跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 13:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施劭儒
研究生(外文):Shih Shao-Ju
論文名稱:添加銀、鈀及銀鈀合金對鈦酸鋇性質之影響
論文名稱(外文):Effect of adding Ag, Pd, and Ag/Pd alloy on properties of BaTiO3
指導教授:段維新段維新引用關係
指導教授(外文):Tuan Wei-Hsin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:107
中文關鍵詞:鈦酸鋇銀鈀合金複合材料固溶限燒結行為介電性質
外文關鍵詞:BaTiO3silverpalladiumAg/Pd alloycompositessolubilitysintering behaviordielectric property
相關次數:
  • 被引用被引用:2
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
本實驗是利用含浸法製備,將銀及鈀顆粒均勻的分布於鈦酸鋇顆粒表面的粉末,並與用工業上常用的銀鈀粉末混入鈦酸鋇粉加以比較。由此製程,可燒出銀、鈀及銀鈀合金均勻分布於鈦酸鋇基底中的複合材料。以最佳的燒結溫度1290℃進行兩小時的燒結,來進行其他性質的測量。
金屬於陶瓷中的固溶行為,往往是影響其他性質的關鍵。本實驗利用三種方法:電子探微儀、c/a比例及居里溫度的測量,進而決定出銀及鈀金屬於鈦酸鋇基底中的固溶限。其中由電子探微儀的測量可得出精確的固溶限。分別為空氣中銀及鈀有450ppm及50ppm、高純氮下銀及鈀有200ppm及0ppm及純氧下銀及鈀有1000ppm及300ppm的固溶。藉由改變不同的氣氛,發現銀及鈀的固溶行為會隨著燒結氣氛中氧分壓的降低而遭抑制。
在密度方面,微量添加銀及鈀會造成鈦酸鋇密度下降的現象。不過,當添加量超過固溶限,會因為第二相金屬析出使密度稍有上升的情形。而添加1wt%的銀會使鈦酸鋇於燒結過程中緻密化現象於較低的溫度發生。
在微結構方面,就添加金屬顆粒分布於鈦酸鋇基底中的情形可知,晶界移動能力將會隨著燒結氣氛中氧分壓的增加而被提升。少量添加銀及鈀會使鈦酸鋇的晶粒尺寸變大,而當添加量超過固溶限,金屬顆粒將會抑制鈦酸鋇晶界的移動,而使晶粒尺寸減小。
在電性方面,添加銀及鈀皆會使鈦酸鋇的介電性質下降。而且Kmax與常溫下的介電常數隨著金屬添加量所變化的趨勢相同。另外由於添加銀鈀合金抑制鈦酸鋇晶粒能力較強,所以添加1wt%銀鈀的鈦酸鋇試樣的電性,比分別添加1wt%的銀或鈀的鈦酸鋇電性佳。
關鍵字:鈦酸鋇、銀、鈀、銀鈀合金、複合材料、固溶限、密度、微結構、燒結行為、缺陷化學、介電性質
Abstract
A method to coat Ag and Pd particles onto the surface of BaTiO3 powders is used in the present study. An Ag/Pd alloy powder that commonly used in industry is also added into BaTiO3 for comparison purpose. By using this process, the particles of Ag or Pd are distributed uniformly in BaTiO3 matrix. The specimens were prepared by sintering at 1290℃ for 2h.
The solubility of metal element in BaTiO3 is the key parameter to influence the properties. The three of the most common methods, EPMA, c/a ratio, and Tc, are used to determine the solubility of Ag, Pd, and Ag/Pd alloy in BaTiO3 in this study. The exact solubility of Ag and Pd is ~450ppm and ~50ppm in air, ~200ppm and ~0ppm in purified N2, and ~1000ppm and ~300ppm in O2, respectively, as determined by EPMA. On the other hand, the solubilities of Ag and Pd are strongly suppressed when BaTiO3 was densified in a highly reducing atmosphere.
A small mount of Ag or Pd decreases the density of BaTiO3. As the amount of dopant content is higher than solubility, the presence of the secondary phase increases the density.
Grain boundaries mobility increases with the increase of oxygen partial pressure. The addition of a small amount of Ag or Pd increases the grain size, but the abnormal grain growth is prohibited due to presence of the secondary phase the above solubility limit.
