跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高鴻展
研究生(外文):Hung-Chan, Kao
論文名稱:精密陶瓷股小球材料之高溫製程、表面機械加工及性質分析之研究
論文名稱(外文):High-Temperature Process, Surface Machining and Properties Analysis of Ceramics for Femoral Head
指導教授:韋文誠韋文誠引用關係
指導教授(外文):W. J. Wei
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:2
中文關鍵詞:過渡相氧化鋁輪磨加工股小球彎曲強度硬度
外文關鍵詞:transition aluminagrindingfemoral headbending strengthhardness
相關次數:
  • 被引用被引用:3
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用高純度的次微米相氧化鋁粉末﹙APA-0.2﹚為起始原料,添加AKP-50做作為相晶種,以膠粒製程、壓濾成形法及燒結,製備塊狀樣品。研究的目的有三個,探討相轉變機構及微結構的在高溫處理之變化情形,緻密化塊狀樣品的輪磨加工及研磨機構,以及評估其製作成人工髖關節球頭的可行性。
為了解相氧化鋁相轉變為相的相轉變機構,生坯在950o至1100oC做長時間持溫或慢速升溫,以定量X光繞射法、熱差分析及熱膨脹儀探討其相轉變行為。水銀測孔儀、SEM觀察及密度量測,了解相變化之微結構變化情形,綜合描繪出相轉變行為,探討其對後續燒結緻密化的影響。研究發現其相變活化能及時間指數分別為650±50 kJ/mol及1.5,顯示相轉變機構為氧離子藉由晶格擴散由相擴散至相,並在界面附近上留下空位(vacancies),由於界面擴散速度較晶格擴散快,空位經由界面擴散排除,生成緻密的相氧化鋁晶粒。在1020oC持溫10小時,可完全相轉變,且相晶粒維持在50 nm左右,與起始粉末粒徑相當,眾數孔隙維持不變,但小孔隙消失,分布更窄,微結構更均勻,有助後續燒結緻密行為。前述樣品於1490oC持溫1小時,可得相對密度99.4%,平均晶粒1.67 m的性質。
為釐清晶粒尺寸在磨輪加工中所扮演的角色及與磨粒作用情形,以壓痕子進行刮擦試驗,模擬磨粒與工件作用情形。以刮擦試驗時記錄的正向荷重、側向力及放射音波強度,輔以SEM觀察,定義刮痕側面出現裂縫時的臨界荷重﹙FPD﹚,探討與塑性變形機構及氧化鋁晶粒的關係。晶粒越大的樣品其FPD越小。由裂縫傳播形態推估,脆性破裂應該在表面裂縫呈現之前即已發生,故實際臨界荷重將小於目前估計值。
磨輪加工可視為多顆磨粒同時作用在工件上,藉由動力計記錄加工時的正向荷重及側向力,可與刮擦試驗結果比較。發現輪磨加工所需的荷重與工件晶粒的關係與刮擦試驗的結果一致,但均較刮擦試驗所得的臨界荷重低,可能原因為磨粒切刃半徑較小,或是磨輪上多顆磨粒之應力場交互作用的影響,使脆性破裂容易產生。
為探討使用相氧化鋁製備人工關節組件的可行性,同時對兩種實驗室發展之材料(NA: 氧化鋁, NZ: 氧化鋯)及市售球頭材料(CA 及 CZ)作性質評估。四種材料的密度及微結構均符合規範要求(ISO 6474及ISO13356)。NA及CA的平均3點彎曲強度分別為519及600 MPa。CZ的平均3點彎曲強度高達1230 MPa,但最低強度僅763 MPa。而NZ平均3點彎曲強度僅760 MPa。由破壞源觀察發現製程缺陷是強度低落的主要原因。NA及NZ的硬度與CA及CZ非常接近。結果顯示實驗室製備的氧化鋁材料可使用於製作人工關節組件,而氧化鋯材料仍須將製程缺陷排除,提高強度後才可考慮球頭之應用。
Ultrafine (<0.1 m) high-purity -Al2O3 powder (APA-0.2) seeded with -phase AKP-50 was adapted as the row materials for the preparation of ceramic femoral head. Since the performance of the ceramic femoral head is controlled by the microstructure and surface finishing, it is necessary to understanding the kinetics and microstructural evolution of the - to -Al2O3 transformation and the sintering of ultrafine -matrix, the mechanisms of wheel grinding to control the properties of the material. Besides, the properties of NTU- made materials and two commercial femoral heads were examined followed ISO standards.
