跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 03:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陸永忠
研究生(外文):Lu, Yung-Chung
論文名稱:氧化物對羰基鐵粉燒結行為之影響
論文名稱(外文):The Effect of Oxides on the Sintering of Carbonyl Iron Compacts
指導教授:黃坤祥黃坤祥引用關係
指導教授(外文):Hwang, K. S.
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:166
中文關鍵詞:羰基鐵粉氧化物氧化鈦氧化矽氧化鋁燒結機構快速升溫強金屬載體反應
外文關鍵詞:carbonyl iron compactsaluminatitaniasilicasintering mechanismhigh heating ratestrong metal-support interaction (SMSI)
相關次數:
  • 被引用被引用:5
  • 點閱點閱:495
  • 評分評分:
  • 下載下載:90
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
羰基鐵粉經高溫燒結其燒結密度約只有理論密度的80~ 90%,無法達到高燒結密度的原因為純鐵經過912℃之相變態時,會有異常晶粒成長之現象,使得孔隙與晶界分離,因此孔隙的消除就必須藉由較慢的體擴散機構進行,而降低了燒結速率與燒結密度。為抑制相變態時之晶粒異常成長,採用了添加氧化物及快速升溫的方式來提高燒結密度,添加的氧化物選擇了在氫氣氣氛中鈍性無法還原之氧化鋁、可部分還原之氧化鈦及可在鐵基地中被還原的氧化矽,適量地添加此三種氧化物均可有效提高羰基鐵粉之燒結密度。
由膨脹儀分析燒結曲線可知氧化物抑制了羰基鐵粉在α相的燒結,但在γ相有較快的燒結速率及燒結量,因此燒結體之最後密度決定於兩相區中之個別燒結量之總合,當添加適當量之氧化物時可得到最佳之燒結密度。經EMPA及化學成分分析發現氧化鋁不會被氫氣還原,而氧化鈦與氧化矽會被鐵催化還原,被還原的鈦與矽原子會固溶入鐵基地中,而提高鐵原子之體擴散及晶界擴散係數,因此也會幫助燒結。觀察氧化物經高溫燒結後的型態,可發現氧化物在高溫下會成長粗化,此一粗化現象會降低氧化物抑制燒結的能力,進而釋放出所保留之燒結驅動力供高溫燒結所使用,這對燒結密度也有所幫助。
添加微細之氧化物較能有效地提高羰基鐵粉之燒結密度,因此以有機金屬高分子化合物的方式添加,經過脫脂後這些有機金屬高分子會分解成非常微細之氧化物而幫助燒結。添加氧化之方式亦會影響燒結之結果,在過去的文獻中一直無法發現氧化物對羰基鐵粉燒結密度增加的效果,最主要是過去都採用乾式球磨來混合氧化物及羰基鐵粉,本研究中改用濕式混合不會破壞粉體之外形,更可真實反應氧化物與羰基鐵粉間的作用。
以快速升溫的方式亦可抑制α相的燒結,使其頸部在相變態時之移動有較大之面積能量障礙而不易移動,因此會抑制異常晶粒成長的現象而在高溫γ相有較快的燒結速率及較高之燒結密度。另外在比較相同燒結密度的快速升溫及慢速升溫試片之硬度時,發現慢速升溫之試片有較高之硬度,顯示慢速升溫之試片有較大的頸部面積,這表示在低溫時有非緻密化之燒結機構參與羰基鐵粉的燒結。
比較氫氣及氬氣下添加氧化鈦之羰基鐵粉膨脹儀燒結曲線可發現氧化鈦在低溫下會產生強金屬載體反應(SMSI)來抑制羰基鐵粉之燒結。
Abstract
When carbonyl iron powder compacts are subject to sintering, significant grain growth often occurs during heating and particularly during the  phase transformation. As a result, the sintered densities are usually low. An investigation on the effect alumina, titania, silica particles, and heating rates on the sintering behavior of carbonyl iron powder compact was carried out in this study.
