跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉益銘
研究生(外文):Yih-Ming, Liu
論文名稱:電子構裝銦基無鉛銲錫與金厚膜及銀基板之界面反應研究
論文名稱(外文):Interfacial Reactions between In-Based Lead-Free Solders and Au Thick Films or Ag Substrates
指導教授:莊東漢莊東漢引用關係
指導教授(外文):Tung-Han Chuang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:167
中文關鍵詞:無鉛銲錫界面反應介金屬化合物潤濕性金厚膜銀基板
外文關鍵詞:lead-free solderinterfacial reactionintermetallic compoundwettabilityAu thick filmAg substrate
相關次數:
  • 被引用被引用:13
  • 點閱點閱:450
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:1
在電子構裝產業中軟銲製程是一種經常被應用的技術,在這些製程中,鉛錫合金由於其優異的各種性質,成為最常被使用的銲錫原料。然而因為鉛對人體具有毒性,禁用含鉛產品的呼聲越來越高,無鉛銲錫的研發與使用也成為一種趨勢。而在軟銲反應中,銲錫與母材會在界面產生反應並生成一些介金屬化合物,這些介金屬化合物對接點的性質有重要影響。因此,本研究即以純銦、In49Sn及In10Ag等銦基無鉛銲錫對電子工業常用之金厚膜與銀基板進行軟銲反應,探討其界面生成介金屬之種類與型態、界面介金屬之成長動力學及銲錫與基板間之潤濕行為,並藉此評估這些銲錫系統的實用性與其在實際製程上將面對之問題。
研究的結果顯示,在In/Au與In49Sn的軟銲反應系統中,金厚膜與銲錫界面均會生成以AuIn2相為主之介金屬化合物,但生長機構則互不相同:在In/Au系統中為擴散控制反應,其成長活化能為39kJ/mol,但在In49Sn/Au系統則是界面控制反應,其成長活化能為51kJ/mol。隨著反應時間或溫度的增加,Au/AuIn2界面上會依序再生長出AuIn及Au7In3(g¢)相,當g¢相生成時,界面將產生剝裂現象而影響銲錫接點性質。此外,軟銲過程中溶入銲錫液中的基材金原子會在冷卻過程中以游離島嶼狀之AuIn2相型式析出在銲錫基地內。在In49Sn銲錫系統中,銲錫基地之介金屬以AuIn2相而非AuSn4相析出,可能是其可以避免金脆化現象之主要原因。
在In10Ag/Ag之軟銲反應系統中,在銲錫與銀基板之界面會生成扇貝狀或樹枝狀的Ag2In介金屬化合物,其外圍包覆一層0.5至1mm之AgIn2殼層。此界面Ag2In相之成長為一擴散控制反應,其活化能約為45kJ/mol。除了界面介金屬之成長外,軟銲過程中溶入銲錫之銀原子與In10Ag銲錫內原有之銀原子在冷卻過程中亦會以Ag2In相為主之圓球狀或樹枝狀游離介金屬塊析出在銲錫基地內。這些界面與銲錫基地內之介金屬在試片於常溫下置放時會繼續發生固態反應,使先前生成之Ag2In相為其外圍之AgIn2相消耗而逐漸取代。經進一步以Ag2In/In擴散偶研究結果發現,在Ag2In/In之固態反應中,界面會生成AgIn2相,其成長為擴散控制,活化能約為41kJ/mol,近似於薄膜反應時之AgIn2相成長活化能。
在銲錫對基材之潤濕性方面,In/Au與In10Ag/Ag系統之銲錫錠接觸角q變化可分為三個階段,其中第二階段是一q保持不變之高原期,其生成機構可以界面介金屬之成長與液滴前端帶狀區之生成來解釋,並可經由液滴前端之微觀觀察圖加以證實。相對於上述兩系統,In49Sn/Au之接觸角變化雖亦可區分為三個階段,但其第二階段僅是q下降斜率較為平緩,並無高原期之情形發生,經進一步比較In/Au與Sn/Au系統之q變化結果,推測此種斜率變緩之現象乃是由於In49Sn成份中銦與錫成份分別對金厚膜作用而產生之結果。
Soldering has been widely used on electronics assemblies and PbSn alloys are very popular solder alloys due to their superior properties as good soldering properties, fatigue resistance, adequate thermal and mechanical properties and low cost. However, growing concerns about environmental pollution and lead toxicity have increased the regulations and legislation on lead usage. The development of lead-free solders has been prompted and intensified for the past years. In soldering, the reaction between solder and substrate will result in intermetallic compound growth on the interface, which is crucial to the quality of solder joint. The morphology and growth kinetics of intermetallic compound formed during the soldering reaction of lead-free In/Au, In49Sn/Au and In10Ag/Ag systems and solid-state diffusion couple of Ag2In/In have been investigated in this study. Also, the wettability of these solder systems are determined by contact angle measurements in sessile drop method.