The kinetics and microstructural evolution of the - to -Al2O3 transformation were examined by quantitative X-ray diffractometry (QXRD), differential thermal analysis (DTA), thermal mechanical analysis (TMA), scanning electron microscopy (SEM) and mercury porosimetry. The relative bulk density and the fraction of  phase increase with annealing temperature and holding time, but the crystal size of the  phase remained ~50 nm in all cases at the transformation stage (≦1020oC). The active energy and time exponent of phase transformation is 650±50 kJ/mol and 1.5, respectively. This result implied the transformation occurred at the interface via structure rearrangement caused by the diffusion of oxygen ions in the Al2O3 lattice. A completely transformed  matrix of uniform porosity was the result of appropriate annealing processed (1020oC for 10 h) that considerably enhanced densification and reduced grain growth in the sintering stage. The Al2O3 sample sintered at 1490 oC for 1h had a density of 99.4% theoretical density (T.D.) and an average grain size of 1.67 m.
A scratching test was adapted to simulate the interaction of a diamond grit and ceramic workpiece during grinding. The normal load, transversal force and acoustic emission were recorded during the scratching test. Compared to the scratching tracks observed by SEM, the critical load (FPD) was defined to be the load inducing cracks beside the scratching track and grains-pull-out occurring in coarse-grain sample. The critical load (FPD) was correlated to plastic deformation mechanism and to the grain size of Al2O3. The FPD decreases with the increasing workpiece grain size. Since the cracks initiated under the scratching surface first and then propagated to the surface, the actual critical load for Al2O3 to initiate cracks should be lower than the FPD in this study.
In order to investigate the applicability of previous NTU made Al2O3, the densities, microstructures of NTU alumina (NA) and zirconia (NZ) compared to commercial alumina (CA) and zirconia (CZ) femoral heads. Both are quantified (ISO 6474 for alumina, ISO 13356 for zirconia). The average 3 point bending strength of CA and NA are 519 and 600 MPa, respectively. Although the average 3 point bending strength of CZ is 1230 MPa, the lowest strength is only 763 MPa. That of NZ is only 760 MPa. The processing defect of agglomerates causes the lower strength of NZ. The hardness of NA and NZ are very close to CA and CZ. This result imply that the NTU made Al2O3 can be used for manufacturing ceramic femoral head. But the processing defect of NTU ZrO2 should be eliminated before it is used.
封面
中文摘要
英文摘要
目錄
表目錄
圖目錄
第一章 前言
第二章 文獻回顧
2-1 過渡相氧化鋁相轉變行為之研究
2-1-1 相轉變機構及相轉變α相氧化鋁微結構
2-1-2 改善相轉變α相氧化鋁微結構的方法
2-1-3 相轉變溫度量測