Analysis on dilatometric curves and microstructures indicated that these oxides inhibited the early-stage sintering due to the blocking of the diffusion path of iron atoms. However, these oxides helped prevent the exaggerated grain growth during the  phase transformation and improved densification in the  phase at high temperatures. These results along with the microstructure analysis suggested that oxide particles exhibit dual roles; their physical presence blocks the diffusion of iron atoms causing inhibition in sintering while their grain boundary pinning effect prevents exaggerated grain growth of iron and helps densification. Depending upon the amount and size of the oxide powders, either an increase or decrease in the final sintered density was obtained.
At high temperatures, a small part of the titania/silica was reduced by hydrogen, and the reduced titanium/silicon dissolved into the iron matrix and enhanced sintering. Meanwhile, the remaining alumina/titania/silica coarsened, and its effect on sintering inhibition diminished. The retardation of the grain growth, coarsening of the oxides at high temperatures, and the enhanced diffusion rates by the reduced metals resulted in improved final sintered densities of carbonyl iron compacts.
Two different sized alumina, 0.05-m and 0.4-m, were added to the iron compact at the amount up to 1.2 wt pct. When 0.4-m alumina particles were added, no sintering enhancement was observed. But, different from the previous results reported in the literature, the addition of 0.1 to 0.2 wt pct of 0.05-m alumina particles was found to improve the densification. With 0.1 wt pct, the sintered density increased from 7.25 g/cm3 to 7.40 g/cm3 after the compact was sintered at 1350°C for 1hour in hydrogen. Since a finer oxide has a stronger effect on the sintered density, aluminum stearate was also added into the carbonyl iron compacts. The evolution of aluminum stearate during debinding and sintering and its effects on sintered properties are discussed.
Through the use of high heating rates, it is also possible to inhibit the sintering in the  phase and keep the interparticle neck size small during the heating period. The small necks prevent exaggerated grain growth during the phase transformation and keep most pores connected to the grain boundaries. After being isothermally sintered at 1200℃for 90 minutes, the compacts heated at a high rate of 20℃/sec reached 7.04g/cm3 while those heated at a low rate of 10℃/min reached only 6.61g/cm3.
The strong metal-support interaction (SMSI) phenomenum was observed in the titania-containing compacts at the low temperatures. The SMSI effect of titania on the sintering of carbonyl iron compact was also discussed in the study.
封面
摘要
Abstract
目錄
第一章 簡介
第二章 文獻回顧
2-1 燒結理論
2-2 氧化物對金屬燒結行為之影響
2-3 金屬與氧化鈦間之反應
2-4 金屬與氧化矽間之反應
2-5 金屬與氧化鋁間之反應
第三章 實驗
3-1 原料
3-2 成形
3-3 脫脂與脫碳
3-4 燒結
3-5 試片分析
第四章 實驗結果
4-1 羰基鐵粉在α區及γ區之燒結現象
4-2 添加氧化鋁與硬脂酸鋁之實驗結果
4-3 添加氧化鈦之實驗結果
4-4 添加氧化矽之實驗結果
第五章 綜合討論
5-1 氧化鋁、氧化鈦及氧化矽對羰基鐵粉燒結行為影響之比較
5-2 燒結趨動力之抑制與釋放
5-3 快速昇溫對羰基鐵粉燒結行為之影響
5-4 快速昇溫對羰基鐵粉燒結顯微組織之影響
5-5 快速昇溫、添加氧化物及合金元素對羰基鐵粉燒結影響之比較
5-6 氧化物粒徑對羰基鐵粉燒結行為之影響
5-7 氧化物對羰基鎳粉燒結性質之影響
5-8 SMSI 對初期燒結抑制之影響
5-9 相變態延後現象之觀察
5-10 晶粒成長之抑制
5-11 添加量最佳值之出現
第六章 結論
未來工作
附錄
參考文獻
作者論文著作及相關事項
參考文獻
【1】K. Schwaytzwalder, "Injection Moulding of Ceramic Materials", Am. Ceramic Soc. Bulletin, Vol.28, No.11, 1949, pp.459-461.
【2】H. C. Chen, R. F. Rau, and K. S. Hwang, "Effect of Binder Ashes in the Sintering of PM Iron Compacts", PM''94, Powder Metall. World Congress, Paris, Vol.2, 1994, pp.1125-1118.