The permittivity at room temperature decreases below solubility limit. The permittivity of 1 wt% Ag/Pd-doped BaTiO3 is higher than other that of 1wt%Ag- and of Pd-doped BaTiO3.
Key Words: BaTiO3, Ag, Pd, Ag/Pd alloy, composites, solubility, density, microstructure, sintering behavior, defect chemistry, and dielectric property.
Content
CHAPTER 1 Introduction…………………………………………………………1
CHAPTER 2 Literature Survey……………………………………………………3
2-1. The Characteristics of Barium Titanate………………………………..…3
2-2. The Solubility of Additives in BaTiO3……………………………………13
2-3. The Microstructure of BaTiO3……………………………………………14
2-4. The Sintering Behavior of BaTiO3………………………………………..16
2-5. The Electrical Properties of BaTiO3……………………………………...18
2-6. Effect of Ag, Pd, and Ag/Pd Alloy on BaTiO3………………….………...22
2-6-1. The Characterization of Silver……………………………………….…22
2-6-2. The Characterization of Palladium…………………………………….23
2-6-3. The Oxidation and Reduction Behaviors of Ag/Pd Powders…………23
2-6-4. The Effect of The Ag on The Perovskite Structure……………………26
2-6-5. The Effect of The Pd on The Perovskite Structure……………………27
2-7. The Solubility of Acceptor Impurities as a Function Oxygen Partial Pressure…………………………………………………………………………27
CHAPTER 3 Experimental Procedures…………………………….……………32
3-1.Preparation of BaTiO3/Ag, BaTiO3/Pd, and BaTiO3/Ag-Pd Composite Powders……………………………………………………………………….….32
3-1-1. Starting Materials………………………………………………………...32
3-1-2. The Experimental Flow Diagram……………………………………….33
3-2. The Phase Identification for Powders……………………………………..37
3-3. The Observation of BaTiO3/Ag and BaTiO3/Pd Composite Powders…..37
3-4. Forming and Sintering of The specimens…………………………………37
3-4-1. Forming and Sintering of The Specimens for Electrical Properties Analysis…………………………………………………………………………..38
3-4-2. Forming and Sintering of The Specimens for Shrinking Properties Analysis…………………………………………………………………………..38
3-5. The Densification Rate Calculation…………………………………..…….39
3-6. The Microstructure Observation…………………………………………...40
3-6-1. The Polished Surface Observation………………………………………40
3-6-2. The Measurement of Inclusion Size……………………………………..41
3-6-3. The Volume Fraction of The Abnormal and Small Grains in BaTiO3 Matrix…………………………………………………………………………….41
3-6-4.The Measurement of The Matrix Grain Size……………………………42
3-7. The Measurement of The Density…………………………………………43
3-7-1. Apparent Density……………………………………….………….…….43
3-7-2. Theoretical Density………………………………………………………44
3-7-3. Relative Density………………………………………………………….45
3-8. The Solubility Observation………………………………………………..45
3-8-1. The EPMA Analysis……………………………………………………..45
3-8-2. The Lattice Parameter Observation……………………………………46
3-9. The Electric Properties Observation……………………………………..47
3-9-1. The Dielectric Constant Observation…………………………………..47
3-9-2. The Curie Temperature Observation…………………………………..48
CHAPTER 4 Results and Discussion…………………………………………….49
4-1. The Microstructure of BaTiO3/Ag, BaTiO3/Pd, and BaTiO3/Ag/Pd Composites………………………………………………………………………49
4-1-1. Preparation of The Powders……………………………………………49
4-1-2. Morphologies of The Powders Observation…………….……….……..49
4-2. The Determination of The Solubility of Ag and Pd in BaTiO3 Matrix……………………………………………………………………………51
4-2-1. The EPMA Analysis……………………………………………………..51
4-2-2. The Lattice Parameter Measurement……………….………………….62
4-2-3. The Curie Temperature Measurement…………………………………66
4-3. The Sintering Behavior of The Specimens………………………………..68
4-3-1. The Surfaced Density………………………………………………...…..68
4-3-2. The Densification Behavior……………………………………………...71
4-4. The Microstructure Observation………………………………………….74
4-4-1. The Distribution and Particle Size of Ag and Pd………………………74
4-4-2. The Grain Growth of BaTiO3…………………………………….………76
4-4-3. The Density-Microstructure Relationship………………………….…..85
4-5. The Defect Chemistry of BaTiO3………………………………………….86
4-5-1. The Defect Chemistry of BaTiO3/Ag System…….……………………..86
4-5-2. The Defect Chemistry of BaTiO3/Pd System…….……………………..90
4-6. The Electric Properties Observation……………………………………...91
4-6-1. The Dielectric Constant Observation……………………………….…..91
4-6-2. The Permittivity at Room Temperature and Kmax Observation………96
CHAPTER 5 Conclusions…………………………………………………….…..100
References…………………………………………………………………………102
References
Arlt, G., Hennings, D. and de With, G., “Dielectric Properties of Fine-Grained
Barium Titanate,” J. Appl. Phys., 58, 1619-25 (1985).