2-1-4 相轉變α相氧化鋁微結構
2-1-5 相轉變之動力學探討
2-2 陶瓷加工
2-2-1 壓痕試驗
2-2-2 刮擦試驗
2-2-3 多重刮擦試驗
2-2-4 加工設備的影響
2-2-5 加工參數
2-2-6 加工物性質
2-2-7 磨輪加工對陶瓷性質的影響
2-3 陶瓷球頭材料物性習機械性質之評估
2-3-1 人工髖關節
2-3-2 陶瓷股小球
2-3-3 陶瓷股小球之規範
第三章 過渡相θ-氧化鋁相轉變之研究
3-1 前言
3-2 實驗步驟
3-2-1 樣品準備
3-2-2 相轉變溫度量測
3-2-3 熱處理條件
3-2-4 氧化鋁性質及微結構觀察
3-2-5 相轉變動力學探討
3-2-6 燒結性質檢測
3-3 結果與討論
3-3-1 原始粉末特性
3-3-2 相轉變溫度
3-3-3 相轉變動力學分析
3-3-4 相轉變過程之微結構
3-3-5 燒結過程之微結構
3-4 結論
第四章 陶瓷加工之研究
4-1 前言
4-2 實驗步驟
4-2-1 試片準備
4-2-2 刮擦(scratching)試驗
4-2-3 輪磨加工
4-2-4 加工表椊及次表面SEM觀察
4-3 結果與討論
4-3-1 刮擦試驗
4-3-2 輪磨加工
4-4 結論
第五章 陶瓷球頭材料物性及機械性質之評估
5-1 前言
5-2 實驗步驟
5-2-1 市售股小球性質檢測
5-2-2 實驗室材料
5-3 結果與討論
5-3-1 球頭尺寸及表面狀況
5-3-2 材料性質
5-4 結論
第六章 結論
參考文獻
附錄
作者簡歷
1. Amstutz, H. C., and Campebell, P., “Mechanism and Clinical Significance of Wear Debris Induced Osteolysis,” Clin. Orthop., 276, 7-18(1992)
2. Manley, M. T., and Serekian, P., “Wear Debris — An Environmental Issue in Total Joint Replacement,” Clin. Orthop., 298, 137-46(1994)
3 Boutin, P. M., "THR Using Alumina-Alumina Sliding and a Metallic Stem: 1330 Cases and an 11 Year Follow-up," in Orthopedic Ceramic implants, vol. 1, Edited by Oonishis, H., and Ooi, Y., Jap. Sci., J. Jan. S. of Orthopedic Ceramic implants, pp.11- (1981)
4. Spriggs, R. M., and Vasilos, T., “Effect of Grain Size on Transverse Bend Strength of Alumina and Magnesia,” J. Am. Ceram. Soc., 46[5], 224-28(1963)
5. Wefers K. and Misra C., ”Oxides and Hydroxides of Aluminum,” Alcoa Technical Paper No. 19, Alcoa Lab. (1987)
6. Badkar, P. A., and Bailey, J. E., "The Mechanism of Simultaneous Sintering and Phase Transformation in Alumina," J. Mater. Sci., 11, 1794-1806(1976)
7. Dynys F. W. and Halloran J. W., “Alpha Alumina Formation in Alum-Derived Gamma Alumina,” J. Am. Ceram. Soc., 65[9], 442-48 (1982)
8. Kumagai M. and Messing G. L., “Enhanced Densification of Boehmite Sol-Gel by -Alumina Seeding,” J. Am. Ceram. Soc., C-230-C-231 (1984)
9. Shelleman, R. A., Messing, G. L., and Kumagai, M., "Alpha Alumina Transformation in Seeded Boehmite Gels," J. Non-Crystalline Solides, 82, 277-85 (1986)
10. Bagwell, R. B., and Messing, G. L., "Effect of Seeds and Water Vapor on the Nucleation and Growth of -Al2O3 form - Al2O3," J. Am. Ceram. Soc., 82[4], 825-32 (1999)
11. Dynys F. W. and Halloran J. W., “Alpha Alumina Formation in Al2O3 Gels,” in Ultrastructure Processing of Ceramics, Glasses and Composites, Edited by Hench, L. L. and Ulrich, D. R., John Wiley & Sons, N.Y., (1984)
12. Yeh T. S. and Sacks M. D., “Low-Temperatures Sintering of Aluminum Oxide,” J. Am. Ceram. Soc., 71[10], 841-44 (1988)
13. Pach, L., Roy, R., and Komarneni, S., “Nucleation of Alpha Alumina in Boehmite Gel,” J. Mat. Res., V.5, 278-85 (1990)
14. Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed.; Ch. 8. Wiley, New York, 1991.