The results show that AuIn2 phase, in the shape of wavy layer, grows as a major phase at the reaction interface in both In/Au and In49Sn/Au reactions. The growth of AuIn2 layer in In/Au reaction is a diffusion-controlled process with an activation energy 39kJ/mol, while the AuIn2 growth in In49Sn/Au reaction is interfacial reaction controlled with an activation energy 51kJ/mol. As reaction time and temperature increase, two minor phases AuIn and Au7In3 phases grow at the Au/AuIn2 interface. The growth of Au7In3 phase induces cracks at the interface and impairs the mechanical integrity of the solder joint. Accompanying the interfacial intermetallic compound growth, the Au atoms dissolving into solder in soldering reaction precipitate as a cluster of AuIn2 islands in the solder matrix during cooling.
In the In10Ag/Ag reaction, a continuous layer of scallop-shaped or dendrite-shaped Ag2In compounds enveloped in thin AgIn2 shells appears at the In10Ag/Ag interface. The growth of the Ag2In phase is diffusion-controlled and the activation energy is 45kJ/mol. The Ag atoms precipitate as a cluster of spherical or dendrite-shaped Ag2In islands in the interior of solder matrix. Solid-state reaction happens on both interfacial and precipitated intermetallic compounds when the soldered specimens are stored at room temperature that the AgIn2 shells grow and consume the former Ag2In phases. The study of Ag2In/In diffusion couple shows that the growth of AgIn2 phase is diffusion-controlled and the activation energy is 41kJ/mol which is similar to the AgIn2 growth energy in thin film In/Ag reaction.
The sessile drop method is used to evaluate the wettability of the former soldering reactions. The result shows that there are three stages on the contact angle variation of In/Au and In10Ag/Ag reactions. The contact angles decline rapidly when the solders begin melting, the first stage, and then the curves remain as a plateau, the second stage, for a period of time before they finally collapse to a very low value which is considered as the last stage. A mechanism involving the interfacial intermetallic compound growth and precursor halo formation has been propounded for this wetting behavior. This mechanism is confirmed through SEM observation of the cross-sections of specimens after wetting test. The contact angle variation in In49Sn/Au reaction includes three stages too. However, the curves in the second stage is not a plateau but a gradual descent. Through comparison with In/Au and Sn/Au reactions, it was brought to light that the contact angle variation in In49Sn/Au reaction is resulted from the effects of In/Au and Sn/Au reactions.
封面
誌謝
中文摘要
英文摘要
目錄
圖目錄
表目錄
壹、前言
貳、文獻回顧
2.1 電子構裝與其發展
2.2 無鉛銲錫的發展
2.3 銲錫反應動力學
2.4 銲錫潤濕性的評估與量測
2.5 界面反應相關文獻回顧
參、實驗方法
3.1 實驗材料與設備
3.2 金厚膜軟銲反應系統
3.3 銀基版軟銲反應系統
肆、結果與討論
4.1 金厚膜軟銲反應系統
4.2 銀基版軟銲反應系統
伍、結論
陸、參考文獻
附錄
1. 溫志中, "國內構裝導線需求及未來發展趨勢", 工業材料, 144, (1998), pp.85-90
2. 溫啟宏, "蛻變中的台灣封裝業", 工業材料, 139, (1998), pp.92-96
3. D. P. Seraphim, R. C. Lasky and C-Y. Li, "Principle of Electronic Package", McGraw-Hill, New York,, (1993)
4. R. R. Tummala, E. J. Rymaszewski and A. G. Klopfenstein, "Microelectronics Packaging Handbook", Chapman, New York, (1997)
