跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾勝茂
研究生(外文):Sheng-mao Tseng
論文名稱:新型碳簇基星狀聚胺酯材料合成與物性分析
論文名稱(外文):Synthesis and Characterization of Novel Fullerene-based Star Polyurethane
指導教授:廖文彬廖文彬引用關係謝國煌謝國煌引用關係江隆永
指導教授(外文):W. B. LiauK. H. HsiehL.Y. Chiang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
中文關鍵詞:碳簇星狀聚合物碳簇基星狀聚胺酯機械性質熱行為介電鬆弛
外文關鍵詞:FullereneStar polymerFullerene-based star polyurethaneMechanical propertiesThermal behaviorDielectric relaxation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
新材料的開發與研究一直是材料領域工作者的重要工作之一,而對於已經存在的材料,賦予它新的結構型態與應用範圍則是研究者的另一項挑戰。
本研究的主要目標是結合新結構形態的的純碳物質-碳簇(Fullerene)與傳統的聚胺酯聚合物,經由聚合物分子結構形態的改變而使其具有新的性質特性。由於碳簇僅能在少數非極性溶劑中有較好的溶解度,為了提高其加工性文中首先利用磺酸化的方法,在55℃溫度下於碳簇分子上進行環化加成反應,使其成為可作胺酯基反應之羥基化碳簇(Hydroxylated fullerene)。
在星狀聚胺酯的合成上,首先具有三級醇化學性質的羥基化碳簇在50℃且有催化劑T-12存在的情形下,有足夠的反應性與異氰酸鹽進行胺酯基反應。而聚合物的生成則是以兩階段多步驟的聚縮合反應來進行:第一階段是在50℃下反覆總體聚合(Bulk polymerization),而生成具有不同長度之聚胺酯預聚合物;第二階段則是在60℃ THF/DMF溶液中進行聚縮合反應,使聚胺酯預聚物支鏈與羥基化碳簇耦合在一起而形成新型的碳簇基星狀聚胺酯。除了新型的碳簇基星狀聚胺酯外,改變星狀聚胺酯的核心,使用傳統的三醇(TMP)和四醇(PETT)做為核心則可獲得具有三分支或四分支的星狀聚胺酯。
研究中藉由聚胺酯預聚物支鏈與羥基化碳簇比例的調整,則可獲得具有不同分支數的碳簇基星狀聚胺酯。同時,合成所得的星狀聚胺酯的分子量分佈與其相對應的線性聚胺酯可明顯的變窄,且在適當的合成條件下,可以獲得約有8個支鏈之碳簇基星狀聚胺酯。
碳簇基星狀聚胺酯的熱裂解行為與線性聚胺酯相同,都是以兩階段裂解的方式進行分子鏈的分解,其中第一階段是胺酯基的斷裂,而第二階段則為醚基的分解。另一方面,碳簇基星狀聚胺酯與傳統三分支或四分支星狀聚胺酯發生第一階段熱裂解的溫度稍低於線性聚胺酯,但第二階段的熱裂解溫度則沒有很大的差別。在結晶行為上,碳簇基星狀聚胺酯和傳統三分支或四分支星狀聚胺酯或線性聚胺酯則有明顯的差異,碳簇基星狀物的結晶慢且結晶區域較小,而線性聚胺酯的結晶則較快且結晶晶體最大。但所有聚胺酯的結晶量是很接近的。
再者,如果星狀聚胺酯的支鏈分子量大於8600,或其支鏈數目達到一定數目後,碳簇基星狀聚胺酯則可以表現出彈性體的性質。另外,在室溫的THF溶液中碳簇基星狀聚胺酯的分子構形比較接近無規線團狀,而且Mark-Houwink方程式中的參數K(其對數值)與a是呈線性關係。
最後,以HN方程式可以成功的描述碳簇基星狀聚胺酯在玻璃轉移溫度範圍之中的分子運動行為。同時分子結構對聚合物鬆弛運動的影響會藉由活化能表現出來,其中星狀聚合物會有較高的運動活化能。而傳統三分支與四分支星狀聚胺酯在玻璃轉移區的鬆弛運動同時所需的活化能是相同的。星狀物的核心對分子運動的影響,也會表現於分子間或分子的運動中,而使在高頻或低頻區的運動行為不同,此一情況則表現於HN方程式中的參數α和αβ上。
關鍵字:碳簇、星狀聚合物、碳簇基星狀聚胺酯、機械性質、熱行為、介電鬆弛
Abstract
In this study, the aim of the work is trying to combine new topology of pure carbon compound-fullerene with traditional polyurethane, by changing the configuration of molecular chains. The brand-new materials can possess some unique properties. The solubility of fullerene is generally sparse and limited to solvents of low polarity. In order to improve the processibility of fullerene in solution, Fullerenol (hydroxylated fullerene) were prepared from the cycloaddition reaction on fullerene by using concentrated sulphuric acid at 55℃.