15. Levin I. and Brandon D., “Metastable Alumina Polymorphs: Crystal Structures and Transition Sequence,” J. Am. Ceram. Soc., 81[8] 1995-2012 (1998)
16. McArdle, J. A., and Messing, G. L., "Solid-Phase Epitaxy of Boehmite-Derived -Alumina on Hematite Seed Crystals," J. Am. Ceram. Soc., 72[5], 864-67 (1989)
17. Wu S. J. and De Jonghe L. C., “Sintering of Nanophase -Al2O3 Powder,” J. Am. Ceram. Soc., 79[8] 2207-11(1996)
18. McArdle, J. A., and Messing, G. L., "Transformation, Microstructure Development, and Densification in -Fe2O3-Seeded Boehmite-Derived Alumina," J. Am. Ceram. Soc., 76[1], 214-22 (1993)
19. Legros, C., Carry, C., Bowen, P., and Hofmann, H., "Sintering of a Transition Alumina: Effects of Phase Transformation, Powder Characteristics and Thermal Cycle," J. Europ. Ceram. Soc., 19, 1967-78 (1999)
20. Yoshizawa, Y. I., and Saito, F., "Formation -Al2O3 of form Al(OH)3 in the Presence of Seed Particles and Its Sinterability-The Role as a Seed of Ball Abrasion Powder in Vibration Milling," J. Jap. Ceram. Soc., 104[9], 867-871 (1996)
21. Chu, M. Y. De Jonghe, L. C., Line, M. K. F., and Lin, F. J. T., "Precoarsening to Improve Microstructure and Sintering of Powder Compacts," J. Am. Ceram. Soc., 74[11], 2902-11 (1991)
22. Lin, F. J. T., De Jonghe, L. C., and Rahaman, M. N., "Microstructure Refinement of Sintered Alumina by a Two-Step Sintering Technique," J. Am. Ceram. Soc., 80[9], 2269-77 (1997)
23. Kumagai M. and Messing G. L., “Controlled Transformation and Sintering of Boehmite Sol-Gel by -Alumina Seeding,” J. Am. Ceram. Soc., 68[9], 500-505 (1985)
24. Rajendran, S., "Production of Ultrafine Alpha Alumina Powders and Fabrication of Fine Grained Strong Ceramics," J. Meter. Sci., 29, 564-72 (1994)
25. Nordahl, C. S., and Messing, G. L., "Transformation and Densification of Nanocrystalline -Alumina during Sinter Forging," J. Am. Ceram. Soc., 79[12], 3149-54 (1996)
26. German R. M., Powder Metallurgy Science, 2nd ed. Princeton, NJ, USA (1984)
27. Wen, H. L., Liu, H. H., Cheng, K. C., and Yen, F. S., "Thermal Behavior of  to -Al2O3 (Corundum) Phase Transformation," C8-1-C-8-8 in Mining & Metallurgy Annual Conference, CIMME, Cheng-Kung University, Tainan, Taiwan, (1998)
28. Messing, G. L., and Kumagai, M., "Low-Temperature Sintering of -Alumina Seeded Boehmite Gels," Am. Ceram. Soc. Bull., 73[10], 88-91 (1994)
29. 左培倫及謝榮哲,“精密陶瓷之磨料加工“, 陶瓷技術手冊(上)第九章, 中華民國產業科技發展協進會、中華民國粉末冶金協會, (1994)
30. Tuersley, I. P., Jawaid, A. and Pashby, I. R., “Review: Various Methods of Machining Advanced Ceramic Materials,” J. Mater. Process. Technol., 42, pp.377-390 (1994)
31. Salmon, S. C., “Ceramic Grinding: the Next Generation,” Tooling & Production, March, pp.29-30 (1993)
32. Lawn, B. R. and Marshall, D. B., “Indentation Fracture and Strength Degradation in Ceramics,” in Fracture Mechanics of Ceramics 3: Flaws and Testing edited by Bradt, R. C., Hasselman, D. P., and Lange, F. F., pp.205-229, New York, (1978)
33.“精密研磨加工技術概說“, 第二章, 中國砂輪公司, (1990)
34. Shore, P., and Leadbeater, P., “Advances in Ductile Mode Machining,” Ceram. Bull. 70[10], pp.1609-11 (1991)
35. Swain, M. V., “Microcracking Associated with the Scratching of Brittle Solids,” in Fracture Mechanics of Ceramics 3: Flaws and Testing edited by R. C. Bradt, D. P. Hasselman, and F. F. Lange, pp. 257-71(1978)
36. Mukhopadhyay, A. K., Chakraborty, D, Swain, M. V., and Mai, Y. W., “ Scratch Deformation Behaviour of Alumina under a Sharp Indenter,” J. Europ. Sci., 17, pp.91-100 (1997)
37. Mukhopadhyay, A. K., Liu, T., Swain, M. V., and Mai, Y. W., “Deformation of Ceria Stabilised Tetragonal Zirconia Ceramics in Scratch Experiments with a Sharp Indenter,” J. Europ. Ceram. Soc., 13, pp.11-23 (1994)
38. Axn, N., Kahlman, L., and I. Hutchings, M., “ Correlations between Tangential Force and Damage Mechanisms in the Scratch Testing of Ceramics,” Tribology International, 30[7], pp.467-74 (1997)
