跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳榮志
研究生(外文):Rong-Zhi Chen
論文名稱:兩種韌化相之添加對氧化鋁多重韌化行為之研究
論文名稱(外文):Development of Multiple Toughening Behavior of Alumina by Adding Two Toughening Agents
指導教授:段維新段維新引用關係
指導教授(外文):Wei-Hsing Tuan
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:132
中文關鍵詞:氧化鋁氧化鋯強度韌性韌化機構定量分析
外文關鍵詞:aluminanickelsilverzirconiastrengthtoughnesstoughening mechanismquantitative analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
無論是金屬或陶瓷顆粒,都可被利用來增加氧化鋁的機械性質。在本研究中,金屬鎳、金屬銀、正方相的氧化鋯以及斜方相的氧化鋯顆粒,被選擇加到氧化鋁基材中。而緻密的氧化鋁/鎳、氧化鋁/銀、氧化鋁/t-氧化鋯、氧化鋁/m-氧化鋯、氧化鋁/(t-氧化鋯+鎳)以及氧化鋁/(t-氧化鋯+銀)等複合材料,可藉由無壓燒結的方式,在1600C、燒結1小時的條件下,被製備出來。
由於第二相會阻礙氧化鋁基材的晶粒成長,因此,所有複合材料的彎曲強度,都會因微結構的細化而增加。金屬的塑性變形,以及沿著氧化鋁/金屬界面的裂縫偏折,都可增加氧化鋁的韌性。而正方相氧化鋯的麻田散相變,以及在已相變成斜方相氧化鋯的四周所產生的微裂縫,兩者也都可以用來韌化氧化鋁。在氧化鋁/m-氧化鋯複合材料中,由於在燒結過程所產生的介穩相t-氧化鋯,會被保留到室溫,因此,宛如同時添加t-氧化鋯以及m-氧化鋯兩種韌化相於氧化鋁基材中。而氧化鋁/12.5 vol.% m-氧化鋯複合材料的韌性值,更可高達12 MPam0.5。而且可以成功地定量出,相變韌化機構以及微裂縫韌化機構,分別在氧化鋁/m-氧化鋯複合材料中的貢獻量。
金屬顆粒的存在,可以增加t-氧化鋯麻田散相變的能力; 然而因相變所導入的壓應力,也會被圍繞的金屬顆粒給吸收。因此,在氧化鋁基材中加入兩種韌化相,是否會有加乘性的韌化效果,則取決於不同韌化機構之間,是否會有交互作用,以及複合材料中微結構的分佈情形。氧化鋁/(t-氧化鋯+鎳)複合材料韌性的增加量,會高於氧化鋁/t-氧化鋯以及氧化鋁/鎳兩者韌性增加量之和; 然而氧化鋁/(t-氧化鋯+銀)複合材料韌性的增加量,則低於氧化鋁/t-氧化鋯以及氧化鋁/銀兩者韌性增加量的和。
在本論文中,數種韌化機構之間的交互作用被研究著。此外,藉由控制這些交互作用,來進一步增韌陶瓷相的可能性,也一併被建議出。
Either metallic inclusions or ceramic particles can be used to enhance the mechanical properties of alumina. In the present study, nickel, silver, tetragonal zirconia or monoclinic zirconia particles are added into alumina. The dense Al2O3/Ni, Al2O3/Ag, Al2O3/t-ZrO2, Al2O3/m-ZrO2, Al2O3/(t-ZrO2+Ni) and Al2O3/(t-ZrO2+Ag) composites are prepared by pressureless sintering at 1600 C for 1 hour.
The presence of the inclusions inhibits the grain growth of alumina matrix. The flexural strength of all composites is increased by microstructural refinement. The plastic deformation of metallic inclusions and the crack-deflection along the Al2O3/metal interfaces can enhance the toughness of Al2O3 matrix. The martensitic deformation of t-ZrO2 and microcrack formation of pre-transformed m-ZrO2 can also toughen alumina. In the Al2O3/m-ZrO2 composites, some metastable tetragonal zirconia particles can be preserved after sintering till room temperature as if two toughening agents (t-ZrO2 and m-ZrO2) are added into alumina matrix simultaneously. The toughness of the Al2O3/12.5 m-ZrO2 composites can reach 12 MPam0.5. The quantitative analysis of the contribution from the transformation toughening mechanism and microcrack toughening mechanism has been conducted for the Al2O3/m-ZrO2 composites.
