跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓慧如
研究生(外文):Cho Hui-Ju
論文名稱:釔安定化氧化鋯製程及對超高分子聚乙稀磨耗行為之研究
指導教授:韋文誠韋文誠引用關係
指導教授(外文):Wen-Cheng J. Wei
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:125
中文關鍵詞:超高分子聚乙烯氧化鋯環對盤裝置磨耗
外文關鍵詞:UHMWPEzirconiaring-on-discwear
相關次數:
  • 被引用被引用:3
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:1
本研究自製高緻密化之釔安定化正方晶氧化鋯(Y-TZP),並採用前人之高純度氧化鋁及鈷-鉻-鉬塊材,利用環對盤(ring-on-disc)裝置以了解超高分子聚乙烯(ultra high molecular weight polyethylene, UHMWPE)與陶瓷及金屬之往復接觸磨耗行為。由UHMWPE的磨耗機制、磨耗過程中的磨耗量、磨擦係數及磨屑形態之分析來評估此各種材料的組合,在人工髖關節應用上的優劣性。
在Y-TZP基材的選擇與製備方面,採用Tosoh TZYS粉體,利用膠體製程製備盤狀試片(直徑﹦5.0 cm,厚度﹦1.0 cm)。漿料中添加2 wt% D-134分散劑及6 wt% 戊醇做為乾燥控制劑,以氣壓壓濾製作塊材,經乾燥、燒結(1480℃持溫1 hr)後,可得高燒結密度(99.8 %T.D.),較小的晶粒尺寸(0.41μm),且微結構均勻,機械性質佳。
磨耗實驗探討的參數包括基材材料種類(氧化鋯、氧化鋁及鈷-鉻-鉬)、所施加的荷重、潤滑液的成份、兩材料接觸界面間的性質(如基材表面預存一UHMWPE轉移層)。磨耗測試結果顯示,摩擦係數受基材表面的粗糙度所影響,表面粗糙度越大,摩擦係數也越大,而磨耗因子亦具相同的趨勢。當基材表面粗糙度(Ra)小於0.04μm時,氧化鋯及氧化鋁的摩擦係數較鈷-鉻-鉬小,但磨耗因子則相近。UHMWPE在氧化鋯基材上的磨耗機制以表面粗糙度(Ra)約0.10μm為界限:在表面粗糙度(Ra)≦0.10μm為表面疲乏磨耗,而≧0.1μm為研磨式磨耗。磨耗後UHMWPE表面粗糙度減小,其表面及磨屑的結晶度並無明顯的變化。磨耗測試後,可在基材表面觀察到UHMWPE轉移層的存在,此轉移層的厚度分布不均,厚度由內而外遞減。此外,藉由降低UHMWPE的起始表面粗糙度,在基材表面預存一轉移層,或是使用生理食鹽水做為潤滑液,皆可降低UHMWPE在氧化鋯基材上的摩擦係數及磨耗量,但差異不大。
A comparison of wear behavior of a ultra high molecular weight polyethylene (UHMWPE) sliding on two ceramics, yttria-doped tetragonal zirconia polycrystals (Y-TZP) and alumina, and a Co-Cr-Mo disc was studied by a ring-on-disc reciprocal wear test apparatus. The evaluating factors included: friction coefficient, wear factor, debris and transfer film of UHMWPE.
In sample preparation, the Y-TZP samples were prepared from Tosoh TZYS powder by colloidal processing. The slurry with 2 wt% D-134 as a dispersant and 6 wt% pentanol as a drying chemical control agent was pressure-casting to make disc type (ψ=5.0 cm, t =1.0 cm ) samples. It has high sintered density (99.8 %) and small grain size (0.41μm) after 1480℃, 1 hr sintering. Well-distributed microstructure and good mechanical properties were reported. For comparison, Alumina and Co-Cr-Mo sample were also tested.
The parameters investigated in the wear tests included: disc materials (zirconia, alumina, Co-Cr-Mo), load, lubricants, properties of contact faces of the UHMWPE, surface roughness in various conditions (e.g. a transfer film on these discs). The results show that the friction coefficient and the wear factor are proportional to the roughness of disc under constant load. In smooth contact face (Ra < 0.04μm), the friction coefficient of zirconia and alumina is smaller than that of Co-Cr-Mo. The wear factors of these combinations are similar. The wear mechanism of UHMWPE sliding on zirconia can be divided into two regions separated by a critical roughness (Ra) of 0.10μm. The mechanism is surface fatigue wear on the surface of Ra ≦ 0.10μm, and the other is abrasive wear. After wear test, the roughness of UHMWPE is reduced, but the crystallinity of worn UHMWPE surface and the debris don’t show significant change. Additionally, by reducing initial roughness of UHMWPE, pre-coated a transfer on the disc, and using saline as a lubricant can slightly reduce the friction coefficient and wear factor of the UHMWPE on ZrO2.