5. 賴耿陽,"IC厚膜化技術",復漢出版社,台北,(1990)
6. T. Kawanobe, K. Miyamoto, Y. Inabe and H. Okudaira, "Solder Bump Fabrication by Electrochemical Method for Flip Chip Interconnection", Proc. IEEE 31th Elec. Comp. Conf., (1981), pp.149-155
7. 劉秀琴,"SMT/裸晶/構裝的技術現況與問題", 工業材料, 118, (1996),pp.70-78
8. 張俊彥,鄭晃忠,"積體電路製程及設備技術手冊",中華民國電子材料與元件協會等出版,(1998),pp. 7-85
9. M. L. Minges, "Packaging", Electronic Materials Handbook, 1, ASM Int., Mat. Park, Ohio, (1989)
10. 孔令臣, "覆晶凸塊技術", 工業材料, 139, (1998), p.155
11. 黃國晉, "後PC時代對封裝產業之影響", 新電子科技雜誌, 163, (1999), pp. E44-E58
12. 楊省樞, 李榮賢, "透析覆晶構裝", 工業材料, 139, (1998), pp. 147-154
13. 加藤凡典, "尖端封裝技術動向", 半導體產業新聞, (1999)
14. J. H. Lau, "Flip Chip Technologies", McGraw-Hill, New York,, (1995)
15. P. T. Vianco, "Solder Alloys : A Look at the Past, Present and Feature", Welding Journal, (1997), pp. 45-49
16. B. Trumble, "Get the Lead out", IEEE Spectrum, (1998), pp. 55-60
17. A. Z. Miric and A. Gruad, "Lead-Free Alloys", Soldering and Surface Mount Technology, 10, (1998), pp. 19-25
18. J. H. Vincent and G. Humoson, "Lead-Free Solders for Electronic Assembly", Circuits Assembly, (1994), 38-41
19. M. McCormack and S. Jin, "Progress in the Design of New Lead-Free Solder Alloys", JOM, (1993), pp. 36-40
20. M. McCormack and S. Jin, "The Design and Properties of New, Pb-Free Solder Alloys", Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology Symposium, (1994), pp. 7-14
21. D. B. Knorr and L. E. Felton, "Design Lead-Free Solder Alloys for Advanced Electronics Assembly", Design for Manufacturability ASME, 67, (1994), pp. 27-34
22. S. K. Kang, "Lead(Pb)-Free Solders for Electronic Packaging", J. Elect. Mat., 23, (1994), pp..701-707
23. E. P. Wood and K. L. Nimmo, "In Search of New Lead-Free Electronic Solders", J. Elect. Mat., 23, (1994), pp..709-713
24. J. Glazer, "Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly", Int. Mat. Rev., 40, (1995), pp.65-93
25. W. J. Plumbridge, " Review Solders in Electronics", J. Mater. Sci., 31, (1996), pp. 2501-2514
26. N. C. Lee, "Getting Ready for Lead-Free Solders", Soldering and Surface Mount Technology, 26, (1997), pp. 65-69
27.賴玄金, "從IPC Work''99會議看無鉛銲錫電子構裝之應用現況與發展趨勢", 工業材料, 158, (2000), pp. 99-107
28. S. Crum, "Targeting Lead-Free Solutions", EP&P, June, (1999), pp. 28-35
29. J. D. Raby and R. W. Johnson, "Is a Lead-Free Furture Wishful Thinking ?", EP&P, August, (1999), pp. 18-20
30. E. Bradley, K. Snowdon and R. Gedney, "Lead-Free Update", Circuits Assembly, Dec., (1999), pp.30-33
31. J. Vardaman, "What''s Driving the Lead-Free Movement ?", EP&P,Nov., (1999), p.76
32. J. Kloeser, K. Heinricht, K. Kutzner, E. Jung, A. Ostmann and H. Reichl, IEEE Trans. on Comp. Pac. And Manu. Tech, "Fine Pitch Stencil Printing of Sn/Pb and Lead Free Solders for Flip Chip Technology", Part C, 21, 1, (1998), pp.41-50
33. J. Glazer, "Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electrnic Assembly : A Review", J. Elect. Mat., 23, 8, (1994), pp.693-700
34. Z. Mei and J. W. Morries, "Characterization of Eutectic Sn-Bi Solder Joints", J. Elect. Mat., 21, 6, (1992), pp.599-607
35. C. H. Raeder, L. E. Felton, V. A. Tanzi and D. B. Knorr, "The Effect of Aging on Microstructure, Room Temperature Deformation, and Fracture of Sn-Bi/Cu Solder Joints", J. Elect. Mat., 23, 7, (1994), pp.611-617