The presence of metallic particles can enhance the martensitic transformation ability of t-ZrO2. However, the transformation-induced stress is also absorbed by the surrounding metallic particles. Thus, whether a synergistic toughening effect is existed or not by adding two toughening agents into the alumina matrix, depending on the interactions of different toughening mechanisms and the microstructure of the composites. The toughness enhancement of Al2O3/(t-ZrO2+Ni) composites is higher than the sum of the toughness enhancement of Al2O3/t-ZrO2 and of Al2O3/Ni composites. However, the toughness increase of the Al2O3/(t-ZrO2+Ag) composites is less than the sum of the toughness increase of Al2O3/t-ZrO2 and of Al2O3/Ag composites.
In the present study, the interactions between several toughening mechanisms are investigated. The possibility to enhance the toughness of ceramic by manipulating the interactions is demonstrated.
封面
Contents
1 Introduction
1-1 Investigation background
1-2 Investigation motivation
References
2 Literature Survey
2-1 Effect of microstructure on the mechanical properties of ceramic composites
2-1-1 Effect of grain size of matrix
2-1-2 Effect of porosity
2-2 Toughening mechanisms of ceramic composites
2-2-1 Crack bridging toughening mechanism
2-2-2 Crack deflection toughening mechanism
2-2-3 Thermal residual stress toughening mechanism
2-2-4 Transformation toughening mechanism
2-2-4-1 Stress-induced transformation toughening mechanism
2-2-4-2 Microcrack toughening mechanism
2-3 Multiple toughening behavior
References
3 Experimental Procedures
3-1 Materials
3-2 Preparation of specimens
3-2-1 Al/(t-Zr+Ni) composites
3-2-2 Al/(t-Zr+Ag) composites
3-2-3 Al/m-Zr composites
3-3 Phase identification
3-3-1 Qualitative analysis
3-3-2 Quantitative analysis
3-4 Density measurement
3-5 Determination of mechanical properties
3-5-1 Flexural strength
3-5-2 Fracture toughness
3-6 Microstructural observation
3-6-1 Fracture surface observation
3-6-2 Polished surface observation
3-6-3 Observation of the thermal etched surface
3-6-4 Grain size determination
3-7 Measurement of elastic modulus
References
4 Results and Discussion
4-1 Al/(t-Zr+Ni) composites
4-1-1 Phase analysis and microstructural characterization
4-1-2 Interfacial fracture energy of Al/Ni analysis
4-1-3 Mechanical properties
4-1-4 Conclusions
4-2 Al/(t-Zr+Ag) composites
4-2-1 Phase analysis and microstructural characterization
4-2-2 Mechanical properties
4-2-3 Conclusions
4-3 Al/m-Zr composites
4-3-1 Phase analysis and microstructural characterization
4-3-2 Mechanical properties
4-3-3 Quantitative analysis
4-3-4 Conclusions
References
5 General Discussion
5-1 The flexural strength of the composites
5-2 The fracture toughness of the composites
5-3 Ceramic and metal interactions
5-4 Toughening effect optimum
References
6 Conclusions
Curriculum Vitae
Achenbach, J. D., Wave propagation in elastic solids. American Elsevi Pub. Co., (1973).
Ashby, M. F., Blunt, F. J. and Bannister, M., Flow characteristics of highly constrained metal wire. Acta Metall., 37(1989) 1847.
Becher, P. F. and Tiegs, T. N., Toughening behaviour involving multiple mechanisms: whisker reinforcement and zirconia toughening. J. Am. Ceram. Soc., 70 (1987) 651.
Bischoff, E. and Ruhle, M., Microcrack and transformation toughening of zirconia-containing alumina. Advances in Ceramics, Vol. 24B, Science and Technology of Zirconia III. ed. by Somiya, S., Yamamoto, N., and Yanagida, H., American Ceramic Society, Westerville, OH (1988) 635.
Chen, R. Z. and Tuan, W. H., Pressureless sintering of Al2O3/Ni nanocomposites. J. Eur. Ceram. Soc., 19 (1999) 463.