目錄
一.緒論1
二﹑文獻回顧3
2.1 人工髖關節材料3
2.2 氧化鋯材料6
2.2.1 氧化鋯的種類7
2.2.2 機械性質9
2.2.3 研磨加工對相變化及微結構之影響10
2.2.4 Y-TZP劣化現象13
2.3 磨耗行為13
2.3.1 磨耗機制14
(a) 表面疲乏磨耗16
(b) 研磨式磨耗16
2.3.2 磨耗量19
2.3.3 摩擦係數19
2.3.4 磨屑及基材表面轉移層之微結構23
(a)受力情形對磨屑形態之影響25
(b)潤滑液成份對磨屑形態之影響26
(c)人工關節之固定方式(使用骨水泥與否?!)對磨屑之影27
2.4 膠體壓濾成形製程27
2.4.1 壓濾之壓力對生坯性質之影響27
2.4.2 乾燥動力學28
(a) 擴散控制乾燥29
(b) 界面控制乾燥29
三、實驗步驟31
3.1 實驗計畫31
3.2 實驗材料31
3.2.1 氧化鋯基本性質分析31
3.2.2 分散劑34
3.2.3 乾燥控制劑(DCCA)34
3.2.4 UHMWPE34
3.3 實驗製程34
3.3.1 沈降及離心實驗34
3.3.2 乾壓製程37
3.3.3 膠體製程37
3.3.4 材料加工38
3.3.5 氧化鋯、氧化鋁及鈷-鉻-鉬試片性質38
3.4 磨耗測試39
3.4.1 磨耗裝置39
3.4.2 磨耗測試條件45
3.4.3 UHMWPE 清洗及重量量測……………………………… 48
3.5 性質分析49
3.5.1 表面粗糙度的量測49
3.5.2 潤溼角(wetting angle)49
3.5.3 密度量測………………………………….………………..49
3.5.4 XRD晶相分析50
3.5.5 SEM微結構觀察51
3.5.6 Y2O3含量全定量分析51
3.5.7 機械性質測試52
四、結果與討論53
4.1 氧化鋯基本性質分析53
4.1.1 密度53
4.1.2 微結構54
4.1.3 Y2O3定量分析54
4.1.4 加工對結晶相及微結構之影響62
4.2 分散測試64
4.3 乾燥控制71
4.3.1 分散液及乾燥控制劑對氧化鋯之潤溼角73
4.3.2 乾燥行為73
4.3.3 乾燥控制劑對燒結體性質的影響81
4.4 磨耗測試81
4.4.1 摩擦係數之分析81
4.4.2 磨耗速率的分析88
4.4.3 UHMWPE表面性質之分析92
(a) 表面粗糙度92
(b) 結晶性92
4.4.4 基材表面轉移層(transfer film)及磨屑形態分析95
4.4.5 荷重對磨耗速率之影響106
4.4.6 潤滑液對磨耗行為之影響109
4.4.7界面性質對磨耗行為之影響110
五、結論115
六、參考文獻118
附錄
1. 林繼昌,韓毅雄,”人工髖關節的設計-臨床醫師的觀點”,工業材料125期,pp.136-141,86年5月。
2. G. Heimke, “The aspect and Methods of Fixation of Bone Replacement,” Osseo-Integrated Implant, Vol I, Basics Material and Joint Replacement, CRC Press Inc.
3. ASTM D020, “Standard Specification for Ultra-High-Molecular-Weight Polyethylene Molding and Extrusion Materials.”
4. H. C. Amstutz, P. Campbell, N. Kossovsky, and I. C. Clarke, “Mechanism and clinical significance of wear debris-induced osteolysis,“ Clinical Orth. Opaedics and Related Research, 276, pp.7-18, (1992).
5. M. F. Basle, G. Bertrand, S. Guyetant, D. Chappard, and M. Lesourd, ”Migration of metal and polyethylene particles from articular prostheses may generate lymphadenopathy with histiocytosis,” J. of Bio. Mat. Res., Vol. 30, pp. 157-164, (1996).
