跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 00:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈朝正
研究生(外文):Chao-Cheng Shen
論文名稱:鈦酸鋇/氧化鋯複合材機械性質及電性之研究
論文名稱(外文):The Mechanical and Dielectric Properties of Barium Titanate/Zirconia Composite
指導教授:段維新段維新引用關係
指導教授(外文):Wei-Hsing Tuan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:106
中文關鍵詞:鈦酸鋇氧化鋯晶核-晶殼擴散相變強度韌性介電燒結
外文關鍵詞:barium titanatezirconiacore-shelldiffusion-phase transitionstrengthtoughnessdielectricsintering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:1
本研究以物理方式混合鈦酸鋇/氧化鋯的粉末,於空氣中進行燒結,利用SEM觀察複合材的微結構並比較與所量得的機械性質及介電行為的關係。
微結構方面,鈦酸鋇/氧化鋯複合材由於有擴散相變的發生,可觀察到晶核-晶殼的微結構。
在強度方面,隨著氧化鋯含量的增加強度愈來愈高,這是由於氧化鋯含量愈高時,複合材的晶粒愈小,使的強度提高;在韌性方面,則與氧化鋯的含量有關,在氧化鋯含量低於固溶限的情況之下,韌性會降低,當氧化鋯含量大於固溶限以後,韌性隨著氧化鋯含量增加而提高,韌性的提高是由於氧化鋯的相變韌化。
在介電性質方面,氧化鋯的添加使得居禮溫度變低同時變寬,在室溫的介電常數(K25)則與氧化鋯的含量有關,在氧化鋯含量低於固溶限以下,由於晶粒細化的關係,K25的值會提高;反之,在氧化鋯含量大於固溶限以後,以第二相形式存在的氧化鋯,會大幅的降低K25。
燒結方面,由線性收縮曲線及包埋實驗的觀察,鈦酸鋇的液相可大幅降低氧化鋯的燒結溫度。
The BaTiO3/ZrO2 composites are prepared by powder mixing of BaTiO3 and ZrO2 powders then sintered in air. The effect of microstructure on the mechanical and dielectric properties is investigated. From XRD analysis, less than 10 vol.% zirconia addition dissolve into barium titanate formation solid solution with barium titanate. The added zirconia can act as grain growth inhibitor for barium titanate. The grain size of the composites decreases with the increase of zirconia content, the strength of the composites thus increases with the increase of zirconia content. The addition of zirconia can also improve the toughness of barium titanate. But the addition quantity should exceed the solid solution limit of zirconia in barium titanate, the retained t-phase zirconia toughen barium titanate by stress-induced transformation toughening mechanism. When the addition of zirconia is below the solubility, the dielectric constant at room temperature of barium titanate is increased due to the addition of zirconia. In the contrary, as the zirconia addition is above solubility, the dielectric constant of barium titanate at room temperature decreases with the increase of zirconia content. The liquid phase from barium titanate can lower the sintering temperature of zirconia.
CONTENT
CHAPTER 1 INTRODUCTION……………………………………………………………………….1
CHAPTER 2 LITERATURE SURVEY………………………………………………………………..2
2.1 The Characteristics of Barium Titanate…………………………………………………….2
2.1.1 Dielectric Properties of Barium Titanate……………………………………………….7
2.1.2 Mechanical Properties of Barium Titanate……………………………………………….9
2.1.2.1 The Toughness of Barium Tarium Tested in Different Methods……………………..9
2.1.2.2 The Strength of Barium Titanate……………………………………………………….13
2.1.2.3 The Factors That Affect The Mechanical Property of Barium Titanate…………14
2.1.2.3.1 Effect of Grain Size…………………………………………………………………..14
2.1.2.3.2 Effect of porosity…………………………………………………………………….20
2.1.2.3.3 Effect of Internal Stress……………………………………………………………21
2.2 The Characteristics of Zirconia……………………………………………………………22
2.2.1 Process Zone Toughness Mechanism……………………………………………………….24
2.2.1.1 Stress-Induced Transformation Toughening………………………………………….24
2.2.1.2 Microcrack Toughening…………………………………………………………………..25
2.3 The Effect of Zirconia Added into Barium Titanate…………………………………..27
CHAPTER 3 EXPERIMENT PROCEDURE………………………………………………………….31
3.1 Materials……………………………………………………………………………………….31
3.2 Preparation of BaTiO3/ZrO2 Composite…………………………………………………….31
3.3 The Preparation of the Testing Bars………………………………………………………31
3.4 Property measurement………………………………………………………………………..35
3.4.1 Density……………………………………………………………………………………….35
3.4.2 XRD analysis………………………………………………………………………………..36
3.4.2.1 Phase Analysis……………………………………………………………………………36
3.4.2.2 Quantitative Analysis………………………………………………………………….36
3.4.3 SEM Observation…………………………………………………………………………….37