【3】G. S. Kuczynski, "Self-Diffusion in Sintering of Metallic Particles", Trans. AIME, Vol.185, 1949, pp.169-178.
【4】W. D. Kingery and M. Berg, "Study of the Initial Stage of Sintering Solids by Viscous Flow, Evaporation-Condensation, and Self-Diffusion", J. Appl. Phys., Vol.26, 1955, pp.1205-1212.
【5】J. G. R. Rockland, "On the Rate Equation for Sintering by Surface Diffusion", Acta. Metall., Vol.14, 1966, pp.1273-1279.
【6】P. Sajgalik, M. Haviar, and Z. Panek, "Estimation of Contribution of Non-densifying Mechanisms During Sintering", Ceramic International, Vol.14, 1988, pp.63-69.
【7】J. G. R. Rockland, "The Determination of the Mechanism of Sintering", Acta. Metall., Vol.15, 1967, pp.277-286.
【8】D. L. Johnson and T. M. Clarke, "Grain Boundary and Volume Diffusion in the Sinter of Silver", Acta. Metall., Vol.12, 1964, pp.1173-1179.
【9】J. Brett and L. Seigle, "The Role of Diffusion Versus Plastic Flow in the Sintering of Model Compacts", Acta. Metall., Vol.14, 1966, pp.575-582.
【10】R. L. Coble, "Sintering Crystalline Solids, I. Intermediate and Final Stage Diffusion Models", J. Appl. Phys., Vol.32, No.5, 1961, pp.787-792.
【11】"Powder Metallurgy Science", R. M. German, Metal Industries Federation, pp.149-150.
【12】D. L. Johnson, "New Method of Obtaining Volume, Grain-Boundary, and Surface Diffusion Coefficients from Sintering Data", J. Appl. Phys., Vol.40, 1969, pp.192-201.
【13】M. F. Ashby, "A First Report on Sintering Diagrams", Acta. Metall., Vol.22, 1974, pp.275-289.
【14】H. F. Fischmeister and R. Zahn, "The Mechanism of Sintering of α-Iron", Modern Development in Powder Metallurgy, Ed. by Hausner H.H., Plenum Press, New York, Vol.2, 1966, pp.12-25.
【15】M. M. Oxley, and G. Cizeron, "Applications of Dilatometric and Microfractographic Methods to the Study of the Sintering of Iron", Int. J. of Powder Metallurgy, Vol.1, No.2, 1965, pp15-27.
【16】P. Duwez and H. Martens, "A Dilatometric Study of the Sintering of Metal Powder Compacts", Trans. AIME, Vol.185, 1949, pp571-577.
【17】G. Cizron and P. Lacombe, "A Dilatometric Study of the Isothermal Sintering of Carbonyl Iron Powder", Comptes Rendues, Vol.241, 1955, pp.409-410.
【18】B. H. Alexander and R. Balluffi, "Experiments on the Mechanism of Sintering", J. of Metals, 1950, p1219.
【19】J. E. Burke, "Role of Grain Boundaries in Sintering", J. of Am. Ceramic Soc., Vol.40, No.3, 1957, pp.80-85.
【20】K. S. Hwang and M.Y.Shiau, "Effect of Nickel on the Sintering Behavior of Fe-Ni Compacts Made from Composite and Elemental Powders", Metallurgical and Materials Tran. B, Vol.27B, 1996, pp.203-211.
【21】C. Zener as Quotes by C. S. Smith, "Grain, Phases, and Interfaces : An Interpretation of Microstructure", Trans. AIME, Vol.175, 1942, pp.15-51.
【22】F. V. Lenel, G. S. Ansell, and D. D. Barron "Marker Transport During the Early Stages of Sintering", Metallurical Trans., Vol.1, 1970, pp.1772-1773.
【23】F. V. Lenel, G. S. Ansell, and R. C. Morris "Sintering of Loose Spherical copper Powder Aggregates Using Silica as Marker", Metallurical Trans., Vol.1, 1970, pp.2351-2354.
