跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 22:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃智恆
論文名稱:添加Cu-ferrite或Co-ferrite於燒結Fe3O4鐵氧磁體之磁阻研究
論文名稱(外文):Study of the magnetoresistance of sintered Fe3O4 mixing with Cu-ferrite or Co-ferrite
指導教授:郭博成陳政維陳政維引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
中文關鍵詞:磁阻穿遂效應
相關次數:
  • 被引用被引用:4
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要探討添加不同量之Cu-ferrite以及Co-ferrite於Fe3O4鐵氧磁體中,經過研磨混合、壓製成生胚後於1000 ℃∼1200 ℃氬氣氣氛下燒結2∼8小時後,探討其微結構、電性、磁性與磁阻效應之間的關係。
實驗結果顯示在燒結溫度為1200 ℃和燒結時間為4小時的條件下可得最佳之磁阻值。其中,添加7.28 mol.% 的Cu-ferrite(T)於Fe3O4之樣品,在室溫、外加磁場8.8 kOe下可得到7.27 % 之磁阻值,添加4.26 mol.% 的Co-ferrite於Fe3O4之樣品,於室溫、外加磁場8.8 kOe下可得到7.45 % 之磁阻值。本實驗之樣品經X-ray分析結果,顯示為亞鐵磁半金屬(Fe3O4)與亞鐵磁絕緣體(Cu-ferrite或Co-ferrite) 的混合系統。
由樣品之Logρ-T-1/2數據及I-V 曲線之量測結果得知,添加Cu-Ferrite或Co-Ferrite於Fe3O4之燒結樣品的磁阻效應,具有自旋極化穿遂之效應。
The correlation between microstructures, electrical properties, magnetic properties, and magnetoresistance have been investigated on the (CuFe2O4)X(Fe3O4)1-X and (CuFe2O4)X(Fe3O4)1-X for 0≦X≦30 systems.
Samples with various annealing temperatures were performed and studied. The MR ratio varies with annealing temperature of these systems. Highest MR ratio were found in samples annealed at Tann=1200 ℃, for the sample of 7.28 mol.% Cu-ferrite (T) mixed with Fe3O4 and of 4.26 mol.% Co-ferrite mixed with Fe3O4 have MR ratio about 7.27 % and 7.45% respectively, at room temperature with an applied field of 8.8 kOe. Based on the ρ-T data and I-V curves, the magnetoresistance behavior was explained on the basis of spin dependent tunneling.
第一章、前言…………………………………………………………….1
第二章、理論基礎與文獻回顧…………………………………………..3
2-1、磁阻定義………………………………………………………….3
2-2、磁阻的量測方式………………………………………………….3
2-3、磁阻的分類………………………………………………………4
2-3-1、常磁阻(Ordinary MR;OMR)………………………………4
2-3-2、異向性磁阻(Anisotropic MR;AMR)……………………..5
2-3-3、巨磁阻(Giant MR;GMR)………………………………….5
2-3-4、穿隧式巨磁阻(Tunneling MR;TMR)………………………8
2-3-5、超巨磁阻(ColossalMR;CMR)………………………………8
2-4、基礎理論…………………………………………………………9
2-4-1、磁阻理論……………………………………………………9
2-4-2、Spin-dependant tunneling理論……………………………..11
2-5、文獻回顧………………………………………………………..12
2-5-1、磁鐵礦(Magnetite Fe3O4)相關研究………………………..12
2-5-2、Ferrite磁阻研究…………………………………………...15
第三章、實驗方法……………………………………………………....21
3-1、實驗流程……………………………………………………….21
3-2、樣品製作……………………………………………………….22
3-2-1、粉末製備……………………………………….………….22
3-2-2、Cu-ferrite及Co-ferrite的製作……………….…………...22
3-2-3、壓塊成型……………………………………….………….22
3-2-4、燒結…………………………………………….………….23
3-3、結構及性質分析鑑定…………………………….…………….23
3-3-1、成分分析…………………………………….…………….23
3-3-2、XRD結構分析……………………………….…………….23
3-3-3、滴定定量分析……………………………….…………….24