Chen, W. R., Effect of adding silver and zirconia particles on the microstructure and mechanical properties of alumina., Master thesis, Inst. Mater. Sci. Eng., Taipei, Taiwan, R.O.C (1993) 94.
Chou, W. B. and Tuan, W. H., Toughening and strengthening of alumina with silver inclusions. J. European Ceram. Soc., 15 (1995) 291.
Claussen, N. and Petzow, G., Whisker-reinforced oxide ceramics, J. de Phys., Colloque Cl, supplement au No. 2, 47 (1986) c1-693.
Claussen, N. Steeb, J. and Pabst, R. F., Effect of induced microcracking on the fracture toughness of ceramics. Ceramic Bulletin, 56 (1977) 559.
Claussen, N., Fracture toughness of Al2O3 with an unstabilized ZrO2 dispersed phase. J. Am. Ceram. Soc., 59 (1976) 49.
Claussen, N., Microstructural design of zirconia-toughened ceramics (ZTC). Advances in Ceramics, ed. by Claussen, N., Ruhle, M. and Heuer, A. H., Am. Ceram. Soc., Columbus, OH, 12 (1984) 325.
Claussen, N., Steeb, J. and Pabst, R. F., Effect of induced microcracking on the fracture toughness of ceramics. Ceramic Bulletin, 56 (1977) 559.
Coble, R. L. & Kingery, W. D., Effect of porosity on physical properties of sintered alumina. J. Am. Ceram. Soc., 39 (1956) 377.
Davidge, R. W. and Green, T. J., The strength of two-phase ceramic/glass materials. J. Mater. Sci., (1968) 629.
Erdogan, F. and Joseph, P. F., Toughening of ceramics through crack bridging by ductile particles. J. Am. Ceram. Soc., 72 (1989) 262.
Evan, A. G., and Faber, K. T., Toughening of ceramics by circumferential microcracking. J. Am. Ceram. Soc., 64 (1981) 394.
Evans, A. G. and Cannon, R. M., Toughening of brittle solids by martensitic transformations. Acta Metall., 34 (1986 B) 761.
Evans, A. G., Lange, F. F., Swain, M. V. and Heuer, A. H., Transformation toughening: an overview. J. Am. Ceram. Soc., 69 (1986 A) i.
Faber, K. T. and Evans, A. G., Crack deflection processes - I. Theory. Acta Metall., 31 (1983) 565.
Garvie, R. C., Critical size effects in alumina-zirconia alloys, Advances in Ceramics, ed. by Claussen, N., Ruhle, M. and Heuer, A. H., Am. Ceram. Soc., Columbus, OH., 24 (1988) 55.
German, R. M., Powder metallurgy science. 2nd ed. Metal Powder Industries Federation, Princeton, New Jersey, U.S.A. (1994) appendix c.
Green, D. J., Critical microstructures for microcracking in Al2O3-ZrO2 composites. J. Am. Ceram. Soc.,65 (1982) 610.
Handwerker, C. A., Dynys, J. M., Cannon, R. M. and Coble, R. L., Dihedral angles in magnesia and alumina: distributions from surface thermal grooves. J. Am. Ceram. Soc., 73 (1990) 1371.
Jang, H. M., Moon, J. H. and Jang, C. W., Homogeneous fabrication of Al2O3-ZrO2-SiC whisker composite by surface-induced coating. J. Am. Ceram. Soc., 75 (1992) 3369.
Jiao, S., Jenkins, M. L. and Davidge, R. W., Interfacial fracture energy-mechanical behaviour relationship in Al2O3/SiC and Al2O3/TiN nanocomposites. Acta Mater., 45 (1997) 149.
Knudsen, F. P., Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size. J. Am. Ceram. Soc., 42 (1959) 376.
Lange, F. F. and Hirlinger, M. M., Hindrance of grain growth in Al2O3 by ZrO2 inclusions. J. Am. Ceram. Soc.,67 (1984) 164.
Lange, F. F., Transformation toughening. J. Mater. Sci., 17 (1982) 225.
Lin, M. C., Development of Al2O3/Ni composite. Master thesis, Inst. Mater. Sci. Eng., Taipei, Taiwan, R.O.C (1993) 61.