【24】M. F. Ashby, S. Bahk, J. berk, and D. Turnbull "The Influence of a Dispersion of Particles on the Sintering of Metal Powders and Wires", Progress in Materials Science, Vol.25, 1980, pp.1-34.
【25】S. K. Mukherjee, B. Cotterell, and Y. W. Mai "Sintered Iron-Particulate/Fiber Composites", Diffusion & Defect Data Solid State Data Pt.B : Solid State Phenomena, Vol.25໲, 1992, pp.523-530.
【26】M. Lafer, D. Bouvard, P. Stutz, M. Pierronnet, and G. Raisson "Influence of Alumina Inclusions on the Densification of Superalloy Powder", Powder Metallurgy, Vol.25, No.1, 1993, pp.23-27.
【27】B. N. Singh and D. H. Houseman, "The Influence of Oxide Particles on the Sintering Characteristics of Carbonyl Iron", Powder Metallurgy International, Vol.3, No.1, 1977, pp.26-29.
【28】"Phase Diagram for Ceramists", Compiled at National Bureau of Standard, the American Ceramic Society.
【29】B. J. Tatarchuk and J. A. Dumesic, "Physical Characterization of Fe/TiO2 Model Supported Catalysts III. Combined Electron Microscopic and Spetroscopic Studies of Reduction and Oxidation Behavior", J. of Cat., Vol.70, 1981, pp.335-346.
【30】K. E. Easterling and G. H. Gessinger, "On the Reduction of Nabarro-Herring Creep and Sintering Rates by Oxide Dispersions", Z. Metallkde., Vol.63, 1972, pp.237-240.
【31】D. L. Johnson, "Interface-Reaction Control of Sintering", Scripta Metallurgica, Vol.7, 1973, pp.1075-1078.
【32】D. L. Johnson, "Particle Drag Retardation of Surface Smoothing and Sintering", J. of Mat. Sci., Vol.11, 1976, pp.2312-2318.
【33】D. L. Johnson, "Sintering Retardation in Catalysts", Sintering and Catalysis, Materials Science Research Vol.10,Edited by G. C. Kuczynski, Plenum Press, N.Y.,N.Y. pp.133-139.
【34】N. M. Sbrockey and D. L. Johnson, "Influence of Second Phase Particles to Retard Surface Smoothing and Sintering", Sintering Processes, Materials Science Research Vol.13, Edited by G. C. Kuczynski, Plenum Press, N.Y.,N.Y., 1979, pp.177-186.
【35】M. F. Ashby, "On the Interface-Reaction Control of Nabarro-Herring Creep and Sintering", Scripta Metallurgica, Vol.3, 1969, pp837-842.
【36】S. K. Mukherjee and G. S. Upadhyaya, "Sintering of 434L Ferritic Stainless Steel Containing Al2O3 Particles", Int. J. of powder Metallurgy & Powder Technology, Vol.19, No.4, 1983, pp.290-299.
【37】S. K. Mukherjee and G. S. Upadhyaya, "Activated Sintering of 434L Ferritic Stainless Steel─Al2O3 Composites", Sintered Metal-Ceramic Composites, Proceedings of the third International School on Sintered Materials, Edited by G. S. Upadhyaya, 1984, pp.253-254.
【38】R. C. Bradt, "Cr2O3 Solid Solution Hardening of Al2O3", J. of American Ceramic Society, Vol.50, No.1, 1967, pp.54-55.
【39】S. Lal and G. S. Upadhyaya, "Effect of Y2O3 Addition and Sintering Period on the Properties of P/M 316L Austenitic Stainless Steel", J. of Mat. Sci. Letters, Vol.6, 1987, pp.761-764.
【40】S. Lal and G. S. Upadhyaya, "Effect of Phosphorus and Silica Addition on the Sintered Properties of 316L Austenitic Stainless Steel and its Composites Containing 4vol% Yttria", J. of Mat. Sci., Vol.24, 1989, pp.3069-3075.
【41】E. Serwicka, R. N. Schindler, and R. Schumacher, "An ESR Study of TiO2 Treated with Atomic Hydrogen", Ber. Bunsenges. Phys. Chem., Vol.85, 1981, pp.192-195.