3-4、VSM磁性量測………………………..………….…………….24
3-5、樣品之電性量測……………………..……...…….…………….24
3-5-1、磁阻量測……………………..……...……….…………….24
3-5-2、I-V特性曲線量測…………..……...……….……………..25
3-6、金相觀察…………..……...……….……………………...……..25
第四章、結果與討論……..……...……….……………………...……..25
4-1、添加物之選擇……..……...……….……………………...……..30
4-2、製程條件之選定……..……...……….………………….………31
4-3、添加物結構特性探討……...……….…….…………….….……32
4-4、磁阻現象探討……...……….………………………….….……33
4-4-1、磁阻現象與磁滯曲線….………………………….….……33
4-4-2、燒結溫度對磁阻值之影響……………………….….……35
4-4-3、添加量對磁阻的影響…………………………….….……37
4-4-3-1、磁阻曲線分析….…………………………….….……37
4-4-3-2、定量分析….…………………………….……….……39
4-4-3-3、結果分析….…………………………….……….……41
4-4-4、燒結時間對磁阻的影響…………………….……….……42
4-5、電性探討………………………………………….……….……44
4-5-1、電阻係數與溫度的關係…………………….……….……44
4-5-2、I-V曲線探討…………………….……….………………..45
4-6、磁性量測…………………….……….…………….…………..45
[1] M. N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, Phys. Rev. Lett. 61, 2472 (1988)
[2] P. J. Van Der Zaag, J. J. M. Ruigrok and M. F. Gillies, Philips J. Res. 51, 173 (1998)
[3] 中華民國磁性技術協會, “磁性技術協會會訊”, January, P.5 (1999)
[4] F. Petroff, A. Barthelemy, D. H. Mosca, D. K. Lottis, A. Fert, P. A. Schroeder, W. P. Pratt, Jr. R. Loloee and S. Leguien, Phys. Rev. B 44 5355 (1991)
S. S. Parkin, R. Bhadra and K. P. Roche, Phys. Rev. Lett. 66, 2152 (1991) S. S. Parkin, Appl. Phys. Lett. 60, 512 (1992)
[5] P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991)
[6] J. R. Childress and C. L. Chien, Appl. Phys. Lett. 56, 95 (1990)
[7] B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gunney, D. R. Wilhoit, and D. Mari, Phys. Rev. B43, 31297 (1991)
[8] M. A. Parker, T. L. Hylton, K. R. Coffey, and J. K. Howard, J. Appl. Phys. 75, 6382 (1994)
[9] M. Julliere, Phys. Lett. V54A, n3, 225 (1975)
[10] T. Miyazaki, and N. Tezuka, J. Magn. Mage. Mater. 139, L231 (1995)
[11] A. Milner, A. Gerber, B. Groisman, M. Karpovsky and A. Gladkikh, Phys. Rev. Lett. 76, 475 (1996)
[12] Y. Hayakawa, N. Hasegawa, A. Makino, S. Mitani, H. Fujimori, J. Magn. Mage. Mater. 154, 175 (1996)
[13] T. Furubayashi and I. Nakatani, J. Appl. Phys. 79, 6258 (1996)
[14] S. Jin, T. H. Tiefel, M. Me Cormak, R. A. Fastnacht, R. Ramesh and L.H. Chen, Science 264, 413 (1994)
[15] R. M. Kuster, J. Singlrton, D. A. Keen, R. McGreevy and W. Hayes, Phys.B 155, 362 (1989)
[16] R. VonHelmolt, J. Wecker, B. Holzapfel, L. Schultz and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993)
[17] A. Fert and I.A. Campbell, J. Appl. Phys. F6 849 (1976)
[18] A. Berkowitz, A. P. Young, J. R. Mitchell, S. Zang, M. J. Carey, F. E. Spada, F. T. Parker, A. Hutten and G. Thomas, Phys. Rev. Lett. 68, 3745 (1992)