Anderson H. U., “Initial Sintering of BaTiO3 Compacts,” J. Am. Ceram. Soc. 48 [3]
118-21 (1965).
Armstrong T. R. and Buchanan R. C., “Influence of Core-Shell Grains on the Internal
Stress State and Permittivity Response of Zirconia-Modified Barium Titanate,” J.
Am. Ceram. Soc. 73 [5] 1268-73 (1990).
Armstrong T. R., Morgens L. E., Maurice A. K., and Buchanan R. C., “Effect of
Zirconia on Microstructure and Dielectric Properties of Barium Titanate
Ceramics,” J. Am. Ceram. Soc. 72 [4] 605-11 (1989).
Bheemineni V., Chang E. K., Lal M., Harmer M. P., & Smyth. D. M., “ Supperssion
of Acceptor Solubilities in BaTiO3 Densified in Highly Reducing Atmospheres,” J.
Am. Ceram. Soc. 77 [12] 3173-76 (1994).
Buessern W. R., Cross L. E. and Goswami A. K., “Phenomenological Theory of
High Permittivity in Fine-Grained Barium Titanate,” J. Am. Ceram. Soc. 49 [l]
33-36 (1966).
Burn I., “Mn-Doped Polycrystalline BaTiO3,” J. Mater. Sci. Vol. 14, 2453-58 (1979).
Chiang Y.-M., Bimie D., III, and Kingery W. D., Physical Ceramics-Principles for
Ceramic Science and Engineering, John Wiley & Sons, New York, (1997).
Cook W. R., Jr., “Domain Twinning in Barium Titanate Ceramics,” J. Am. Ceram.
Soc. 39 [1] 17-19 (1956).
Cole, Jr. S. S., “Oxidation and Reduction of Palladium in the Presence of Silver,” J.
Am. Ceram. Soc. 68 [4] C-106-7 (1985).
DeVries R. C. and Burke J. E., “Microstructure of Barium Titanate Ceramics,” J. Am.
Ceram. Soc. 40 [6] 200-6 (1957).
Drofenik M. H., “Grain Growth During Sintering of Donor-Doped BaTiO3,” J. Am.
Ceram. Soc. 69 [l] C-8-C-9 (1986).
Emoto H. And Hojo J., “Sintering and Dielectric Properties of BaTiO3-Ni Composite
Ceramics,” J. Am. Ceram. Soc. 100 [4] 553-57 (1992).
Enomoto Y. And Yamaji A., “Preparation of Uniformly Small-Grained BaTiO3,” Am
Ceram. Soc. Bull. 60 [5] 566-70(1981).
Goodman G., Buchanan R. C., and Reynolds T. G., III, “Ceramic Capacitor
Materials,” Chap. 2, in Ceramic Materials for Electronics ─Processing, Properties,
and Applications, Second Edition, edited by R. C. Buchanan, Marcel Dekker, New
York, (1991).
Harkulich T. M., Magder J., Vukasovich M. S„ and Lockhart R. J., “Ferroelectrics of
Ultrafine Particle Size: II," J. Am. Ceram. Soc. 54 [11] 548-53 (1971).
Hennings D. F. K., Janssen R. and Reynen P. J. L., “Control of
Liquid-Phase-Enhanced Discontinuous Grain Growth in Barium Titanate,” J. Am.
Ceram. Soc.70 [l] 23-27 (1987).
Hennings D., and Rosenstein G., “Temperature-Stable Dielectrics Based on
Chemically Inhomogeneous BaTiO3,” J. Am. Ceram. Soc. 67 [4] 249-54
(1984). Herbert J. M., Trans. Brit. Ceram. Soc. 62, 645 (1963).