【42】Yunoshin Imai and Toru Miyazaki, "Study on A3 Transformation of Dispersion-Strengthened Iron", Science Reports on the Research Institute, Tohoku University, Vol.14, No.3, 1962, pp.146-155.
【43】A. Gatti, "Notes on the Stability of Aluminum Oxide in Iron, Nickel, and Cobalt", Powder Metallurgy, No.10, 1962, pp.77-86.
【44】J. J. Huet, "Possible Fast-Reactor Canning Materials Strengthened and Stabilized by Dispersion", Powder Metallurgy, Vol.10, No.20, 1967, pp.208-215.
【45】B. N. Singh, P. Cotterill, and M. B. Waldron, "The Effect of Dispersoid Properties on the Dispersion-Strengthening of Carbonyl Iron", Powder Metallurgy, Vol.12, No.2, 1969, pp.157-168.
【46】R. E. Lawn, F. G. Wilson, and C. D. Desforges, "Oxide-Dispersed Iron Alloys", Powder Metallurgy, Vol.17, No.4, 1974, pp.196-201.
【47】Bergeron and Risbud, "Introduction to Phase Equilibria in Ceramics", the American Ceramic Society, Inc., Columbus, Ohio, 1984, pp.16-17.
【48】Andersson S., Collen B., Kuylenstierna U., and Magneli A., "Phase Analysis Studies on the Titanium-Oxygen System", Acta. Chem. Scand., Vol.11, No.10, 1957, pp1641-1652.
【49】Andersson S., Collen B., Kruuse G., Kuylenstierna U., Magneli A., Pestmals H., and Asbrink S., "Identification of Titanium Oxides by X-ray Powder Patterns", Acta. Chem. Scand., Vol.11, No.10, 1957, pp1653-1657.
【50】"Nonstoichiometric Oxides", Edited by O. Toft Sorensen, Academic Press, 1981, pp.198-199.
【51】R. D. Shannon, "Phase Transformation Studies in TiO2 Supporting Different Defect Mechanisms in Vacuum-reduced and Hydrogen-reduced Rutile", J. of Appl. Phys., Vol.35, No.11, 1964, pp.3414-3416.
【52】P. I. Kingsbury, Jr. W. D. Ohlsen, and O. W. Johnson, "Defects in Rutile, I. Electron Paramagnetic Resonance of Interstitially Doped N-
Type Rutile", Physical Review, Vol.175, No.11. 1964, pp.3414-3416.
【53】J. Gerbhardt and K. Herrington, "Reduction of Contaminated Rutile Surfaces by Degassing", J. of Physical Chemistry, Vol.62, 1958, p120.
【54】S .J. Tauster, S. C. Fung, R. T. K. Baker, and J. A. Horsley, "Strong Interaction in Supported-Metal Catalysts", Science, Vol.211, No.4487, 1981, pp.1121-1125.
【55】S. J. Tauster and S. C. Fung, "Strong Metal-Support Interaction:Occurrence among the Binary Oxides of Groups IIA-VB", J. of Cat., Vol.55, 1978, pp.29-35.
【56】S. J. Tauster, S. C. Fung, and R. L. Garten, "Strong Metal-Support Interactions, Group 8 Noble Metals Supported on TiO2", J. of Am. Chem. Soc., Vol.100, 1978, pp.170-175.
【57】J. A. Horsley, "A Molecular Orbital Study of Strong Metal-Support Interaction between Platinum and Titanium Dioxide", J. of Am. Chem. Soc., Vol.101, 1979, pp.2870-2874.
【58】D. N. Belton, Y. M. Sun, and J. M. White, "Thin-Film Models of Strong Metal-Support Interaction Catalysts Platinum on Oxidized Titanium", J. of Physical Chemistry, Vol.88, 1984, pp.1690-1695.
【59】Dalmai-Imelik G., Leclereqc and Maubert-Muguet A., J. of Solid State Chem., Vol.16, 1976, pp129.
【60】A. J. Simeons, R. T. K. Baker, D. J. Dwyer, C. R. F. Lund, and R. J. Madon, "A Study of the Nickel-Titanium Oxide Interaction", J. of Cat., Vol.86, 1984, pp.359-372.
