跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 05:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林慶章
研究生(外文):Ching-Jang Lin
論文名稱:利用MOCVD及燒結製程製備納米鉬/氧化鋁複合材料及其微結構發展
論文名稱(外文):Microstructural Development and Preparation of Nano-Mo/Al2O3 Composites via MOCVD and Densification Process
指導教授:韋文誠韋文誠引用關係
指導教授(外文):Wen-Cheng J. WEI
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:180
中文關鍵詞:DEM模擬納米複合材料有機金屬化學蒸鍍流體床氧化鋁層狀梯度3-D階層組織
外文關鍵詞:DEM simulationnano-compositeMOCVDfluidized bedmolybdenumaluminalaminated-gradienthierarchical structure
相關次數:
  • 被引用被引用:4
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本研究結合有機金屬化學蒸鍍(Metal-Organic Chemical Vapor Deposition, MOCVD)和流體床 (Fluidized Bed) 的製程技術,製備金屬鉬/氧化鋁陶瓷複合粉體。研究使用鉬的碳氧化物蒸鍍在流體化的氧化鋁陶瓷粉末上,但微細的陶瓷粉末由於數種相互作用力(如凡得瓦爾力 (van der Waals Force) 等)的作用,而傾向形成聚結 (granule)。本研究利用電腦模擬,藉由離散元素法(Discrete Element Method, DEM)來模擬粉末聚結中,顆粒與顆粒間在流體床中之動態交互作用。模擬結果顯示聚結團因為流體化而產生碰撞,軟聚結在超過臨界的碰撞速度下產生破裂,而聚結強度和粉末聚結的堆積密度及粉末顆粒與顆粒間結合力的形態有關。模擬的結果並和四種不同堆積密度的聚結之強度試驗結果及微結構分析,相互比較。
對氣態擴散在多孔性基材(聚結或平板)中的研究,有助於瞭解氣態分子的蒸鍍機構及微結構發展。氣態鉬分子藉由常態擴散 (ordinary diffusion) 蒸鍍在多孔性基材的表面及紐森擴散 (Knudsen diffusion) 蒸鍍在多孔性基材的內部。藉由熱重分析儀 (TGA)、X-光繞射分析(XRD)、掃描式電子顯微鏡 (SEM)、電子探測微分析儀 (EPMA) 及穿透式電子顯微鏡 (TEM) 的分析,其微結構及定量分析結果顯示,鉬分子擴散進入聚結或平板的次微米孔隙中,硬聚結及平板中的鉬含量從表面到內部呈現指數遞減的趨勢 ; 而軟聚結的鉬含量則呈現均勻等量的分佈,其金屬鉬的含量高達24%(重量比)。此結果印証軟聚結在流體床中分離 (dis-integration) 和再結合 (re-association) 的現象,增進鉬的均勻分佈,與模擬結果相當一致。
由MOCVD製程所獲得的鉬/氧化鋁陶瓷複合粉體,藉由熱膨脹儀的燒結緻密化行為研究、SEM、TEM和EPMA的微結構觀察及分析結果顯示,二次相鉬分子,會延緩氧化鋁陶瓷燒結第一階段的發生,納米鉬並阻礙氧化鋁的晶粒成長。本研究特別探討,二次相鉬含量及大小對氧化鋁晶粒成長的影響及關係。
藉由次微米粉末顆粒與顆粒間之動態交互作用、Mo(CO)6之裂解和擴散機構、燒結行為及微結構發展的研究及瞭解,本研究製備出多種納米鉬/氧化鋁陶瓷複合材料,包括均勻分佈 (well-dispersed)、 層狀梯度 (laminated-gradient) 及3-D階層組織 (hierarchical structure)。其中,以熱壓製程製備之均勻分佈的納米鉬/氧化鋁陶瓷複合材料,具備優異的機械性質,當納米鉬含量為2.5%(體積比)時,其氧化鋁的晶粒大小為0.8 m,四點彎曲強度提昇60%,抗磨耗率提昇三倍 ; 而層狀梯度材料,在沿著鉬層方向,則具備金屬的導電性質。
A process utilizing metal-organic chemical vapor deposition (MOCVD) was conducted on porous Al2O3 tapes or granules for the preparation of Mo-species/ceramic composites. The modeling of particle-particle interaction dynamics and a discrete element method (DEM) were employed to understand the microscopical behavior of particles and the granule motion in fluidized bed. The simulation results reveal that the granules float and collide against boundary walls or each other. The dis-integration of soft granules under specified impingement angles and velocities is presented in order to reveal the fundamentals, governing the adhesive strength of the granules. The criteria obtained from the simulation are compared with the experimental results of the apparent yield strength and microstructures of four granules with various states.