36. M. Harada and R. Satoh, "Mechanical Characteristics of 96.5Sn/3.5Ag Solder in Microbonding", IEEE Trans. on Comp.,Pac. and Manu. Tech., 13, 4, (1990), pp.736-742
37. Maroori, S. Vaynman, J. Chin, B. Moran, L. M. Keer and M. E. Fine, Proc. Mat. Res. Soc. Symp. 390, (1995), pp.161-175
38. W. J. Tomlinson and I. Collier, "The Mechanical Properties and Microstructures of Copper and Brass Joints Soldered with Eutectic Tin-Bismuth Solder", J. Mater. Sci., 22, (1987), pp. 1835-1839
39. L. E. Felton, C. H. Raeder, and D. B. Knorr, "The Properties of Tin-Bismuth Alloy Solders", JOM, (1993), pp. 28-32
40. R. Wild, INTERNEPCON Brighton, England, Oct., (1975)
41. K. Shimizu, T. Nakanishi, K. Karasawa, K. Hashimoto and K. Niwa, "Solder Joint Reliability of Indium-Alloy Interconnection", J. Elect. Mat., .24, (1996), pp.39-45
42. P. Zarrow, "Lead-Free : Don''t Fight a Fact, Deal with It", Circuit Assembly, August, (1999), pp. 18-20
43. W. Yang and R. W. Messler, "Microstructure Evolution of Eutectic Sn-Ag Solder Joints", J. Elect. Mat., 23, (1994), pp. 765-772
44. P. Biocca, "Global Update on Lead-Free Solders", SMT, June, (1999), pp. 64-67
45. T. Laine-Ylijoki, H. Steen and A. Forsten, "Development and Validation of a Lead-Free Alloy for Solder Paste Applications", IEEE Trans. on Comp.,Pac. and Manu. Tech., Part C, 20, (1997), pp.194-198
46. K-L. Lin, F-C. Chung and T-P. Liu, "The Potentiodynamic Polarization Behavior of Pb-Free xIn-9(5Al-Zn)-ySn Solders", Mat. Chem. and Phys., 53, (1998), pp.55-59
47. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, "New Pb-Free Solder Alloy with Superior Mechanical Properties"'' Appl. Phys. Lett., 63, (1993), pp.15-17
48. M. McCormack and S. Jin, "New, Lead-Free Solders"'' J. Elect. Mat., .23, (1994), pp.635-640
49. C. M. Miller, I. E. Anderson and J. F. Smith, "A Viable Tin-Lead Solder Substitute : Sn-Ag-Cu", J. Elect. Mat., .23, (1994), pp.595-601
50. K. Seeling, "A Study of Lead-Free Solder Alloys", Circuits Assembly, October, (1995), pp. 46-48
51. N. C. Lee, J. A. Slattery, J. R. Sovinsky, I. Artaki and P. T. Vianco, "A Novel Lead-Free Solder Replacement", Circuits Assembly, October, (1995), pp. 36-44
52. M. A. Kwoka and D. M. Foster, "A Comparison of Lead-Free vs. Eutectic Solders", Circuits Assembly, October, (1995), pp. 32-36
53. D. M. Jacobson and M. R. Harrison, "Lead-Free Soldering : A Progress Report", The GEC Journal of Technology, 14, (1997), pp.98-109
54. N. C. Lee, "A ThoroughLook at Lead-Free Solder Alternatives", Circuits Assembly, April, (1998), pp. 64-71
55. D. Raby and R. W. Johnson, " Is a Lead-Free Furture ?", EP&P, August, (1999), pp. 18-20
56. S. Crum, "Lead-Free Search Intensifies as Time Runs Short", EP&P, January, (2000), pp. 26-32
57. R. T. Howard, "Optimization of Indium-Lead Alloys for Controlled Collapse Chip Connection Application", IBM J. RES. Develop., 26, (1982), pp.36-40
58. C. E. T. White, "Indium : High-Technology Metal", Advanced Materials & Processes inc. Metal Progress, (1997), 69-72
59. 詹益淇, 莊東漢, "無鉛銲錫的回顧與最新發展", 電子月刊, 6, (2000), pp. 226-237