For the synthesis of star polyurethane, fullerenol with the chemical property of tertiary alcohol can have the activity to react with isocyanates and form carbamate compounds at 50℃ and catalyzed by T-12. And then the star polymers were synthesized from two-step condensation polymerization. First, the arm of polyurethane prepolymer with different chain length was synthesized by bulk polymerization at 50℃. Secondly, the coupling reaction took place in Tetrahydrofuran (THF)/ Dimethylformamide (DMF) solution at 60℃ and generate the new materials — fullerene-based star polyurethanes. In addition, the traditional star polyurethane with 3-arm or 4-arm were also synthesized by using triol (TMP) or tetraol as the core of stars.
In this study, fullerene-based star polyurethanes with different number of branch were obtained by changing the ratio of fullerenol to diisicyanates. At the same time, the molecule weight distribution of these new fullerene-based star polyurethanes is significantly narrower than the corresponding linear polyurethane arms. In the proper reaction condition, fullerene-based star polyurethane with 8 arms can be obtained.
According to the study of properties of fullerene-based star polyurethanes, the thermal degradation behavior of fullerene-based star polyurethanes is similar to linear polyurethane. They were degraded with tow-step processes, the one occurred at around 250℃ due to the breakage of urethane linking and the other was at about 420℃ from the cleavage of ether link. The temperature of cleavage of urethane links of star polyurethanes is lower than its corresponding linear arm, but there is no significant difference in second step. There is quite difference in crystallization behavior for fullerene-based star polyurethanes, traditional 3- or 4-arm ones or linear polyurethanes. The crystallization rate of fullerene-based star polyurethanes is lower than the other two types and the size of crystal is smaller. But the total degree of crystallization are almost the same for all polyurethanes.
Fullerene-based star polyurethanes can become as elastomer, if the molecule weight of the arm is larger than 8600 or the number is equal to 8. By the way, the conformation of the fullerene-based star polyurethanes is like to random coil, and the parameters of Mark-Houwink equation, log K and a, have linearity relationship.
Finally, the relaxation behavior of these Fullerene-based star polyurethanes can be modeled successfully in glass transition region by using HN equation. And the effect of molecular structure on molecular motion can be seen through the activation of molecular relaxation. Similarly, the core of star compounds can also affect on molecular motion through the parameters of HN, α andαβ.
Keyword: Fullerene、Star polymer、Fullerene-based star polyurethane、mechanical properties、thermal behavior、dielectric relaxation
封面
目錄
摘要
圖表索引
第一章 緒論
第二章 文獻回顧
2-1 碳簇
2-2 星狀聚合物
2-2-1 星狀聚合物之合成
2-2-2 星狀聚合物分子的分子量分佈與構形
2-2-3 星狀聚合物之物性與應用
2-3 聚胺酯材料
2-4 聚合物分子運動鬆弛
2-4-1 分子運動理論模型
2-4-2 分子運動經驗方程式
第三章
3-1 前言
3-2 實驗
3-2-1 實驗藥品與儀器
3-2-2 實驗步驟
3-3 結果與討論
3-4 結論
第四章
4-1 前言
4-2 實驗
4-2-1 藥品前處理
4-2-2 實驗儀器
4-2-3 實驗步驟
4-3 結果興討論
4-4 結論
第五章
5-1 前言
5-2 實驗
5-2-1 實驗藥品
5-2-2 實驗儀器
5-2-3 實驗步驟
5-3 結果興討論
5-3-1 星狀聚胺酯之化性與結構分析
5-3-2 星狀聚胺酯之熱行為
5-3-3 星狀聚胺酯之機械性質分析
5-3-4 星狀聚胺酯之本性黏度分析
5-5 結論
第六章
6-1 前言
6-2 理論模式建立
6-2-1 背景說明
6-2-2 實驗數據處理
6-3 實驗
6-3-1 實驗藥品
6-3-2 實驗儀器
6-3-3 實驗方法
6-4 結果興討論
6-4-1 星狀聚合物分子量與構形分析
6-4-2 介電性質分析
6-5 結論
第七章 總結
參考資料
參 考 資 料
1.Osawa, E., Hirose, Y., Kimura, A., Shibuya, M., Gu, Z., and Li, F Fullerene Science and Technology , 5(1) 177 (1997).