39. Gahr, K. H. Z., "Modeling and Microstructural Modification of Alumina Ceramic for Improved Tribological Prpperties," Wear, 2000, pp.215-24 (1996)
40. Hamilton, G. M., and Goodmann, L. E., "The Stress Field Created by a Circular Sliding Contact," J. Appl. Mech., 33, pp.371-76 (1966)
41. Anderson, T. L., Fracture Mechanics: Fundamentals and Applications, 2nd ed., Ch. 2, CRC press, Boca Raton, FL, 1995
42. Xu, H. H. K., Jahanmir, S., and Wang, Y., “Effect of Grain Size on Scratch Interactions and Material Removal in Alumina,” J. Am. Ceram. Sco., 78[4], pp.881-91 (1995A)
43. Xu, H. H. K., and Jahanmir, S., “Microfracture and Material Removal in Scratching of Alumina,” J. Mater. Sci., 30, pp.2235-47 (1995B)
44. Rice, R. W. and Speronello, B. K., “Effects of Microstructure on Rate of Machining of Ceramics,” J. Am. Ceram. Soc., 59[7-8], pp.330-33 (1976)
45. Kitajima, K., Cai, G. Q., Kumagai, N., Tanaka, Y., and Zheng, H. W., “Study on Mechanism of Ceramics Grinding,” Annals of the CIRP, 41[1], pp.367-71 (1992)
46. Inasaki, I., “High Efficiency Grinding of Advanced Ceramics,” Annals of the CIRP, 35, pp.211-14 (1986)
47. Tönshoff, H. K., and Roth, P., "Influence of Microstructure in Grinding of Alumina," 2nd Conf. of Europ. Ceram. Soc., (1991)
48. Inasaki, I., "Grinding of Hard and Brittle Materials," Annals of the CIRP, 36, pp.463-71(1987)
49. Chih, B. C., Wei, W. J., and Kao, H. C., "Flexural Strength and Surface Grinding Properties of Alumina," Chinese J. Mater. Sci., 25[3], pp. 173-80 (1993)
50. Lee, J. S., Kao, H. C., Wei, W. J., and Huang, J. S., "Effects of Surface Wheel Grinding by ELID to Mechanical Properties of Fine-Grain Alumina," Chinese J. Mater. Sci., 28[2], pp. 115-22 (1996)
51. Frei, H. and Grathwohl, G., "Microstructure and Strength of Advanced Ceramics after Machining," Ceramics International, 19, pp.93-104 (1993)
52. Tönshoff, H. K., Trupold, H., Brinksmeier, E., and Wobker, G., "Evaluation of Surface Layers of Machined Ceramics," Annals of the CIRP, 38, pp.699-708 (1989)
53. Kim, B. A., Ando, K., and Sato, S., “Effect of Grinding on Cracks and the Strength of Ceramics,” Fatigue Fract. Engng. Mater. Struct., 17[2], pp.187-200 (1994)
54. Nishioka, T., Tanaka, Y., Yamakawa, A., and Miyake, M., “Mechanism of Mirror-Finish Grinding of Silicon Nitride Ceramics,” J. Ceram. Soc. Japan, 140[1], pp.33-37 (1996)
55. Koepke, B. G. and Stokes, R. J., “Grinding Damage in Ceramics,” Presented at SME''s International Tool and Manufacturing Engineering Conference, May (1977)
56. Xu, H. H. K. and Jahanmir, S., “Simple Technique for Observing Subsurface Damage in Machining of Ceramics,” J. Am. Ceram. Soc., 77[5], pp.1388-90 (1994)
57. Ito, S., Nakamura, M., and Kanematsu, W. “Machining of High Performance Ceramics,” Bull. Japan Soc. of Prec. Engg., 21[3], pp.167-172 (1987)
58. Blake P., Bifano T., Dow T. and Scatergood R. O., “Precision Machining of Ceramic Materials,” Ceramic Bulletin, 67[6], pp.1038-44 (1988)
59. Zhang, B., and Howes, T. D., “Material Removal Mechanisms in Grinding Ceramics,” Annals of th e CIRP, 43[1], pp.305-12 (1994)
60. Tsukuda, A., Kondo, Y., Kuroshima, Y. and Uematsu, K., “Relationship between Grinding Mechanism and Residual Cracks in Single Point Grinding Test of Alumina Ceramics with Different Grain Sizes,” J. Ceram. Soc. Japan, 103[3], pp.268-273 (1995)
61. Kanematsu, W., Yamauchi, Y., Ohji, U., and Kubo, K., "A Model for the Effect of Grinding on Strength Degradation," Theoretical and Applied Mechanics, 41, pp.87-94 (1992)
62. Guicciardi, S., "Machining of High Performance Ceramics," report on the work performed during period of January 19th-March 13th 1989 at the Mechanical Engineering Department of the Government Industrial Research Institute in Nagoya in the Framework of an European Community-Japan Cooperation Sponsored by AIST.