60. K. N. Tu, "Cu/Sn Interfacial Reactions: Thin-Film Case Versus Bulk Case", Mat. Chem. and Phys., 46, (1996), pp. 217-223
61. F. Bartels, T. Muschik, and W. Gust, "Mechanism of Intermetallic Phase Formation in Thin Liquid-Solid Diffusion Couples", Mat. Res. Symp., 311, (1993), pp.63-68
62. S. Bader, W. Gust, and H. Hieber, "Rapid Formation of Intermetallic Compounds by Interdiffusion in the Cu-Sn and Ni-Sn Systems", Acta Metall. Mater., 43, 1, (1995), pp.329-337
63. R. E. Reed-Hill, "Physical Metallurgy Principles", PWS Publishing Company, Boston, 1991
64. C. Wagner, "The Evaluation of Data Obtained with Diffusion Couples of Binary Single-Phase and Multiphase Systems", Acta Metallurgica, 17, (1969), pp. 99-107
65. H. K. Kim, H. K. Liou and K. N. Tu, "Morphology of Instability of the Wetting Tips of Eutectic SnBi, Eutectic SnPb and Pure Sn on Cu", J., Mater. Res., 10, (1985), p.497
66. R. J. K. Wassink, "Soldering in Electronics", Electrochemical Publ., London, U.K., (1989)
67. A. C. K. So, Y. C. Chan and J. K. L. Lai, "Aging Studing of Cu-Sn Intermetallic Compounds in Annealed Surface Mount Solder Joints", IEEE Trans. Comp. Packg. Manuf. Tech. B, 20, (1997), pp.161-166
68. F. G. Yost, F. M. Hosking and D. R. Frear, "The Mechanics of Solder Alloy Wetting and Spreading", Van Nostrand Reinhold, New York, (1993)
69. J. H. Lau, Van Nostrand Reinhold, "Solder Joint Reliability-Theory and Application", New York, (1991)
70. D. R. Frear, W. B. Jones and K. R. Kinsman, "Solder Mechanics-a State of the Art Assessment", TMS, (1991)
71. X. H. Wang and H. Conrad, "Kinetics of Wetting Ag Substrates by 60Sn40Pb", Scripta Metallurgica et Materialla, 30, (1994), pp. 725-730
72. J. A. Devore, "Solderability", JOM, (1984), pp. 51-53
73. T. Young, Trans. R. Soc., London, 95, (1805), p. 65
74. F. G. Yost and A. D. Romig, "Thermodynamics of Wetting Liquid Metals", Mat. Res. Symp. Proc., 108, (1988), pp. 385-390
75. K. Landry, C. Rado, R. Voitovich and N. Eustathopoulos, "Mechanisms of Reactive Wetting: The Question of Triple Line Configuration", Acta Mater., 45, (1997), pp. 3079-3085
76. F. G. Yost, "The Triple Line in Reactive Wetting", Scripta Materialia., 38, (1998), pp. 1225-1228
77. T. J. Singler, J. A. Clum and E. R. Prack, "Wetting Dynamics of Molten Solder Alloys on Metal Substrates", Tranctions of the ASME, 114, (1992), pp. 128-134
78. C. Y. Liu and K. N. Tu, "Morphology of Wetting Reactions of SnPb Alloys on Cu as a Function of Alloy Composition", J. Mater. Res., 13, (1998), pp.37-44
79. G. C. Smith and C. Lea, "Wetting and Spreading of Liquid Metals : the Role of Surface Composition", Surface and Interface Analysis, 9, (1986), pp. 145-150
80. F. G. Yost, J. R. Michael and E.T. Elsenmann, "Extensive Wetting Due to Roughness", Acta Metall. Mater., 43, (1995), pp.299-305
81. X. H. Wang and H. Conrad, Scrip. Metal. Mater., 31, (1994), pp. 375-380
82. J. C. Ambrose, M. G. Nicholas and A. M. Stoneham, "Dynamics of Braze Spreading", Acta Metall. Mater., 40, (1992), pp.2483-2488
83. J. C. Ambrose, M. G. Nicholas and A. M. Stoneham, "Dynamics of Liquid Drop Spreading in Metal-Metal Systems", Acta Metall. Mater., 41, (1993), pp.2395-2401
84. H. Fuji, H. Nakae and K. Okada, "Interfacial Reaction Wetting in the Boron Nitride/Molten Alluminum System", Acta Metall. Mater., 41, (1993), pp.2963-2971