2. Kroto, H.W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; and Smalley, R. E., Nature 318 162 (1985).
3. Hebard, A.F.,Rosseinsky, M.J., Haddon, R. C., Murphy, D.W., Glarum, S.H., Palstra, T.T.M., Ramirez, A.P., Kortan, A.R., Nature 350 600(1991).
4. Graessley, W. W., Acct. Chem. Res., 10 332(1977).
5. Bayer, O., German Patent 728.981 (1937).
6. Osawa, E., Kagaku 25 854 (1970).
7. Barth, W.E. and Lawton, R. G., J. Am. Chem. Soc., 93(7) 1730 (1971).
8. Kroto, H.W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; and Smalley, R. E., Nature 318 162 (1985).
9. Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; and Huffman, D. R., Nature 347 354 (1990).
10. Weltner, W., Van Zee, R.J., Chem Rev. 88 220 (1989).
11. Parker, D. H., Chatterjee, K., Wurz, P., Lykke, K.R., Pellin, M. J., and Stock, L. M., Carbon 30(8) 1167 (1992).
12. Karaulova, E.N., and Bagri, E. I., Russian Chemical Rev. 68(11) 889 (1999).
13. Iijima, S. Nature, 356 776; 358 220 (1992).
14. Dietz, P., Hansma, K., Fostiropoulos, K., and Krätschmer, W., Applied Phys. A. 56 207(1995).
15. Diederich, F. and Thilgen, C., Science, 271 317 (1996).
16. Hare, J. P., Dennis, T. J., Kroto, H. W., Taylor, R., Allaf, A.W., Balm, S., and Walton, D. R. M., J. Chem. Soc., Chem. Commun., 412 (1991).
17. Manolopoulos, D. E., Fowler, P. W., Taylor, R., Kroto, H. W., and Walton, D. R. M., J. Chem. Soc., Farad. Trans., 88 3117 (1992).
18. Hare, J. P., T. J., Kroto, and Taylor, R., Chem. Phys. Lett., 177 394 (1991).
19. Dworkin, A., Szwarc, H., Leach, S., Hare, J. P., Dennis, T. J., Kroto, H. W., Taylor, R., and Walton, D. R. M., Compt. Rend. Acad. Sci., Series II, 312 979 (1991).
20. David, W.I. F., Ibberson, R. M., Dennis, T. J. S., Hare, J. P., and Prassides, K., Europhys. Lett. 18 219(1992).
21. Su, J. S., Chen, Y. F., and Chiu, K. C., Appl. Phys. Lett. 74(3) 439 (1999).
22. Nagashima, H., Nakaoka, A., Saito, Y., Kato, M., Kawanishi, T., and Itoh, K., J. Chem. Soc. Chem. Commun., 377 (1992).
23. Patil, A. O., Schriver, G. W., Carstensen, B., and Lundberg, R. D., Polym. Bull., 30 187 (1993).
24. Loy, D. A., and Assink, R. A., J. Am. Chem. Soc., 114 3977 (1992).
25. Weis, C., Friedrich, C., Mülhaup, R., and Frey, H., Macromolecules, 28 403 (1995).
26. Wooley, K. L., Hawker, C. J., and Frechet, J. M., J. Am. Chem. Soc., 115 9836 (1993)
27. Taylor, R. and Walton, D.R.M., Nature, 363 685 (1993).
28. Cox, D. M., Behal, S., Disko, M., Gorun, S. M., Greaney, M., and Hsu, C. S., J. Am. Chem. Soc., 113 2940 (1991).
29. Bowling, K. McG., Philip, D. H., and Rottendorf, H., Aust. J. Inst. Metals 16 26(1971).
30. Wang, Y., Caspar, J., Cheng, L. T., J. Electrochem. Soc. 139(4) 112 (1992).
31. Teresco, J., Industry Week Nov. 4, 1991.
32. Iijima, S., Nature 354 46(1991).
33. McLean, D. G., Sutherland, R.L., Brant, M. C., Brandrlik, M. D., Fleitz, P.A., and Pottenger, T., Opt. Lett., 18 858(1993).