6. ISO 6474 : 1994 (E), ”Implants for surgery-ceramic materials based on high purity alumina.”
7. 杜正恭,”氧化鋯”(陶瓷技術手冊 第二十一章),汪健民主編,中華民國粉末冶金協會,台灣(1994)。
8. B. Derbyshire, J. Fisher, D. Dowson, C. Hardaker and K. Brummitt, ”Comparative study of the wear of UHMWPE with zirconia ceramic and stainless steel femoral heads in artificial hip joints,” Med. Eng. Phys., Vol. 16, (1994).
9. A. H. Heruer, ”Transformation toughening in ZrO2-containing ceramics,” J. Am. Ceram. Soc., 70[10], pp. 689-698, (1987).
10. W. Kriven, “Matensitic toughening of ceramics,” Mat. Sci. Eng., A127, pp. 249-55, (1990).
11. O. N. Grigoryev, “Effect of zirconia additive on mechanical properties and structure of alumina ceramics,” J. Mat. Sci., 29, pp. 4633-38, (1994).
12. N. Nakanishi and T. Shigenmastu, “Martensitic transformations in zirconia ceramics,” Mat. Trans., JIM, 33[3], pp. 318-323, (1992).
13. G. S. A. M. Theunissen, J. S. Bouma, A. J. A. Winnubst and A. J. Burggraaf, “Mechanical properties of ultra-fine grained zirconia ceramics,” J. Mat. Sci., 27, pp. 4429-4438, (1992).
14. M. Miyayama and H.Yanagida, “Effect of Al2O3 additions on resistivity and microstructure of yttria-stabilized zirconia," Am. Ceram. Soc. Bull. , 64[4], pp. 660-664, (1985).
15. A. H. Heuer, “Stability of tetragonal ZrO2 particles in ceramic matrices,“ J. Am. Ceram. Soc., 65[12], pp. 642-50, (1982).
16. S. Srinivasan, R. O. Scattergood, G. Pfeiffer, R.G. Sparks, and M. A. Paesler, “Low temperature treatment of transformation toughened partially stabilized magnesia-doped zirconia,” J. Am. Ceram. Soc., 73[5], pp.1421-24, (1990).
17. F. F. Lange, “Transformation toughening Part 3, Experimental observations in the ZrO2-Y2O3 system,” J. Mat. Soc., 17, pp. 240-246, (1982).
18. D. B. Marshall, “Strength characteristics of transformation-toughened zirconia,” J. Am. Ceram. Soc., 69[3], 173-80, (1986).
19. K. Tsukuma, Y. Kubota, and T. Tsukidate, “Thermal and mechanical properties of Y2O3 stabilized tetragonal zirconia polycrystals,” in Advanced Ceramics, Vol. 12, Science and Technology of Zirconia II, edited by N. Claussen, M. Ruhle, and A. H. Heuer. American Ceramic Society, Columbus, Ohio, (1984).
20. T. Masaki, “Mechanical properties of toughened ZrO2-Y2O3 Ceramics,” J. Am. Ceram. Soc, 69[8], pp. 638-640, (1986).
21. K. Noguchi, M. Fujita, T. Masaki, and M. Mizushina, “Tensile strength of yttria-stabilized tetragonal zirconia polycrystals,” J. Am. Ceram. Soc., 72[7], pp. 1305-1307, (1989).
22. F. F. Lange, "Transformation toughened ZrO2: correlations between grain size control and composition in the system ZrO2- Y2O3 ,” J. Am. Ceram. Soc., 69[3], pp.240-242, (1986).
23. P. J. Whalen, E. Reidinger, and R. F. Antrim, "Prevention of low temperature surface transformation by surface recrystallization in yttria-doped tetragonal zirconia,” J. Am. Ceram. Soc., 72[2], pp. 319-21, (1989).
24. J. F. Jue, J. Chen, and A. V. Virkar, “Low-temperature aging of t''-zirconia: The role of microstructure on phase stability,” J. Am. Ceram. Soc., 74[8], pp. 1811-1820, (1991).
25. D. J. Kim, H. J. Jung, and H. J. Kim, “t-r phase transformation of tetragonal zirconia alloys by grinding,” J. Mat. Sci. Lett. , 4, pp. 285-288, (1995).
26. H. Hasegawa, “Rhomboherdral phase produced in abraded surfaces of partially stabilized (PSZ),” J. Mat. Sci. Lett., 2, pp. 91-93, (1983).
27. O. C. Standard, and K. Schindhelm, “In-vitro aging of tetragonal zirconia polycrystal ceramics,” J. Aust. Ceram. Soc., 29[1/2], pp. 111-123, (1993).
