跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 04:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁勢凱
研究生(外文):Weng Shih-Kai
論文名稱:鎳鋁/氧化鋁複合材乾式銷輥配對磨耗之研究
論文名稱(外文):Wear Resistance of NiAl/Al2O3 Composites
指導教授:張順太
指導教授(外文):Chang Shun-Tai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:100
中文關鍵詞:鎳鋁氧化鋁複合材磨耗磨耗率磨屑加工硬化
外文關鍵詞:NickelAluminideAluminaCompositeWearWear rateDebrisWork hardening
相關次數:
  • 被引用被引用:3
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以真空熱壓燒結的方式來製備氧化鋁/鎳鋁複合材料,並研究其滑動磨耗之行為。以真空硬銲方式將熱壓燒結的NiAl/Al2O3複合材料硬焊於AISI 1045中碳鋼上,可促進複合材因磨擦衍生熱能的釋放。
磨耗實驗係以SKD11及鑽石磨輪為對磨材料,採單一方向乾式銷輥配對磨耗法,研究其磨耗之行為及表面的加工硬化特性。結果顯示SKD11磨耗主要以黏著及刮損磨耗為主,Al2O3的添加可使磨耗率降低,而磨擦力和平均參考溫度均上升;鑽石磨輪之磨耗主要以刮損磨耗為主,Al2O3的添加量和磨耗率並無一定的關係,100~80v%NiAl含量的複合材,因NiAl磨屑阻塞、鈍化鑽石磨輪,使之不易被磨耗,而在NiAl含量為60~40v%的複合材,其耐磨耗性最差,顯示NiAl和Al2O3被拔出所致;NiAl含量在40 v%以下的複合材其磨耗率差異微小,應是Al2O3的含量增高,堆積較密成為連續的網格構造,使得較不易被鑽石顆粒所拔起所致。
在加工硬化方面,純NiAl不論經平面磨床加工、鑽石磨輪磨耗、SKD11磨輪磨耗後表面皆會產生加工硬化,其中以SKD11磨輪磨耗後所衍生的加工硬化程度最大;而NiAl/Al2O3複合材經鑽石磨輪磨耗後之加工硬化程度,隨著Al2O3添加量,而趨於不明顯。
含有Al2O3 20 v%之複合材之磨屑,平均粒徑最大,可歸因於此成份之複合材在本系統中具有最佳的韌性與強度,而不易裂解所致。
The objective of this work is to study the sliding wear behavior of NiAl/Al2O3 composites. The composites were prepared by hot-pressing in vacuum. The NiAl/Al2O3 composites were then brazed onto a AISI 1045 carbon steel in vacuum to enhance the heat relief produced during wear test.
Dry pin-on-wheel wear test were conducted, SKD11 and diamond wheels are used as contact surface materials. The wear behavior and the work hardening on the surface were investigated. The result shows that the wear mechanisms against SKD11 wheel are dominated by abrasive and adhesive wear. The wear rates of composites are decreased with the increase of Al2O3 content; however, the friction force and mean reference temperature are increased with the increase of Al2O3 content. The wear mechanism against diamond wheel is dominated by abrasive wear, but there is no relationship with the increase of Al2O3 content. The wear rates of the composites containing 100~80 v% NiAl are low due to the block and blunt of the diamond wheel induced by the presence NiAl debris. The composites containing 60~40 v% NiAl have the poorest wear resistant because the pull-out of NiAl and Al2O3 particles. However, the wear rates of composites containing below 40 v% NiAl show no relationship with the NiAl content. It may be related to the pile-up of Al2O3 particles during wear.
On the aspect of work hardening, the surface of pure NiAl is hardened by wearing against diamond or SKD11 wheels. A maximum degree of work hardening is produced against SKD11 wheel, and the degree of work hardening shows no clear trend with the increase of Al2O3 content in the NiAl/Al2O3 composites.