[19] S. Zhang and P. M. Levy, J. Appl. Phys. 73, 5315 (1993)
[20] J. S. Moodera, L. R. Kinder, T. M. Wong and R. Meservey, Phys. Rev. Letts. 74, 3273 (1995)
[21] J. L. Gittleman, Y. Goldstein, I. Balberg and S. Bozowski, Phys. Rev. B5, 3609 (1972)
[22] C. A. Domenicall, Phys. Rev. V78, n4, 458 (1950)
[23] A. V. Zalesskii, Sov. Phys.-Crystallogr. 6, 180 (1961)
[24] J. S-Y Feng, R. D. Pashley and M. A. Nicolet, J. Phys. C, 1010 (1975)
[25] D. Kostopoulos and J. Grammatikakis, Physica.(a) 40, 141 (1977)
[26] V. V. Gridin, G. R. Heame, J. M. Honig, Phys. Rev. B53, 15518 (1996)
[27] G. Q. Gong, A. Gupta, G. Xiao, W. Qian and V. P. Dravid , Phys. Rev. B56, 5096 (1997)
[28] J. M. Coey, A. E. Berkowitz, Li. Alcells, F. F. Putris, and F. T. Parker, Appl. Phys. Lett., 734 (1998)
[29] X. W. Li, A. Gupta, G. Xiao and G. Q. Gong, J. Appl. Phys., 83, 7049 (1998)
[30] X. W. Li, A. Gupta, G.Xiao and W. Qian and V. P. Dravid, Appl, Phys.Lett. 73, 3282 (1998)
[31] M. Ziese, C. Srinitiwarawong and C. Shearwood, J. Phys. C. 10, L659 (1998)
[32] Liang Wang, Jianmin Li, Weiping Ding, Tiejun Zhou, Bin Liu, Wei Zhong, Jian Wu, Youwei Du, J. Magn. Magn. Mater., 207, 111 (1999)
[33] K. P. Belov, A. N. Goryaga, and L. L. Antoshina, Sov. Phys. Solid State, 16, 1596 (1975)
[34] A. A. Ghani, A. I. Eatah and El-mozamel El-Faramawy, J. Am. Cream. Soc., 71, C492 (1988)
[35] E. Rezlescu, N. Rezlescu, J. Magn. Mage. Mater., 193, 501 (1999)
[36] Ernest M. Levin, Carl R. Robbins and Howard F. McMurdie and Margie K. Reser, “Phase diagrams for ceramists”
[37] H. Fujimori, S. Mitani, S. Ohnuma, J. Magn. Mage. Mater., 156, 311 (1996)
[38] Cullity, “Introduction to magnetic material” P549
[39] 黃忠良 “磁性陶瓷” 復漢出版社
[40] J. Q. Xiao, J. S. Jiang and C. L. Chien, Phys. Rev. Lett., 68, 3749 (1992)
[41] J. Smit and H. P. J. Wijn, “Ferrite”, P143-159
[42] Ching-Ray Chang and Sui-Ping Chen, Chin. J. Phys., vol 36, 85 (1998)
[43] Ching-Ray Chang and Sui-Ping, J. Magn. Magn. Mater., 209, 61 (2000)
[44] Y. H. Huang, Jen-Hwa Hsu, J. W. Chen, and Ching-Ray Chang, Appl. Phys. Lett., vol. 72, 2171 (1998)
[45] M. Uotani, T. Taniyama, and Y. Yamazaki, J. Appl. Phys., 87, 5585 (2000)
[46] Ping Sheng, B. Abeles and Y. Arie, Phys. Rye. Lett., 31, no 1, 44 (1973)
[47] C. L. Platt, B. Dieny, and A. E. Berkowitz, J. Appl. Phys. 81, 5523 (1997)
[48] Y. Xu, D. Ephron, and M. R. Beasley, Phys. Rev. B 52, 2843 (1995)
[49] Amin, Nurul, “The Preparation and Magnetic Properties of Iron Oxide Particles”, P.200-202 (1987)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top