3.4.3.1 Observation of Surface…………………………………………………………………37
3.4.3.2 Observation of Fracture Origin Identification………………………………….38
3.4.3.3 Observation of the Crack Path……………………………………………………….38
3.4.4 Measurement of Flexural Strength……………………………………………………..39
3.4.5 Measurement of Fracture Toughness…………………………………………………….40
3.4.6 Measurement of the Particle Size Distribution…………………………………….40
CHAPTER 4 RESULTS AND DICUSSION……………………………………………..42
4.1 The Basic Analysis of Material…………………………………………………………….42
4.1.1 Particle Size Distribution……………………………………………………………….42
4.1.2 X-ray Diffraction Analysis……………………………………………………………….42
4.1.3 The Measurement of Density……………………………………………………………….49
4.2 Observation of Microstructure……………………………………………………………..49
4.3 Sintering Behavior…………………………………………………………………………….59
4.4 Mechanical Properties………………………………………………………………………..69
4.4.1 Strength………………………………………………………………………………………69
4.4.2 Toughness…………………………………………………………………………………….72
4.4.3 Observation of the Fracture Origin…………………………………………………….77
4.4.4 Observation of the Fracture Surface…………………………………………………..77
4.5 Dielectric Property…………………………………………………………………………..83
4.6 Embedded Specimen……………………………………………………………………………..86
4.7 Zirconia Matrix Composites………………………………………………………………….88
CHAPTER 5 CONCLUSIONS……………………………………………………………………….103
REFERENCES……………………………………………………………………………………….105
LIST of TABLES
Table 2.1 The fracture energy of barium titanate tested in room temperature……10
Table 2.2 The fracture energy of barium titanate tested in 150℃………………….11
Table 3-1 The characteristics of BaTiO3 powder used in this study………………….32
Table 3-2 The characteristics of ZrO2 powder used in this study…………………….33
Table 4-1 The EPMA analysis of the elongated grains…………………………………..102
LIST of FIGURES
Fig.2-1. The perovskite-type crystal structure of BaTiO3………………………………3
Fig.2-2. Distortion of BaTiO3 unit cell in its polymorphic forms…………………….4
Fig.2-3. Schematic diagram of 180o and 90o domains in BaTiO3…………………………..6
Fig.2-4. (a) Dimensions of pseudocubic unit cell of BaTiO3. (b) Temperature dependence of dielectric constant………………………………………………………………………………8
Fig.2-5. The relative permittivity as a function of grain size………………………12
Fig.2-6. Schematic diagram of (a) three-point bending test. (b) four-point bending test……………………………………………………………………………………………………15
Fig.2-7 Schematic diagram of the stress distribution of (a) three-point bending test. (b) four-point bending test……………………………………………………………………..15
Fig.2-8. Fracture energy of Fe0.94O as a function of grain size………………………..17
Fig, 2-9. Fracture energy vs. grain size for Al2O3, Nb2O5, and TiO2…………………..17
Fig.2-10. Grain size dependence of the fracture energy BaTiO3………………………….18
Fig.2-11. Schematic representation of three zirconia polymorphous (a) monolithic (b) tetragonal (c) cubic……………………………………………………………………………….23
Fig.2-12. (a) The stress induced transformation of metastable zirconia particles within the elastic stress field of a crack. (b) Schematic diagram to show the microcrack toughening mechanism for the ceramics containing zirconia………………………………26
Fig.2-13. Schematic representation of a typical core-shell microstructure observed in BaTiO3 composition………………………………………………………………………………….30
Fig.2-14. Temperature dependence of permittity of ceramic Ba(Ti1-yZry)O3……………….30
Fig.3-1 The flowchart of the preparpation of BaTiO3/ZrO2 composites………………….34
Fig.4-1. The particle size distribution of BaTiO3 (a) before ball milling. (b) after ball milling…………………………………………………………………………………………43
Fig.4-2 (a) The XRD patterns of pure BaTiO3 and the composites containing 10、20、30、40、50 vol.% ZrO2 …………………………………………………………………………….45
Fig.4-2 (b) The XRD patterns of pure ZrO2 and the composites containing 60、70、80、90 vol.% ZrO2 ……………………………………………………………………………………..46