Hillert M., “On the Theory of Normal and Abnormal Grain Growth,” Acta Metall.,
13 [3] 227-38 (1965).
Hsieh H.-L. And Fang T.-T., “Effect of Green States on Sintering Behavior and
Microstructure Evolution of High-Purity Barium Titanate,” J. Am. Ceram. Soc. 73
[6] 1566-73 (1990).
Hwang J. H., Watari K., Sando M., Toriyama M., and Niihara K., “Low-
Temperature Sinterina and High-Strength Pb(Zr,Ti)O3-Matrix Composites
Incorporating Silver Particles,” J. Am. Ceram. Soc. 80 [3] 791-93 (1997).
Hwang J. H., Yasuoka M., Sando M., Toriyama M., & Niihara K., “Fabrication,
Sinterability, and Mechanical Properties of Lead Zirconate Titanate/Silver
Composites,” J. Am. Ceram. Soc. 82 [9] 2417-22 (1999).
Ikushima H. and Havakawa, S., “Electrical Properties of Ag-Doped Barium Titanate
Ceramics.” Jpn J. Appl Phys. 4 [5] 328-36 (1965).
Jaffe B., Cook W. B., and Jaffe H., ”Piezoelectric Ceramics: Chapter 5 Barium
Titanate 53-114 Academic, Press, London (1970).
Kahn M., “Influence of Grain Growth on Dielectric Properties of Nb-Doped
BaTiO3,” J. Am. Ceram. Soc. 54 [9] 455-57 (1971).
Kahn M., “Preparation of Small-Grained and Large-Grained Ceramics from
Nb-Doped BaTiO3,” J. Am. Ceram. Soc. 54 [9] 452-54 (1971).
Kay H. F. and Vousdan P., Phil. Mag. 7 1019 (1949)
Kingery W. D., Bowen H. K. and Uhlmann D. R., Introduction to Ceramics, 2nd
ed.,pp. 461-62, Wiley, New York, 1976.
Kirby, K. W. and Wechsler B. A., “Phase Relations in the Barium Titanate-Titanium
Oxide System,” J. Am. Ceram. Soc. 741841-47 (1991).
Kulcsar F., “A Microstructure Study of Barium Titanate Ceramics,” J. Am. Ceram.
Soc. 39 [l] 13-17 (1956).
Lewis G. V., Catlow C. R. A. & Casselton R. E. W., “PCTR Effect in BaTiO3,” J.
Am. Ceram. Soc. 68 [10] 555-58 (1985).
Ling H. C., & Jackson A. M., “Correlation of Silver Migration with
Temperature-Humidity-Bias (THB) Failures in Multilayer Ceramic Capacitors,”
IEEE Transactions on Components, Hybrids, And Manufacturing Technology,
Vol. 12, No. 1, March 130-37 (1989).
Lin J. N. and Wu L., “Wetting Reaction Between Lithium Fluoride and Barium
Titanate,” J. Am. Ceram. Soc. 72[9] 1709-12 (1989).
Lu H.-Y., Bow J.-S., and Deng W.-H., “Core-Shell Structures in ZrO2-Modified
BaTiO3 Ceramics," J. Am. Ceram. Soc. 73[12] 3562-68 (1990)
Maher G. H., “Effect of Silver Doping on the physical and Electrical Properties of
PLZT Ceramic,” J. Am. Ceram. Soc. 66[6] 408-13 (1983).
Martirena H. T. and Burfoot J. C., “Grain-Size Effect on Properties of Some
Ferroelectric Ceramics,” J. Phys. C., 7 3182-92 (1974).
Matsuo Y. and Sasaki H., “Exaggerated Grain Growth in Liquid Phase Sintering of
BaTiO3,” J. Am. Ceram. Soc. 54[9] 471 (1971).
Mazdiyasni K. S. and Brown L. M., “Microstructure and Electrical Properties of
Sc2O3-Doped, Rare-Earth-Oxide-Doped, and Undoped BaTiO3," J. Am. Ceram.
Soc. 54 539-43 (1971).
Merz W. J., ”The Electric and Optical Behavior of BaTiO3 Single Crystals,” Phys.
Rev. 76 1221-25 (1949).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