85. H. Fuji, H. Nakae and K. Okada, "Four Wetting Phases in AlN/Al and AlN Composites/Al Systems, Models of Nonreactive, Reactive, and Composite Systems", Metall. Trans. A, 24, (1993), pp. 1391-1397
86. F. G. Yost and E. J. O''toole, "Metastable and Equilibrium Wetting States in the Bi-Sn System", Acta Mater., 46, (1998), pp.5143-5151
87. Prince, "The Au-Pb-Sn Ternary System", Journal of the Less-Common Metals, 12, (1967), pp. 107-116
88. D. M. Jacobson and G. Humpston, "Gold Coatings for Fluxless Soldering", Gold Bull., 22, (1989), pp. 9-18
89. C. J. Thwaits, "Some Aspects of Soldering Gold Surface", Electroplating and Metal Finishing, 26, (1973), pp. 10-15
90. C. J. Thwaits, "Some Aspects of Soldering Gold Surface", Electroplating and Metal Finishing, 26, (1973), pp. 21-26
91. W. G. Bader, "Dissolution of Au, Ag, Pt, Cu and Ni in a Molten Tin-Lead Solder", Welding J., Res. Suppl., 48, (1969), pp. 55-57
92. H. Heinzel and K. E. Saeger, "The Wettability and Dissolution Behavior of Gold in Soft Soldering", Gold Bull., 9, (1976), pp. 7-11
93. D. H. Daebler, "An Overview of Gold Intermetallics in Solder Joints", Surface Mount Technology, Oct. (1991), pp. 43-46
94. W. B. Harding and H. B. Pressly, "Soldering to Gold Plating", Am. Electroplat. Soc., 50th Annu. Proc., (1963), pp. 90-106
95. R. N. Wild, "Effect of Gold on the Properties of Solders", IBM Federal Systems Div, Owego, Rep. No.678252157, (1968)
96. W. A. Mulholland and D. L. Willyard, "Soldering to Thin Film Hybrid Microcircuits", Welding J., Res. Suppl., 54, (1974), pp.466s-74s
97. H. P. Kehrer and E. M. Wenzel, "Weichloten von Goldoberflachen in der Elektrotechnik", Metall., 33, (1979), pp. 1047-1051
98. R. Duckett and M. L. Ackroyd, "The Influence of Solder Composition on the Embrittkement of Soft-Soldered Gold Coating", Electroplat. Met. Finish., 29, (1976), pp. 13-20
99. F. G. Foster, " Embrittlement of Solder by Gold from Plated Surface", ASTM Spec. Publ. No.319, (1963), pp. 13-19
100.P. A. Ainsworth, "Soft Soldering on Gold Coated Surfaces", Gold Bull., 4, (1971), pp. 46-50
101.W. K. Lee, "Improvement of Solder Connections by Gold Alloy Plating", Plating, 58, (1971), pp. 997-1001
102. P. A. Ainsworth, "Gold Diffusion and Soft Soldering", Gold Bull., 5, (1971), p.37
103.G. Matijasevic and C. C. Lee, "Void-Free Au-Sn Eutectic Bonding of GaAs Dice and its Characterization Using Scanning Acoustic Microscopy", J. Electron. Mater., 18, (1989), pp. 327-337
104.M. Nishiguchi, N. Goto and H. Nishizawa, "Highly Reliable Au-Sn Eutectic Bonding with Background GaSa LSI Chips", IEEE Trans. on CPMT, 14, (1991), pp. 523-528
105.D. S. Evans and A. Prince, "Thermal Analysis of the Au-Ag-Sn Ternary System in the Region from 20 to 100% Sn", Met. Sci., 8, (1974), pp. 286-290
106."Solder Alloy Data. Mechanical Proprerties of Solders and Soldered Joints", Int. Tin Res. Inst. Publ. No.656, London, (1986)
107.C. Kallmayer, D. Lin, J. Kloeser, H. Oppermann, E. Zakel and H. Reichl, "Fluxless Flip-Chip Attachment Techniques Using the Au/Sn Metallurgy", IEEE/CPMT int''l Electronics Manufacturing Technology Symposium, (1995), pp. 20-28