28. T. Harushige, K. Yoshihide, and N. Masahito, ”Surface relief associated with isothermal martensite in zirconia-3 mol%-yttria ceramics observed by atomic force microscopy,” J. Am. Ceram. Soc., 82[10], pp. 2921-2923, (1999).
29. M. Kernick, and C. Allen, “The Sliding Wear of UHMWPE against Zirconia in Saline containing Proteins,” Wear, 203-204, pp. 537-543, (1997).
30. A. Chanda, A. K. Mukhopadhyay, D. Basu, and S. Chatterjee, “Wear and Friction Behavior of UHMWPE-Alumina Combination for Total Hip Replacement,” Ceramic International,23, pp. 437-447 (1997).
31. Y. Sawae, T. Murakami, and J. Chen, ”Effect of synovia constituents on friction and wear of ultra-high molecular weight polyethylene sliding against prosthetic joint materials,” Wear, 216, pp. 213-219, (1998).
32. D. M. Tetreault and F. E. Kennedy, ”Friction and wear behavior of ultrahigh molecular weight polyethylene on Co-Cr and titanium alloys in dry and lubricated envirronments,” Wear, 133, pp. 295-307, (1989).
33. A. Wang, A. Essener, C. Stark and J. H. Dummbleton, “Comparison of the size and morphology of UHMWPE wear debris produced by a hip joint simulator under serum and water lubricated conditions,” Biomaterials, 17, pp. 865-871, (1996).
34. P. Eyerer and M. Kurth, “Characterization of UHMWPE hip cups run on joint simulators,” J. Bio. Mat. Res., Vol. 21, pp. 275-291, (1987).
35. C. H. Huang, T. H. Young, Y. T. Lee, J. S. Jan, and C. K. Cheng, “Polyehtylene Failure in New Jersey low-contact stress total knee arthroplasty,” J. Bio. Mat. Res., 39, pp. 153-160, (1998).
36. J. K. Lancaster, “Material-specific wear mechanism: relevance to wear modeling,” Wear,141, pp. 159-183, (1990).
37. J. R. Cooper, D. Dowson, and J. Fisher, ”Macroscopic and microscopic wear mechanism in ultra-hight molecular weight polyethylene,” Wear,162-164, pp. 378-384, (1993).
38. 白永傳,”精密研磨加工技術概說”,中國砂輪公司,79年
39. 陳世春,劉守一,”塑膠材料潤滑性質”,復漢出版社,pp.112-130,89年
40. K. Y. Lee, and D. Pienkowski, “Reduction in the initial wear of ultra-high molecular weight polyethylene after compressive creep deformation,” Wear, 203-204, pp. 375-379, (1997).
41. J. Fishe, D. Dowson, H. Hamdzah, and H. L. Lee, “The sliding velocity on the friction and wear of UHMWPE for use in total artificial joints,” Wear, 175, pp. 219-225, (1994).
42. 黃明熙,”全人工關節超高分子聚乙烯元件摩擦熱效應分析研究”,國立陽明大學醫學工程研究所碩士論文,(1999)
43. 王博祺,”氧化鋁膠體製程最佳化及機械性質之研究”,國立台灣大學材料及工程學研究所碩士論文,(1998)
44. J. G. Lancaster, D Dowson, G. H. Isaac and J. Fisher, “The wear of ultra-high molecular weight polyethylene sliding on metallic and ceramic counterfaces representative of current femoral surfaces in joint replacement,” Proc. Instn. Mech. Engrs. Vol. 211 Part H. (1997).
45. E. Rabinowicz, Friction and wear of materials, John Wiley & Sons, Inc., 2nd ed., 1995.
46. S. M. Benabdallah, and J. Lapierre, “A new device for measuring the real area of contact of polymeric material by the pertubation of total internal reflection,” J. Mat. Sci., 25, pp. 3497-3500, (1990).
47. K. H. Zum Gahr, “Modeling and microstructural modification of alumina ceramic for improved tribological properties,” Wear, 200, pp. 215-224, (1996).
48. W. H. John, and A. K. Karen, Anatomy, Wm. C. Brown Publishers, pp. 192-193, (1991).
49. Gregory D. Jay, Karen Haberstroh, and Chung-Ja Cha, ” Comparison of the boundary-lubricating ability of bovine synovial fluid, lubricant, and Healon,” J. Bio. Mat. Res., 40, pp. 414-418, (1998).