【61】A. K. Singh, N. K. Pande, and A. T. Bell, "Electron Microscopy Study of the Interactions of Rhodium with Titania", J. of Cat., Vol.94, 1985, pp.422-435.
【62】R. T. K. Baker, J. J. Chludzinski, and J. A. Dumesic, "Filamentous Carbon Growth on Nickel Surface Treated with Titanium Dioxide:Migration of Titania and Ramifications of Strong Metal-Support Interactions", J. of Cat., Vol.93, 1985, pp.312-320.
【63】H. R. Sageghi and V. E. Henrich, "SMSI in Rh/TiO2 Model Catalysts:Evidence for Oxide Migration", J. of Cat., Vol.87, 1984, pp.279-282.
【64】D. N. Belton, Y. M. Sun, and J. M. White, "Metal-Support Interactions on Rh and Pt/TiO2 Model Catalysts", J. of Physical Chemistry, Vol.88, No.22, 1984, pp.5172-5176.
【65】D. N. Belton, Y. M. Sun, and J. M. White, "Encapsulation and Electronic Effects in a Thin-Film Model of a Rhodium-Titania Strong Metal-Support Interaction Catalyst", J. of Am. Chem. Soc., Vol.106, 1984, pp.3039-3060.
【66】J. C. Conesa and J. Soria, "Reversible Ti3+ Formation by H2 Adsorption on M/TiO2 Catalysts", J. of Physical Chemistry, Vol.86, 1982, pp.1392-1395.
【67】R. T. K. Baker, E. B. Prestridge, and L. L. Murrell, "Electron Microscopy of Supported Metal Particles, III. The Role of the Metal in SMSI Interaction", J. of Cat., Vol.79, 1983, pp.348-358.
【68】B. J. Tatarchuk and J. A. Dumesic, "Physical Characterization of Fe/TiO2 Model Supported Catalysts, I. Electron Microscopic Studies of Reduction Behavior", J. of Cat., Vol.70, 1981, pp.308-322.
【69】B. J. Tatarchuk and J. A. Dumesic, "Physical Characterization of Fe/TiO2 Model Supported Catalysts, II. Electron Spectroscopic Studies of Reduction Behavior", J. of Cat., Vol.70, 1981, pp.323-334.
【70】B. J. Tatarchuk, J. J. Chludzinski, R. D. Sherwood, J. A. Dumesic, and R. T. K. Baker, "Controlled Atmosphere Electron Microscopy Investigation of Iron Supported on Titania", J. of Cat., Vol.70, 1981, pp.433-439.
【71】J. Santos, J. Phillips, and J. A. Dumesic, "Metal-Support Interactions between Iron and Titania for Catalysts Prepared by Thermal Decomposition of Iron Pentacarbonyl and by Impregnation", J. of Cat., Vol.81, 1983, pp.147-167.
【72】W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, “Introduction to Ceramics”, second edition, John Wiley & Sons Inc. 1976, Ch.9, pp.402-405.
【73】王正修, “矽在鐵粉和製品中的存在形式及其影響”, 粉末冶金技術,中國機械工程會粉末冶金學會出版, 1983, 第一卷, 第五期, pp.13-15.
【74】J. E. Japka, "Hydrogen Reduction of Carbonyl Iron Powder─Weight Loss Relationships and MIM Parts Shrinkage", Advances in Powder Metallurgy and Particulate Materials, Vol.5, 1993, pp.143-151.
【75】R. M. Larsen and K. A. Thorsen, "Equilibria and Kinetics of Gas-Metal Reactions During Sintering of Austenitic Stainless Steel", Powder Metallurgy, Vol.37, No.1, 1994, pp.61-66.
【76】K. A. Thorsen, "Applied Thermodynamics", Advances in Powder Metallurgy & Particulate Materials, Vol.3, 1994, pp.183-197.
【77】H. Praliaud and G. A. Martin, "Evidence of a Strong Metal-Support Interaction and of Ni-Si Alloy Formation in Silica-Supported Nickel Catalysts", J. of Cat., Vol.72, 1981, pp.394-396.