34. Averdung, J., Torres-Garcia, G., Luftmann, H., Schlachter, I., and Mattay, J., Fullerene and Technology 4(4) 633 (1996).
35. Schaefgen, J. and Flory, P.J., J. Am. Chem. Soc., 70 2709 (1948).
36. Morton, M., Helminiak, T. E., Gadkary, S. D., and Bueche, F., J. Polym. Sci., 57 471 (1962).
37. Kennedy, J.P., and Ivan, B., “Designed polymers by carbocationic macromolecular engineering: theory and practice” (1992).
38. Sogah, D.Y., Hertler, W.R., Webster, O.W., and Cohen, G.M., Macromolecules 20 1473 (1987).
39. Kuriyama, A., and Ostu, T., Polymer J. 16(6) 511 (1984).
40. Kricheldorf, H.R., and Adebahr, T., Makromol Chem. 194 2103 (1993).
41.Higashimura, T., Sawamoto,,M., and Kanaoka, S., Macromolecules 25 6414(1992).
42. Simms, J.A., Rubber Chem. Technol. 64 139 (1991).
43. Webster, O.W., Makromol. Chem., Macromol. Symp., 33 133(1990).
44. Zhou, G.,and Smid, J., Polymer 34 5128 (1993).
45. Zimm, B. H. and Stockmayer, W. H., J. Chem. Phys. 17 1301 (1949).
46. Orofino, T.A., J. Polym. Sci., 1, 295(1960).
47. Daoud, M. and Cotton, J. P., J. Phys. 43 531 (1982).
48. Lodge, T. P., Rotstein, N. A., and Prager, S., Adv. Chem. Phys. 79 1(1990).
49. Klein, J., Macromolecules, 19 105(1986).
50. Graessley, W.W., Adv. Polym. Sci., 47 68(1982).
51.de Gennes, P.G., J. Phys. (Paris), 36 1199(1975).
52. Klein, J., Fletcher, D., and Fetters, L.J., Nature 304 526 (1983).
53. Kan, H. C., Ferry, J. D., and Fetters, J. D., Macromolecules, 13 1571(1981).
54. Graessley, W. W., Acct. Chem. Res., 10 332(1977).
55. Graessley, W.W., Adv. Polym. Sci., 47 68(1982).
56. Dreyfuss, P., Fetters, L. J., and Hansen, D. R., Rubber Chem. Tech. 53
728 (1980).
57. Sutherland, R. J., and Rhodes, R. B., U. S. Pat., 5369564(1994).
58. Marra, O.L., and Edmunds, L.O., Adhesives Age 14 15(1971).
59. Spinelli, H. J., U. S. Pat. 5019628(1991).
60. Chen, J. C., European Pat. Ep 389791(1990).
61. Uchama, M., Japanese Pat. 9919196(1994).
62. Matsuka, H., Japanese Pat. 02189307(1989).
63. Peppas, N.A., Nagai, T., and Miyajima, Pharm. Tech. Jpn, 10 611(1994).
64. Rouse, P. E., J. Chem. Phys. 21 1272 (1952).
65. Zimm, B. H. J. Chem. Phys. 24 269 (1956).
66.Bueche, F., J. Chem. Phys. 20 1959 (1952).
67. Debye, P., and Bueche, F., J. Chem. Phys. 16 573 (1948).
68. Ferry, J.D., Landel, R.F., and Williams, M.L., J. Appl. Phys. 26 359(1955).
69. Graessley, W., J. Chem. Phys. 48 1942 (1967).
70. De Gennes, P.G., J. Chem. Phys. 55 572 (1971).
71.Tabellout, M., Baillif, P.Y., Randrianantoandro ,H., Litzinger, F., Emery, J.R., Nicolai, T., and Durand, D., Physical Review B 51(18) 12295(1995).
72. Mashimo, S., Nozaki, R., Yagihara,S., Takeishi, S., J. Chem. Phys. 77 6259 (1982).
73. Williams, G. and Watts, D.C., Trans. Faraday Soc., 66 80(1970).
74. Havriliak, S., Jr., Negami, S., Polymer 8 161 (1967).
75. Alvarez, F., Alegria, A., Colmenero, A., J. Phys. Rev. B 44(11) 7306 (1991).
76. Ferry, J. D., Child, W. C., Zand, R., Stern, D. M., Williams, M. L., and Landel, R. F., J. Colloid Sci., 12 53 (1957).