McMeeking, R. M. and Evans, A. G., Mechanics of transformation-toughening in brittle materials. J. Am. Ceram. Soc., 65 (1982) 242.
Mussles, B., Swain, M. V. and Claussen, N., Dependence of fracture toughness of alumina on grain size and test technique. J. Am. Ceram. Soc., 65 (1982) 566.
Nikolopoulos, P. and Sotiropoulou, D., Surface and interfacial energies in zirconia-liquid metal systems. Zirconia ’88, Advances in Zirconia Science and Technology. ed. by Meriani, S. and Palmonari, C., Elsevier Applied Science, London and New York (1988) 203.
Nikolopoulos, P., Ondracek, G. and Sotiropoulou, D., Wettability and interfacial energies between zirconia ceramic and liquid metals. Ceramics International, 15 (1989) 201.
Ruhle, M. Claussen, N. and Heuer, A. H., Transformation and microcrack toughening as complementary processes in ZrO2-toughened Al2O3. J. Am. Ceram. Soc., 69 (1986) 195.
Ruhle, M. Kraus, B., Strecker, A. and Weidelich, D., In-situ observations of phase transformation in ZrO2-containing ceramics. Advances in Ceramics, Vol. 12, Science and Technology of Zirconia II. ed. by Claussen, N., Ruhle, M. and Heuer, A. H., American Ceramic Society, Columbus, OH (1985) 256.
Ryshkewitch, E., Compression strength of porous sintered alumina and zirconia (9th communication to ceramography). J. Am. Ceram. Soc., 36 (1953) 65.
Selsing, J., Internal stresses in ceramics. J. Am. Ceram. Soc., 78 (1961) 419.
Shin, Y. S., Rhee, Y. W. and Kang, S. J., Experimental evaluation of toughening mechanisms in alumina-zirconia composites. J. Am. Ceram. Soc., 82 (1999) 1229.
Sotiropoulou, D. and Nikolopoulos, P., Work of adhesion in ZrO2-liquid metal systems. J. Mater. Sci., 28 (1993) 356.
Spriggs, R. M. and Vasilos, T., Effect of grain size on transverse bend strength of alumina and magnesia. J. Am. Ceram. Soc.,46 (1963) 224.
Sun, X. and Yeomans, J. A., Microstructure and fracture toughness of nickel particle toughened alumina matrix composites. J. Mater. Sci., 31 (1996) 875.
Taya, M., Hayashi, S., Kobayashi, A. S. & Yoon, H. S., Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J. Am. Ceram. Soc., 73 (1990) 1382.
Tuan, W. H. and Brook, R. J., The toughening of alumina with nickel inclusions. J. European Ceram. Soc., 6 (1990) 31.
Tuan, W. H. and Chen, W. R., Mechanical properties of alumina-zirconia-silver composites. J. Am. Ceram. Soc., 78 (1995) 465.
Tuan, W. H. and Chen, W. R., The interactions between silver and zirconia inclusions and their effects on the toughening behaviour of Al2O3/(Ag+ZrO2) composites. J. European Ceram. Soc., 14 (1994) 37.
Wang, J and Stevens, R., Review: zirconia-toughened alumina (ZTA) ceramics. J. Mater. Sci., 24 (1989) 3421.
Wang, J. and Stevens, R. Toughening mechanisms in duplex alumina-zirconia ceramics. J. Mater. Sci., 23 (1988) 804.
Wei, G. C. and Becher, P. F., Development of SiC-whisker-reinforced ceramics. Am. Ceram. Soc. Bull., 64 (1985) 298.
Witek, S. R. and Butler, E. P., Zirconia particle coarsening and the effects of zirconia additions on the mechanical properties of certain commercial aluminas. J. Am. Ceram. Soc., 69 (1986) 523.
Wurst, J. C. and Nelson, J. A., Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics. J. Am. Ceram. Soc., 55 (1972) 109.
Yoe, J. H., Surface tension of liquid elements. CRC Handbook, 58th edition, ed. by Weast, R. C., CRC Press, Florida (1978 A) F-33.
Yoe, J. H., Surface tension of liquid elements. CRC Handbook, 58th edition, ed. by Weast, R. C., CRC Press, Florida (1978 B) F-25.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