Fig.4-3. The (002)、 (200) X-ray peaks of pure BaTiO3 and the composite containing 10 vol.% ZrO2 sintered at different temperatures……………………………………………….47
Fig.4-4. The lattice parameters and c/a ratio of the composites containing 10 vol.% ZrO2 after sintering at different temperatures……………………………………………..48
Fig.4-5. The density of the composites as a function of ZrO2 content, the sintering temperature are indicated…………………………………………………………………………50
Fig.4-6. The microstructures of BaTiO3 sintered at (a) 1250℃ (b) 1290℃ (c) 1310℃ and (d) 1340℃…………………………………………………………………………………………..51
Fig.4-7. (a) The microstructure of the composite containing 10 vol.% ZrO2 sintered at 1340℃ for 1hr. (b) The EDS analysis of the corresponding points in Fig.4-7 (a)..53
Fig.4-8. (a) The microstructure of the composite containing 20 vol.% ZrO2 sintering at 1340℃. (b) The EDS analysis of the six points in Fig.4-8 (a)…………………………55
Fig.4-9. (a)、(b)、(c)、(d)、(e) and (f). The chemical etched surface of the composites containing 10、20、30….、60 vol.% ZrO2 respectively (sintered at 1340℃)………….56
Fig. 4-10 (a)The microstructure of the composite contains 40 vol.% ZrO2. The marked dark line in (b) shows the boundary between the two regions…………………………………57
Fig.4-11. The microstructure differences between the bright and dark regions…….58
Fig.4-12. (a) The microstructrure of the composite containing 20 vol.% ZrO2 after thermal etching at 1290℃、0.5hr. The marked dark line in (a) shows the boundary between the two regions. (b) The bright region after thermal etching………………………………60
Fig.4-13. (a) The microstructrure of the composite containing 50 vol.% ZrO2 after thermal etching at 1290℃、0.5hr. (b) The bright field region after thermal etching….61
Fig.4-14. The fracture plane of the composites containing (a) 10、(b) 20、(c) 30、(d) 40 and (e) 50 vol.% ZrO2 sintered at 1290℃ respectively………………………..62
Fig.4-15. The microstructures of the dark and bright regions shown in Fig.4-14….63
Fig.4-16. The polished surface of pure BaTiO3 sintered at 1340℃for 1 hr…………..64
Fig.4-17. The pore formed after sintering in the composites…………………………..66
Fig.4-18. (a)、(b) Comparison between the densification through pore filling versus swelling through pore formation………………………………………………………………..67
Fig.4-19. The linear shrinkage kinetics of the composites as a function of temperature. The heating rate was 5℃/min…………………………………………………………………….68
Fig.4-20. The linear shrinkage rate of the specimens as a function of temperature.70
Fig.4-21. The strength of the composites as a function of ZrO2 content…………….71
Fig.4-22. The toughness of the composites as a function of ZrO2 content…………..73
Fig.4-23. (a) The fracture plane of BaTiO3 containing bimodal grains. (b) The twin in large grains………………………………………………………………………………………..74
Fig.4-24. The fracture surface of the composite contains 10 vol.% ZrO2…………….75
Fig.4-25. The relative amount of phase transformed zirconia…………………………..76
Fig,4-26, The crack path of the composite created by indentation………………………………..78
Fig.4-27. (a) The fracture of BaTiO3. (b) The macrocrack around the large grain….79
Fig.4-28. (a) The fracture surface of the composite. (b) The pores clusters are found at the fracture origin……………………………………………………………………………80
Fig.4-29. The fracture plane of the (a) pure BaTiO3 and the composites contain (b) 10、(c) 20、(d) 30、(e) 40 and (f) 50 vol.% ZrO2 respectively…………………………….81
Fig.4-29. The facture plane of the composites contain(g) 60、(h) 70、(i) 80、(j) 90 vol.% ZrO2 and (k) pure ZrO2…………………………………………………………………….82
Fig.4-30. The permittivities of the composites…………………………………………..84
Fig.4-31. The permittivities of BaTiO3 sintered at different temperatures as a function of temperature………………………………………………………………………………………85
Fig.4-32. The permittivities of the composite containing 10 vol.% ZrO2 sintered at different temperatures as a function of temperature……………………………………..85