50. A. Kobayashi, W. Bonfield, Y. Kadoya, and T. Yamac, “The size and shape of particulate polythylene wear debris in total joint replacement,” Pro. Instn. Mech. Engrs., Vol 211 Part H, pp.11-15, (1997).
51. Rabinowicz EA, Friction and Wear of Materials, New York, Wiley, (1965).
52. P. S. Walker, G. W. Blunn, and P. A. Lilley, “ Wear testing of materials and surfaces for total knee replacement,” J. Bio. Mat. Res.: Applied Biomaterials, 33, pp. 159-175, (1996).
53. 謝長利,”次微米氧化鋁之膠粒製程、乾燥行為、相變化及破壞強度之研究”,國立台灣大學材料科學與工程研究所碩士論文,(1997)。
54. S. Samo, Y. Hotta, T. Banno and K. Oda, “Pressure controlled slip casting of fine ceramics,” Key Eng. Mat., Vols. 161-163, pp. 81-86, (1999).
55. W. J. Wei and C. L. Hsieh, ”Drying kinetics of ultrafine alumina cake with drying control chemical (DCC),” J. Japan. Ceramic., vol. 107[4], (1999).
56. R. W. Ford, Ceramics Drying, Pergamon Press, pp. 1-35, (1986).
57. W. S. George, ” Theory of drying ,” J. Am. Ceram. Soc., 73[1], pp. 3-14, (1990).
58. G. H. Geiger, D. R. Poirier, Transport phenomena in metallurgy, Addison Wesley, USA, pp. 488, (1982).
59. A. B. Newman, Trans. A. I. CH. E., 27, pp33-310 (1931).
60. Yu-Chi Lee and W. Wei, “Dispersion and high-pressure filtration of zirconia/alumina composite slurry,” Chin. J. Mat. Sci., Vol. 24, No. 2, pp. 113-122, (1992).
61. 何方元,”釔安定化正方氧化鋯(Y-TZP)膠粒製程與燒結體性質研究”,國立台灣大學材料科學及工程研究所碩士論文,(1997)
62. ASTM F732-82, “Standard practice for reciprocation pi-on-flat evaluation of friction and wear properties of polymeric materials for use in total joint protheses,” (1991).
63. K. Ando, “Wetting angle of aqueous solution of organic binder (PVA) on sapphire and fused quartz,” J. Mat. Sci., 24, pp. 4048-4051, (1989).
64. ASTM C372-73, “Standard test method for water adsorption, bulk density, apparent density, and apparent specific gravity of fired whiteware products.”
65. J. C. Wurst, and J. A. Nelson, “Linear Intercept technique for Measuring Grain Size in Two-Phase Polycrystalline Ceramics,” J. Amer. Ceram. Soc., 2, 109(1972).
66. A. B. Viekar, L.K. Matsumoto, “ Ferroelastic Domain switching as a toughening mechanism in tetragonal zirconia,” J. Am. Ceram. Soc., 69[10], pp. 224-226, (1986).
67. J. Cesarano III and I. A. Aksay, “Processing of high concentrated aqueous A-alumina suspension stabilized with polyelectrolytes,” J. Am. Ceram. Soc., 71[12] 1062-1067, (1988).
68. 楊志忠,”氧化鋯膠體製程極其耐磨耗性研究”,國立台灣大學材料及工程學研究所碩士論文,(1998)
69. A. R. Cooper, “Quantitative theory of cracking and warping during the drying of clay bodies,” Ceramic Processing Before Firing, ED. Onoda, and Hench, pp. 261-266, (1987).
70. W. H. David, L. W. Debra, and L. P. Nancy, “Characterization of submicron polyrthylene wear debris from synovial-fluid of revised knee replacements using a light-scattering technique,” J. Bio. Mat. Res., Vol. 31, pp.355-363, (1996).
71. D. F. Farrar and A. A. Brain, “The microstructure of ultra-high molecular weight polyethylene used in total joint replacements,” Biomateriaals, 18, pp. 1677-1685, (1997).
72. K. Marcus, “Micromechanism of polymer sliding wear,” Ph.D. Thesis, University of Cape Town, (1993).
73. You-Lo Hsieh, and Jie Ju, “Melting behavior of ultra-high modulus and molecular weight polyethylene (UHMWPE) fibers,” J. Appli. Poly. Sci., Vol. 53, pp. 347-354, (1994).
74. 鄭振東,”摩擦漫談”,建宏出版社,pp. 132-142,80年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top