77. Child, W. C. and Ferry, J. D., ibid., 12 327;389 (1957).
78. Dannhauser, M., Child, W. C. and Ferry, J. D., ibid., 13 103 (1958).
79. Roland, C.M., Macromolecules, 27 4242(1994).
80. Debye, P., Polar Molecules, Dover, New York.
81. Cole, K.S. and Cole, R. H.,J. Chem. Phys., 9, 341(1941).
82. Davidson, D. W. and Cole, R. H., J. Phys. Chem., 19(12) 1484 (1951).
83. Schönhals, A. and Schlosser, E., Colloid Polymer Sci. 267 125(1989).
84. Beck, M. T., and Mandi, G., Fullerene Science and Technology 5(2) 291 (1997).
85. Diederich, F., and Thilgen, C., Science 217 317 (1996).
86. Hirsch, A., Synthesis 895 (1995).
87. Diederich, F., Isaacs, L., Philp D., Chem. Soc. Rev. 244 (1994).
88. Chiang, L.Y., Upasani, R.B., Swirczewski, J. W., and Soles, S., J. Am. Chem. Soc., 115 5453 (1993).
89. Naim, A. and Shevlin, P.B., Tetrahedron Lett. 7097 (1992).
90. Li, J., Takeuchi, A., Osawa, M., Li, X., Saigo, K., and Kitazawa, K., J. Chem. Soc., 1784 (1993).
91. Oertel, G., ed “Polyurethane Handbook” Hanser Publisher (1985).
92. Mitchell, J., and Smih, D. M., Aquametry, Interscience, New York (1948).
93. Hammond, G.S., and Kuck, V.J., ed “Fullerenes” chapter 8 (1991).
94. Hepburn. C., “Polyurethane Elastomer”, chapter2 Appl. Sci. Publisher (1982).
95. Marrs, O.L., and Edmunds, L.O., Adhesives Age 14 15 (1971).
96. Mezei, F. in Neutron Spin Echo Mezei, F., ed. ,Springer Verlag, Berlin, (1979).
97. Zimm, B. H., and Kilb, R.W., J. Polym. Sci., 37 19 (1959).
98. Burchard, W., Kajiwara, K., Nerger, D., and Stockmayer, W.H., Macromolecules 17 222 (1984).
99. Morton, M., Helminiak, T.E., Gadkary, S.D. and Bueche, F., J. Polym. Sci., 57 471 (1962).
100. Rabek, J. F., “Experimental Method in Polymer Chemistry” John Wiley and Sons (1980).
101. Hepburn. C., “Polyurethane Elastomer”, chapter11 Appl. Sci. Publisher (1982).
102. Kato, T., Itsubo, A., Yamamoto, Y., Fujimoto, T., and Nagasawa, M., Polym. J., 7 123 (1975).
103. Morton, M., Helminiak, T.E., Gadkary, S.D. and Bueche, F., J. Polym. Sci., 57 471 (1962).
104. Grest, G.S., Fetters, L. J., and Huang, J. S., Adv. Chem. Phys. XCIV 67 (1996).
105. Hepburn. C., “Polyurethane Elastomer”, chapter12 Appl. Sci. Publisher (1982).
106. Harrell, L. L.,, Jr., Macromolecules 607 (1969).
107. Lee, H. S., Wang, Y. K., Macromolecules 20 2089 (1987).
108. Lee, H. S., Wang, Y. K., MacKnight, W. J., and Hsu, S. L., Macromolecules 21 207 (1988).
109. Petrovic, Z. S., and Budinski-Simendic, J., Rubber Chem. Technol. 58 685 (1985).
110. Huang, Y. S. et al Fullerene Science and Technology 7(4) 573 (1999).
111. Hoffman, D. M., in “Urethane Chemistry and Application” Edwards, K. N. ed. Chap. 22 (1980).
112. Havriliak, S. and Havriliak, S. J., “Dielectric and Mechanical Relaxation in Materials”, chap. 2 (1992).
113. Havriliak, S. and Havriliak, S. J., “Dielectric and Mechanical Relaxation in Materials”, chap. 3 (1992).
114. Marquardt, D. W., J. Soc. Ind. Appl. Math. 11 431 (1963).
115. Elias, H. G. ed, “Macromolecules” vol. 1 Plenum Press, New York (1984).
116. Schonhals, A, Schlosseer, E., Collect Polym. Sci., 267 125,133,963 (1989).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top