Fig.4-33. The XRD patterns of the composite containing 10 vol.% ZrO2 sintered at different temperatures…………………………………………………………………………..87
Fig.4-34. The relative density of pure ZrO2 sintered at different temperatures….89
Fig.4-35. The polished surface of embedded specimen after firing at 1340℃ (the inner is BaTiO3 and the outside is ZrO2)……………………………………………………………..90
Fig.4-36. (a) The microstructure of the A region inFig.4-35. (b) The EDS analysis of A region……………………………………………………………………………………………..91
Fig.4-37. (a) The microstructure of the B region inFig.4-35. (b) The EDS analysis of B region………………………………………………………………………………………………92
Fig.4-38. (a) The microstructure of the C region inFig.4-35. (b) The EDS analysis of C region……………………………………………………………………………………………..93
Fig.4-39. (a) The microstructure of the D region inFig.4-35. (b) The EDS analysis of D region………………………………………………………………………………………………94
Fig.4-40. (a) The microstructure of the E region inFig.4-35. (b) The EDS analysis of E region………………………………………………………………………………………………95
Fig.4-41. The thermal etching surface of the composites contain(a) 70、(b) 80、(c) 90 vol.% ZrO2 and (d) pure ZrO2…………………………………………………………………….98
Fig.4-42. The fracture surface of the composite containing 70 vol.% ZrO2 with different treatments. (a) As sintered, (b) sintered at 1340℃ and thermal etched at 1290℃ (0.5hr). (c) sintering at 1340℃ and ground. (d) sintered at 1340℃、ground and thermal etched at 1290℃…………………………………………………………………………………….99
Fig,4-43. The XRD patterns of the as sintered specimen and the specimen after annealing…………………………………………………………………………………………..100
Fig.4-44. The toughness of the as sintered specimens and the specimens after annealing (thermal etching)…………………………………………………………………………………101
Arlt, G., Hennings, D. and de With, G., ”Dielectric properties of fine-grained Barium Titanate ceramics, ”J. Appl. Phys, 58[4],1619-25, (1985).
Armstrong, T.R. and Buchman, R.C., “Influence of core-shell grains on the internal stress state and permittivity response of zirconia-modified barium titanate,” J.Am.Ceram. Soc., 73[5] 1268-73, (1990).
Chan, H.M., Hu, Y.H. Wen, Z.W. and Harmer, M.P., ”Scanning electron microscopy and transition electron microscopy study of ferroelectric domains in doped BaTiO,” J.Am.Ceram. Soc.,69 594-602, (1986).
Claussen, N., ”Fracture toughness of Al2O3 with an unstablized ZrO2 dispered phase,” J.Am.Ceram. Soc., 59[1-2] 49-51, (1976).
Green, D.J., Hannink, R.H. and Swain, M.V.,”Transformation toughening of ceramics,”CRC Press, Inc., (1989).
Henniings, D. and Schnell, A., “Diffusion ferroelectric phase transition in Ba(Ti1-yZry)O3 ceramics,” J.Am.Ceram. Soc., 65[11] 49-51, (1982).
Jafee, B.,Cook W.R. and Jaffee, H., PP. 49-114 in Peizoelectric ceramics Edited by B. Jaffee, W.R. Cook and H. Jaffee Academic Press, N.Y.(1971)
Jafee, B.,Cook W.R. and Jaffee, H., PP. 53-114 in Peizoelectric ceramics, Academic Press in London, (1971).
Jona F. and Shirance G., ”Barium Titanate”, PP. 108-215 in Ferroelectric Crystals, Perdaman Press, Oxford, (1962).
Kay, H.F. and Vousdan, P., Phil. Mag., 1019, 7, (1949).
Kell, R.C. and Hellicar, “Structural transition in barium titanate-zirconiate transducer materials ,”Acustica, 6[2]235-38, (1956).
Lu, H.Y., Bow, J.S. and Deng, W.H., “Core-shell structure in ZrO2-modified BaTiO3 ceramics,” J.Am.Ceram. Soc., 73[12] 3562-68, (1990).
Merz, W.J., ”The electric and optical behavior of BaTiO3 single-domain crystals,”Phys., 1221-25, 76, (1949).
Molohia, A.K. and Issa, M.A., “Dielectric properties of BaTiO3 modified with ZrO2 ,”Pramana, 11[3]289-93, (1958).
Moulson, A.J. and Herbert, J.M., Electroceramics: Materials, Properties and Applications. PP.5-85, Chapman and Hall, (1990).
Petch, N.J., “Cleavage strength of polycrystals,” J.Iron Steel Inst. (London),174, Part I, 25-28 May (1953).