The size of debris of the composite containing 20 v% Al2O3 content is the biggest. It’s primarily due to the composite has the highest toughness and strength.
目錄………………………………………………………………Ⅴ
中文摘要…………………………………………………………Ⅰ
英文摘要…………………………………………………………Ⅲ
目錄………………………………………………………………Ⅴ
圖目錄……………………………………………………………Ⅸ
表目錄……………………………………………………………ⅩⅥ
第1章 前言 1
第2章 文獻回顧 3
2.1 鎳鋁介金屬化合物的基本性質及應用 3
2.2 氧化鋁的基本性質與應用 4
2.3 氧化鋁/鎳鋁介金屬複合材料的性質 7
2.4 磨耗機構 8
2.5 影響磨耗的因素 12
2.6 磨耗率與磨擦係數 12
第3章 實驗方法 23
3.1 原始材料性質 23
3.2 鎳鋁介金屬和氧化鋁粉末的攪磨 23
3.3 真空熱壓燒結 24
3.4 試片加工 25
3.5 密度量測 26
3.6 楊氏模數量測 27
3.7 磨耗試片的製作 28
3.8 磨輪的製作 28
3.9 硬度的量測 29
3.10 磨耗試驗 30
3.11 表面、磨耗後縱切面及磨屑分析 33
第4章 結果與討論 45
4.1 NiAl/Al2O3複合材料經真空熱壓燒結後的性質 45
4.1.1 拋光面的觀察及密度量測 45
4.1.2 NiAl/Al2O3複合材和硬度的關係 46
4.1.3 NiAl/Al2O3複合材和楊氏模數的關係 46
4.1.4 鑽石磨輪加工後的微觀組織 47
4.2 NiAl/Al2O3複合材配對SKD11磨耗後分析 48
4.2.1體積損失及磨耗率 48
4.2.2 磨擦力及磨擦係數 49
4.2.3 磨耗進行中參考溫度的變化 50
4.2.4 磨耗表面之微觀組織 51
4.2.5磨耗後縱切面的微觀組織及化學組成分析 52
4.2.6 80NiAl/20Al2O3磨耗特性分析 53
4.3 NiAl/Al2O3複合材對鑽石磨耗分析 55
4.3.1體積損失及磨耗率 55
4.3.2 磨耗表面及磨屑之微觀組織及化學組成分析 55
4.3.3 磨耗後縱切面的微觀組織 58
4.4 鑽石磨輪磨屑特性及加工硬化 58
4.4.1 不同體積比之NiAl/Al2O3複合材的磨屑粒徑分析 58
4.4.2 純NiAl介金屬之加工硬化 59
4.4.3 複合材之加工硬化 60
第5章 結論 95
參考文獻 97
[1]R. D. Noebe, R.R. Bowman and M. V. Nathal, Physical and mechanical properties of the B2 compuund NiAl, Int. Mater. Rev., 38 (1993) 193.
[2]D. B. Miracle, “The physical and mechanical properties of NiAl”, Acta Metall. Mater., 41(3) (1993) 649.
[3]R. Darolia, “NiAl alloys for High-Temperature Structural Application”, JOM, March (1991) 44.
[4]J. H. Jin and D. J. Stephenson, “The sliding wear behaviour of reactively hot pressed nickel aluminides”, Wear, 217, (1998) 200.
[5]B. J. Johnson, F. E. Kennedy, and I. Baker, “Dry sliding wear of NiAl”, Wear, 192, (1996) 241.
[6]張書瑜, “氧化鋁/鎳鋁介金屬基複合材料之凡熱震性及耐磨耗性研究”,國立台灣大學材料科學與工程學研究所, 碩士論文, 1998
[7]W. H. Tuan, Y. P. Pai, “Mechanical Properties of Al2O3-NiAl Composite”, J. Am. Ceram. Soc., 82 [6], (1999) 1624.
[8]G. Santhoff, “Mechanical Properties of Intermetallics at High Temperature”, High Temperature Aluminide and Intermetallics, ed. S.H. Whang et al, (1989) 337.