【78】K. A. Thorsen, "Aluminum Contamination of Cemented Carbides During Sintering", Advances in Powder Metallurgy & Particulate Materials, Vol.8, 1992, pp.45-60.
【79】S. W. Weller and A. A. Montagna, "Studies of Alumina, I. Reaction with Hydrogen at Elevated Temperature", J. of Cat. , Vol.21, 1971, pp.303-311.
【80】F. M. Dautzenberg and H. B. M. Wolters, "State of Dispersion of Platinum in Alumina-Supported Catalysts", J. of Cat. , Vol.51, 1978, pp.26-39.
【81】Kimio Kunimori, Yasuo Ikeda, Mitsuyuki Soma, and Toshio Uchijima, "Metal-Support Interaction in Alumina-Supported Pt Catalysts", J. of Cat. , Vol.79, 1983, pp.185-195.
【82】C. W. Corti and P. Cotterill, "The Influence of Fine Alumina Particles on the Sintering Behavior and Grain Growth of Carbonyl Iron", Powder Metall. Int., Vol.16, No.1, 1974, pp.23-25.
【83】Diffusion Data, Vol.3, No.1-3, 1969, Diffusion Information Center,p269.
【84】R. J. D. Tilly, "Correlation between Dielectric Constant and Defect Structure of Non-stoichiometric Solids", Nature, Vol.269, 1977, pp.299-231.
【85】C. S. Ko and R. J. Gorte, "Evidence of Diffusion of a Partially Oxidized Titanium Species into Bulk Platinum", J of Cat., Vol.90, 1984, pp.59-64.
【86】Stanislaw Mrowec, "Defect and Diffusion in Solid, an Introduction", 1974, Elsevier/North-Holland Inc., N.Y.,N.Y..
【87】H. Hansel, L. Stratmann, H. Keller, and H. J. Grabke, "Effect of the Grain Boundary Segregants P,S,C, and N on the Grain Boundary Self-Diffusivity in α-Iron", Acta. Metall., Vol.33, No.4, 1985, pp.659-665.
【88】三浦秀士, 本田忠敏, 渡邊始史, "Fe-Ti系燒結材料の諸特性及合金元素の影響", 粉體およ”粉末冶金, 第36卷, 第6號, 1989, pp86-92.
【89】Masakazu Achikita, Akihito Otsuka, Kenji Ohmori, Keizo Kazama, and Yutaka Katoh, "Injection Molding of Fe-Si Alloys-Sintering Behavior and Soft Magnetic Properties", Proceeding of the 1990 Powder Metallurgy Conference and Exhibition Part 3, Pittsburgh, PA., USA, Published by Metal Powder Industries Federation, 1990, pp.375-384.
【90】J. Kucera, B. Million, and J. Ruzickova, "Self-Diffusion of Iron in Iron Alloy with BCC Lattice", Diffusion in Metals and Alloys, Proceeding of an International Conference, Tihany Hungary,Ed. F. J. Kedves, and D. L. Beke, 1982, pp.386-388.
【91】D. Treheux, L. Vincent, and P. Guiraldenq, "Influence on Silicon Content on Intergranular Self-Diffusion Iron Alloys, Correlation with Intergranular Brittleness and Grain Boundary Segregation", Acta, Metall., Vol.29, 1981, pp.931-938.
【92】Bogumil Weglinski, "Sinters for Magnetic Applications", Reviews on Powder Metall. and Physical Ceramics, Vol.5, 1992, pp.1-79.
【93】D. Dube and R. Augers, "Influence of α→β Transformation on Grain Size of Fe-Si Powders", Powder Metallurgy, Vol.29, No.3, 1986, pp.173-176.
【94】C. G. Dunn, "Some Implication of Mullins’ Steady State Solution for Grain Boundary Migration in Sheet Material", Acta Metall., 1966, Vol.14, pp.221-222.
【95】R. M. German, "Grain Growth Influence on the Sintering Densification of FCC Metals; The Example of Palladium", Materials Science Research, 13, Sintering Processes, Plenum Press, NY, NY., Edited by G. C. Kuczynski, 1980, pp.159-166.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