Pohanka, R.C., Freiman, S.W., Okazaki, K. and Tashiro, S.,”Fracture of piezoelectric materials.” In Fracture Mechanicsof Ceramics,Vol5, 5, ed. R. C. Bradt, A.G., Evans D.P.H. Hasselman and F.F. PP.353-64 Lange. Plenum Press, N.Y.,(1983).
Randall, C.A., Wang, S.F., Dougherty, J.P. and Huebner, W., “Structure property relationships in core-shell BaTiO3-LiF ceramics,”J. Mater. Res.,8[4]871-79, (1993).
Rase, D.E. and Roy, R , “Phase equilibria in the system BaO-TiO2,”J.Am.Ceram. Soc.,38[3] 102-13, (1955).
Rice, R.W., Freiman, S.W., and Becher, P.F.,”Grain size dependence of fracture energy in ceramics:I ,Experiment,” J.Am.Ceram. Soc.,64[6] 345-50, (1981).
Rice, R.W., Freiman, S.W., Pohanka, R.C.,Mecholsky,J.J. and Wn, C. Cm,”Fracture mechanics of ceramics,” vol. 4, PP.849,(1978).
Richerson, D.W., ”Modern ceramics eingeering properties, processing, and use in design,” Marcel Dekker Inc., N. Y.(1982).
Rsshkewith, E., ”Compression strength of porous sintered alumina and zirconia,” J.Am.Ceram. Soc.,36[9] 65-71, (1953).
Steven, R., ”Zirconia ceramics,”PP.17-19, Magnesium Electron Ltd, (1986).
Toraya, H., Yoshimura, M. and Somiya, S.,”Zirconia ceramic,” Vol.2,PP.53-59, edited by S.Somiya and U.Rokakuho, Tokyo, Japan, (1984).
Orowan, E.,”The increase strength of thin fibers, the Jofee,s effect , and related observations based on the Griffith theory of fracture,” Z. Physik, 86[3/4] 195-213 (1993).
Verbitskaia, T.N., Zhdanov, G.S., Venevtsev, Iu.N. and Soloviev, S.P., “Electrical and X-ray diffraction studies of the BaTiO3-BaZrO3 system,”Sov. Phys.-Crystallogr. (Engl. Transl.), 3[2] 182-92, (1958).
Walker, J.R., Pohanka, R.C. and Rice, R.W.,”Effect of internal stress on the strength of BaTiO3,” J.Am.Ceram. Soc.,59[1-2] 71-74, (1976).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 20.孫效智〈道德論證問題在基本倫理學上的發展──目的論與義務論之爭〉,《哲學與文化》22:4=251民84.04頁317-331。
2. 19.孫周興〈老子對海德格的特殊影響〉,《哲學與文化》20:12=235民82.12,頁317-331。
3. 17.柯志明〈惡之終始──呂格爾早期主體存有學對惡的反思〉,《哲學雜誌》15期,民85.01,頁178-201。
4. 16.周景勳〈易傳繫辭中「生生之謂易」的研究〉,《哲學論集》第22期,輔仁大學研究所,民77.07,頁147-168。
5. 15.林家鴻〈柏拉圖及孔子的天人觀〉,《孔孟月刊》30:4=352民80.12頁3-14。
6. 18.袁保新〈天道、心性、與歷史──孟子人性論的再詮釋〉,《哲學與文化》22:11=258民84.11頁1009-1022。
7. 14.李景林〈殷周至春秋天人關係觀念之演進初論〉,《孔孟學報》70期,民84.09頁29-43。
8. 13.沈清松〈對應快速科技發展的道德教育之人類學基礎〉,《哲學與文化》12:6民74.06頁391-397。
9. 12.李彥榮〈孔子道德教育思想的人本位與社會本位之辨〉,《孔孟月刊》34:10=406民85.06頁8-12。
10. 11.呂宗麟〈論周易中的三極之道及現代省思〉,《宗教哲學》2:4=8民85.10. 頁71-82。
11. 10.呂宗麟〈試論先秦儒家的宗教哲學觀――傳統與現代的思考〉,《宗教哲學》2:1=5,民85.01. 頁31-40。
12. 9.李杜〈由先秦儒者說道當代新儒者對天道形而上問題的了解〉,《哲學與文化》18:6=205民80.06頁490-505。
13. 8.李杜〈「大學」的天道〉,《哲學與文化》19:6=217民81.06頁562-564。
14. 7.江雪蓮〈道德義務的它律性和自律性〉,《哲學與文化》21:11=246民83.11頁1023-1034。
15. 5.成中英〈中國倫理體系及其現代化〉,《哲學與文化》17:7=195民79.07頁579-589。