pp.64-69.
30. L. H. Van Vlack, “Elements of Material Science and Engineering”, 6th Edition, published by Addison-Wesley Company, California, U.S.A., pp.399-401.
31. R. M. German, “A Model for the Thermal Properties of Liquid-Phase Sintered Composites”, Metallurgical Transations A, vol.24A, Aug., 1993, pp.1745-1752.
32.
33. D. S. McLachlan, M. Blaszkiewicz, and R. E. Newnham, “”, Journal of Am. Ceram. Soc., vol.73(8), 1990, pp.2187-2203.
34. K. S. Samant, M. N. Vakharia, and P. Ramakrishnan, “Preparation and Properties of Copper Coated Tungsten Powder”, Transaction of the PMAI, vol.11, 1984, pp.35-40.
35. K. S. Samant, N. B. Laxmeshwar, and P. Ramakrishnan, “Some Studies on W-Cu Composite Powders Prepared by Electroless Deposition”, Transaction of the PMAI, vol.16, 1989, pp.9-13.
36. B. I. Ermolaev, “Thermal Expansion of Tunsten-Copper Pseudoalloys Containing up to 25-30 vol% Cpooer”, Poroshkovaya Metallurgiya, no.3(99), Mar., 1971, pp.45-50.
37. V. B. Rabkin and R. F. Kozlova, “Thermal Expansion of Molybdenum-Copper and Tungsten-Copper Pseudo-Alloys”, Poroshkovaya Metallurgiya, no.3(63), Mar., 1968, pp.64-70.
38. R. L. Coble and W. D. Kingery, “”, Journal of Am. Ceram. Soc., vol.39, 1956, pp.337.
39. F. Euler, “Simple Geometric Model for the Effect of Porosity on Material Constants”, Journal of Applied Physics, vol.28, no.11, Nov., 1957, pp.1342-1345.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top