108.C. C. Lee, C. Y. Wang and G. S. Matijasevic, "A New Bonding Technology Using Gold and Tin Multilayer Composite Structures", IEEE Trans. on CPMT, 14, (1991), pp. 407-412
109. C. C. Lee and C. Y. Wang, "A Low Temperature Bonding Process Using Deposited Gold-Tin Composites", Thin Solid Films, 208, (1992), pp.202-209
110. G. W. Powell, and J. D. Braun, Trans. AIME,.230, (1964), pp.694-699
111. F. G. Yost, F. P. Ganyard and M. M. Karnowsky, "Layer Growth in Au-Pb/In Solder Joints", Metall. Trans. A, 7, (1976), pp. 1141-1148
112.F. G. Yost, "Soldering to Gold Films", Gold Bull.,10, (1977), pp. 94-100
113. V. Simic, and Z. Marinkovic, "Thin Film Interdiffusion of Au and In at Room Temperature", Thin Solid Films, 41, (1977), pp.57-61
114. J. Bjontegaard, L. Buene, T. Finstad, O. Lonsjo, and T. Olsen, "Low Temperature Interdiffusion in Au/In Thin Film Couple", Thin Solid Films, 101, (1983), pp.253-262
115.Y. Hasumi, "Lateral Diffusion of In and Formation of AuIn2 in Au-In Thin Films", J. Appl. Phys., 58,(1985), pp. 3081-3086
116.F. S. Shieu, C. F. Chen, J. G. Sheen and Z. C. Chang, "Intermetallic Phase Formation and Shear Strength of a Au-In Microjoint", Thin Solid Films, 346, (1999), pp. 125-129
117. M. Milliares, B. Pieraggi and E. Lelievre, Scrip. Metal. Mater., 27, (1992), pp. 1777-1782
118. S. K. Mil''shtein, J. M. Parsey, Jr., D. V. Lang, D. C.Joy, and H. Temkin, IEEE Trans. Comp.,Pac. Man. Tech. 8, (1985), pp. 397-406
119. M. Mori, M. Saito, A. Hongu, A. Niitsuma, and H. Ohdaira, IEEE Trans. Comp.,Pac. Man. Tech. 13, 444(1992).
120. C. Y. Wang, Y. C. Chen and C. C. Lee, "Directly Deposited Fluxless Lead-Indium-Gold Composite Solder", IEEE Trans. Comp.,Pac. Man. Tech. 16, (1993), pp. 789-793
121.C. C. Lee, C. Y. Wang and G. Matijasevic, "Au-In Bonding below the Eutectic Temperature", IEEE Trans. Comp.,Pac. Man. Tech. 16, (1993), pp. 311-316
122. C. C. Lee, C. Y. Wang and G. Matijasevic, "Advances in Bonding Technology for Electronic Packaging", Journal of Electronic Packaging, 115, (1993), pp. 201-207
123.P. G. Kim and K. N. Tu, "Fast Dissolutio and Soldering Reactions on Au Foils", Materials Chemistry and Physics, 53, (1998), pp.165-171
124. I. Shohji, S. Fujiwara, S. Kiyono and K. F. Kobayashi, Scrip. Mater., 40, 7, (1999), p. 815
125.A. D. Roming, F. G. Yost and P. F. Hiava, "Failure Analysis in Microelectronics : Intermetallic Layer Growth in Cu/Sn-In Solder Joints", Microbeam Analysis, (1984), pp. 87-92
126.Z. Mei and J. W. Morris, "Superplastics Creep of Low Melting Point Solder Joints", Journal of Electronic Materials, 21, (1992), pp. 401-407
127.J. L. Freer and J. W. Morris, "Microstructyre and Creep of Eutectic Indium/Tin on Copper and Nickle Substrate", Journal of Electronic Materials, 21, (1992), pp. 647-652
128.J. W. Morris, J. L. F. Goldstein and Z. Mei, "Microstructure and Mechanical Properties of Sn-In and Sn-Bi Solders", JOM, July, (1993), pp. 25-27
129.P. T. Vianco, P. F. Hlava and A. C. Kilgo, "Intermetallic Compound Layer Formation between Copper and Hot-Dipped 100In, 50In-50Sn, 100Sn and 63Sn-37Pb Coatings", Journal of Electronic Materials, 23, (1994), pp. 583-594