63. Hakulinen, M. “Residual Strength of Ground Hot Isostatically Pressed Silicon Nitride,” J. Mater. Sci., 20, pp.1049-60 (1985)
64. Berg, P. H. J. and de With, G., "Strength and Residual Stress of Mg-PSZ after Grinding," Wear, 160, pp.301-08 (1993)
65. Tomlinson, W. J. and Newton, R. C., "Effect of Grinding, Lapping and Various Surface Treatments on the Strength of Silicon Nitride," Ceram. Inter. 16, pp.253-57 (1990)
66. Kanematsu, W., Sakai, s., Yamauchi, Y., Ito, S. and Kubo, K., "Effects of Grinding on Dynamic Fatigue Behavior and Strength Degradation of Hot Pressed Silicon Nitride Ceramics at Room Temperature," Nippon Seramikkusu Kyokai Gakuhutsu Ronbunshi 98[11], pp.11287-89 (1990)
67. Mayer jr., J. E. and Fang, G. P., “Effect of Grit Depth of Cut on Strength of Ground Ceramics,” Annals of the CIRP, 43[1], pp.309-12 (1994)
68. Nishioka, T., Nakao, H., Yamakawa, A., Miyake, M., and Tanaka, Y., “Grindability of Silicon Nitride Ceramics with Metal-Bonded Grinding Wheel,” J. Ceram. Soc. Japan, 103[11], pp.1142-46 (1995)
69. Nishioka, T., Ito, Y. Yamamoto, T., Yamakawa, A., Miyake, M., and Tanaka, Y., "Surface Grinding Characteristics of Si3N4 Ceramics under High-Speed and High-Stroke Grinding Conditions," J. Ceram. Soc. Japan, 103[12], pp. 1238-42 (1995)
7. Baratta, F. I., Quinn, G. D., and Matthews W. T., in U.S. Army Materials Technology Laboratory report : MTL TR 87-35(1987)
70. Zhong, Z., and Venkatesh, V. C., “Semi-Ductile Grinding and Polishing of Ophthalmic Aspherics and Spherics,” Annals of the CIRP, 44[1], pp.339-42 (1995)
71. Charnley, J, "Low-Friction Arthroplasty," Clin. Orthop., 72, 7-21(1970)
72. Hench, L. L., "Bioceramics," J. Am. Ceram. Soc., 81[7].1705-28 (1998)
73. Nevelös, A. P., Evans, P. A., Harrison P., and Rainforth, M., “Examination of Alumina Ceramic Components from Total Hip Arthroplasties,” Proc. Instn. Mech. Engrs., Part H: Journal of Engineering in Medicine, 207, 155-62(1993)
74. Sugano, N., Nishii, T., Nakata, K., Masuhara, K., and Takaoka, K., “Polyethylene Socket and Alumina Ceramic Heads in Cemented Total Hip Arthroplasty. A Ten-Year Study,” J. Bone Joint Surg. Br., 77B(4), 548-56(1995)
75. Dowson, D., “A Comparative Study of the Performance of Metallic and Ceramic Femoral Head Components in Total Replacement Hip Joints,” Wear, 190,171-83(1995)
76. Semlitsch, M., and Willert, H. G., “Clinical Wear Behaviour of Ultra-High Molecualr Weight Polyethylene Cups Paired with Metal and Ceramic Ball Heads in Comparison to Metal-on-Metal Pairings of Hip Joint Replacements,” Proc. Instn. Mech. Engrs., Part H: Journal of Engineering in Medicine, 211, 73-88(1997)
77. Wroblewski, B. M., Siney, P. D., Dowson, D., and Collins, S. N., “Prospective Clinical and Joint Simulator Studies of a New Total Hip Arthroplasty Using Alumina Ceramic Heads and Cross-Linked Polyethylene Cups,” J. Bone Joint Surg. Br., 78B(2), 280-85(1996)