[9]V. C. Nardone and J. R. Strife, “NiAl-base microstructurally toughened composites”, Met. Trans. 22A (1991) 183.
[10]T. Cheng, “Effects of refined micorsturctures on ductility and toughness at room temperature in nickel-rich NiAl”, J. of Mater. Soc., 28 (1993) 5909.
[11]C. Y. Xie, B. H. Jiang and G. X. Hu, “Effects of Boron on the mechanical behavior of a Ni-rich NiAl alloy”, Scripta Metall. Mater., 28 (1993) 1101.
[12]E. M. Schulson and D. R. Barker, “A brittle to ductile transition in NiAl of a critical grain size”, Scripta Metall. Mater., 27 (1993) 519.
[13]P. Nagpal and I. Baker, “The effects of grain size on the room temperature ductility of NiAl”, Scripta Metall. Mater., 24 (1990) 2381.
[14]フアインセラミツクス事典編集委員會編,” フアインセラミツクス事典”,技報堂出版株式會社,(1987) 3
[15]汪建民, “陶瓷技術手冊(下)”, 經濟部技術處發行, 1994
[16]加藤誠軌、植松敬三譯,”圖解フアインセラミツクスの結晶化學”,アグネ技術センタ一,(1984) 268
[17]郭志強, “表面加工對氧化鋁機械性質的影響”, 國立台灣大學材料科學與工程學研究所, 碩士論文 (1996).
[18]林江財, “氧化鋁陶瓷特性及製作”, 精密瓷科技, 經濟部中小企業處及工業技術研究院工業材料研究所聯合編印
[19]W. H. Tuan, W. B. Chou, H. C. You and S. T. Chang, “ The effect of microstructure on the mechanical properties of Al2O3-NiAl Composites”, Materials Chemistry and Physics, 56 (1998) 157.
[20]林逸樵, “氧化鋁/鎳鋁介金屬基複合材料之研製、微結構與機械性質研究“, 國立台灣大學材料科學與工程學研究所, 碩士論文, 1997
[21]白玉磐, “Al2O3/NiAl複合材料之製備”, 國立台灣大學材料科學與工程學研究所, 碩士論文, 1997
[22]ASTM standards, G40-82 03.02, (1984) 239.
[23]Kenneth G. Budinski, “Surface Engineering for Wear Resistance”, Prentice Hall, (1988) 16.
[24]Karl-Heinz and Zum Gahr, “Microstructure and Wear of Materials”, Elsevier Co., USA, (1987) 85.
[25]A. R. Lansdow and A. L. Price, “Materials to Resist Wear”, Pergamon Press, UK, (1986) 12.
[26]W. H. Tuan and Y. P. Pai, “Mechanical Properties of Al2O3-NiAl Composites”, J. Am. Ceram. Soc., 82 [6], (1999) 1624
[27]I. Inasaki, “Grinding of Hard and Brittle Materials”, Annals of the CIRP, 36 (1987) 463.
[28]周文彬, “NiAl/Al2O3複合材料的製程、微結構與機械性質研究”, 國立台灣大學材料科學與工程學研究所, 博士論文, 1996
[29]Peter J. Blau, “Friction and Wear Transitions of Materialas”, Noyes, USA, (1989) 212.
[30]R. W. Mceachron and E. Ratterman, “Diamond Processing of Structural Ceramics”, Ceramic Engineering and Science Proceedings, 7 No. 7-8, (1987) 1063.
[31]Richardson R. C., “Wear of metals by relatively soft abrasives”, Wear, 11, (1968) 245.
[32]賴耿陽譯著,”精密加工新技術全集”,復漢出版社,民國79年5月第二版。
[33]W. H. Tuan, S. T. Chang et al., “Effect of Iron Additon on the Mechanical Properties of Al2O3-NiAl CMMS”, Key Engineering Materials, 127-131, (1997) 447.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top