130.K.-L. Lin and C.-J. Chen, "The Interactions between In-Sn Solders and an Electroless Ni-P Deposit upon Heat Treatment", J. Mater. Sci. Electron., 7, (1997), pp. 397-401
131.W. K. Jones, Y. Liu and M. Shah, "Mechanical Properties of Pb/Sn, Pb/In and Sn-In Solders", Soldering and Surface Mount Technology, 10, (1998), pp. 37-41
132. V. Simic and Z. Marinkovic, Thin Solid Films, 61, (1979), p.149
133. Z. Marinkovic and V. Simic, Thin Solid Films,195, (1991), p.127
134.V. Simic and Z. Marinkovic, Thin Solid Films,209, (1992), p.181
135.C. J. Thwaites and M. Woodall, Brazing and Soldering, 12, (1987), p.57
136.Y. Moriya, Y. Yamade and R. Shinya, IEEE Trans. on CPMT, part B, 21, (1998), p. 394
137. G. Y. Li and Y. C. Chan, Phys. Stat. Sol., 166, (1998), p.13
138. J. S. K. Mills and D. L. Kerk, Thin Solid Films, 55, (1978), p.149
139. W. Kepper, R. Wesche, T. Klas, J. Voigt and G. Schatz, Thin Solid Films, 143, (1991), p. 201
140. R. Roy and S. K. Sen, Thin Solid Films, 197, (1991), p.303
141. L. Bernstein, J. Electrochem. Soc., 113, (1966), p.1282
142. Y. C. Chen, W. W. So and C. C. Lee, IEEE Tran. On CPMT, 20, (1997), p.46
143. D. M. Jacobson and G. Humpston, Sold. Surf. Mou. Tech., 10, (1992), p.27
144. 鄭樹仁,"銀厚膜之銀銦擴散接點製作研究",中央大學碩士論文,(1998),指導教授:林景崎
145. 陳悒菱, "電子構裝元件耐溫微接合研究-銀銦系統界面分析", 台大碩士論文, (1998), 指導教授:莊東漢
146. S.W. Chen, C. C. Lin and C. M. Chen, Metall. Trans. A, (1998), p.1965
147. G. Humpston and D. M. Jacobson, GEC J. Res., 8, (1991), p.145
148.H. L. Reynolds, S. H. Kang and J. W. Morris, "The Creep Behavior of In-Ag Eutectic Solder Joints", Journal of Electronic Materials, 28, (1999), pp. 69-75
149.K. N. Tu, "Interdiffusion and Reaction in Bimetallic Cu-Sn Thin Films", Acta Metall., 21,(1973), pp. 347-354
150.K. N. Tu, "Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films", Acta Metall., 30,(1982), pp. 947-952
151. C. C. Lee, C. Y. Wang and G. Matijasevic, "A Fluxless Oxidation-Free Bonding Technology U", IEEE Trans. on CPMT, 3, (1994), pp. 595-599
152. Y. C. Chen, S. J. Lee and C. C. Lee, "High Temperature Cu-Sn Joints Manufactured by a 250℃ Fluxless Bonding Process", IEEE Trans. on CPMT, 5, (1994), pp. 206-210
153. G. Matijasevic, Y. C. Chen and C. C. Lee, "Copper-Tin Multilayer Composite Solder for Fluxless Processing", The International Journal of Microcircuits and Electronic Packaging, 17, (1994), pp. 108-117
154.A. Hayashi, C. R. Kao and Y. A. Chang, "Reactions of Solid Copper with Pure Liquid Tin and Liquid Tin saturated with Copper", Scripta Materialia, 37< (1997), pp. 393-398
155.C. R. Kao, "Microstructures Developed in Solid-liquid Reactions: Using Cu-Sn Reaction, Ni-Bi Reaction and Cu-In Reaction as Examples", Materials Science and Engineering, 238, (1997), pp. 196-201
156.L.-H. So, Y.-W. Yen, C.-C. Lin and S.-W. Chen, "Interfacial Reactions in Molten Sn/Cu and Molten In/Cu Couples", Metallurgical and Materials Transactions B, 28, (1997), pp. 927-934
157.R. Roy and S. K. Ken, "The Formation of Intermetallics in Cu/In Thin Films", J. Mater. Res., 7, (1992), pp. 1377-1386
158.Y. H. Tseng, M. S. Yeh and T. H. Chuang, "Interfacial Reactions between Liquid Indium and Nickel Substrate", Journal of Electronic Materials, 28, (1999), pp. 105-108
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top