78. Derbyshire, B., Fisher, J., Dowson, D., Hardaker, C., and Brummitt, K., “Comparative Study of the Wear of UHMWPE with Zirconia Ceramic and Stainless Femoral Heads in Artificial Hip Joints,” Med. Eng. Phys., 16, 229-36(1994)
79. Lancaster, J. G., Dowson, D., Isaac, G. H., and Fisher, J., “The Wear of Ultra-High Molecular Weight Polyethylene Sliding on Metallic and Ceramic Counterfaces Representative of Current Femoral Surfaces in Joint Replacement,” Proc. Instn. Mech. Engrs., Part H: Journal of Engineering in Medicine, 211, 17-24(1997)
80. ISO 6474:1994(E), Implants for surgery -- Ceramic materials basses on high purity alumina
81. Ryshkewitch, E., “Compression Strength of Porous Sintered Alumina and Zirconia,” J. Am. Ceram. Soc., 36[2], 65-68(1953)
82. Knudsen, F. P., “Dependence of Mechanical Strength of Brittle Polycrystalline Specimens on Porosity and Grain Size,” J. Am. Ceram. Soc., 42[8], 376-87(1959)
83. ISO 5017:1988(E), Dense shaped refractory product--Determination of bulk density, apparent porosity and true porosity
84. ASTM C573, Methods for Chemical Analysis of Fireclay and High-Alumina Refractories
85. ASTM E112-82, Standard method for determining average grain size
87. Christel, P., Meunier, A., Heller, M., Torre, J. P., and Peille, C. N., “Mechanical Properties and Short Term In-vivo evaluation of Yttrium Oxide Partially Stabilized Zirconia,” J. Biomd. Mater. Res., 23, 45-61(1989)
88. Rice, R. W., Wu, C. Cm., and Borchelt, F., "Hardness-Grain-Size Relations in Ceramics," J. Am. Ceram. Soc.,77[10], 2539-53(1994)
89. ISO 13356:1997(E), Implants for surgery-ceramics material based on yttria-stabilized tetragonal zirconia(Y-TZP)
90. Bigsby, R. J., Hardaker, C. S., and Fisher, J., "Wear of Ultra-High Molecular Weight Polyethylene Acetabular Cups in a Physiological Hip Joint Simulator in the Anatomical Position Using Bovine Serum as a Lubricant," Proc. Instn. Mech. Engrs. V. 211 Part H, pp.265-69(1997)
91. Fisher, J.,Firkins, P., Reeves, E. A., Hailey, J. L., and Isaac, G. H., "The Influence of Scratches to Metallic Counterfaces on the Wear of Ultra-High Molecular Weight Polyethylene," Proc. Instn. Mech. Engrs. V. 209 Part H, pp.263-64(1995)
92. 盧素珍,”超微細氧化鋁膠體製程及破壞強度之研究”,國立台灣大學材料學與工程學研究所,碩士論文,1994。
93. 謝長利,”次微米氧化鋁膠粒製程、乾燥行為、相變化及破壞強度之研究”,國立台灣大學材料學與工程學研究所,碩士論文,1997。
94. Lide, D. R., CNC Handbook of Chemistry and Physics, 72th CRC Press. Inc., 6-9 (1992)
95. Brown, W. E., Dollimore, D., and Galwey, A. K., "Comprehensive Chemical Kinetics" Ch. 3 in Reactions in the Solid State, Vol. 22. Edited by Bamford, C. H., and Tipper, C. F. H. Elsevier, Osford, U.K. and New York, 1980.
96. 何方元,”釔安定化正方氧化鋯(Y-TZP)膠粒製程與燒結體性質研究”,國立台灣大學材料學與工程學研究所,碩士論文,1998。
97. Veldkamp, J. D. B., Hattu, N., and Snijders, V. A. C., "Crack Formation During Scratching of Brittle Materials," in Fracture Mechanics of Ceramics 3: Flaws and Testing edited by R. C. Bradt, D. P. Hasselman, and F. F. Lange, pp.274301-229, New York, (1978)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