The phenomena of gas diffusion through porous matrices were studied so to better understand the deposition mechanisms and to control the developed microstructure. The molybdenum species diffused and deposited on fine Al2O3 ceramic powder during fluidization. The gaseous Mo-species transport by an ordinary diffusion onto the surface of Al2O3 tapes or granules and by Knudsen diffusion inside the porous Al2O3 matrix. The deposited Mo2OxCy formed in various stages and the microstructure of deposited granules and deposited layer were analyzed by thermogravimetric analyzer (TGA), X-ray diffractometry (XRD), scanning electron microscopy (SEM), electron probe X-ray microanalyzer (EPMA), and transmission electron microscopy (TEM) techniques. The quantitative analysis and morphologies show that Mo-species diffuse into sub-micron capillaries in the granules during the MOCVD fluidization process and appear similar concentrations (as high as 24 wt%) of Mo-species through the whole interior of the soft granules. But, the contents of Mo of hard granules and tapes decrease from the surface to the center. The phenomena are consistent with the DEM simulation results, revealing the possible dis-integration and re-association of soft granules occurred during fluidization.
The prepared composite tapes or granules were either pressureless sintered or hot-pressed in H2 or vacuum atmospheric conditions. The sintering behavior and microstructure of deposited composite were analyzed by dilatometry, SEM, EPMA, and TEM techniques. The Mo retards the first stage of sintering and results in finer Al2O3 grains in matrix. The densification behaviors and microstructure developments of Al2O3 matrices containing Mo second phase inclusions were discussed, with special emphasis on the effects of second phase with various volume fraction and size. The densification, flexural strength, fracture toughness, wear, electrical resistance and microstructural properties of the dense nano-Mo/Al2O3 composites were investigated and presented. The nano-inclusion of Mo grains inhibited the grain growth of alumina. A mean grain size (0.8 *m) of Al2O3 (hot-pressing specimen) was observed as the volume fraction of Mo increased to 2.5 vol%. The fracture strength is greatly improved (60%) due to the composites with the uniformly distributed Mo inclusions and the refinement of Al2O3 grain size. The wear resistance of the nano-Mo/Al2O3 is about 3 times better than that of pure Al2O3.
Through the understanding of the particle-particle interaction dynamics of fine powder in fluidized bed, the pyrolysis and diffusion mechanism of Mo(CO)6, the grain growth mechanism of Mo-species, and the densification behavior, several types of nono-Mo/Al2O3 composites are proposed. Those appeared from well dispersed two-phase nano-composites to gradient, or 3-dimensional hierarchical structure were developed and fabricated.
Cover
中文摘要
Abstract
Content
List of Tables
List of Figures
Chapter 1 Introduction
Chapter 2 Literature Review
2.1 Surface Force
2.1.1 van der Waals Forces
2.1.2 Electrostatic Forces
2.1.3 Capillary Forces
2.1.4 Structural Forces and Solvation Forces
2.1.5 Hydrophobic Forces
2.1.6 Short-Ranged Forces
2.1.7 Hydrodynamic Forces
2.1.8 Effects of impurities
2.2 DEM Simulation in Ceramic Processing
2.2.1 DEM Simulation in Fluidization
2.2.2 DEM Simulation in Agglomerates
2.2.3 DEM Simulation in Colloidal Processing
2.3 Gas-Solid Reaction in Fluidized Bed
2.3.1 Fluidization Behavior
2.3.2 Properties of Gas Fluid
2.3.3 CVD in Fluidized Bed
2.3.4 Difusion through Porous Solid Matrix
2.4 Microstructural Development of Nanocomposite
2.4.1 Basic Concept of Nanocomposites
2.4.2 The Effect of Second-Phase Inclusion
2.4.3 Reaction during Sintering
2.4.4 Mo/Al2O3 Composites
Chapter 3 Experimental
3.1 Materials
3.2 Processing Operation
3.3 Characterization of Nanocomposites
Chapter 4 Results and Discussion
4.1 Fluidization and Simulation
4.1.1 Modeling of Particle Interaction Dyuamics and DEM Simulation Conditions
4.1.2 Results of Simulation
4.1.3 Results of Fluidization Behavior
4.1.4 Characterization of Deposited Powder
4.1.5 Granule Dis-integration and Re-association
4.1.6 Granule Strength
4.2 MOCVD in Porous Matrices
4.2.1 Pyrolysis of Molybdenum Carbonyl
4.2.2 Deposition of Mo-Species on Porous Alumina Matrices
4.2.3 Gas Trasport Mechanisms in Porous Matrices
4.3 Sintering Behavior and Microstructural Development
4.3.1 Thermal-Mechanical Analysis(TMA)
4.3.2 Microstructural Analysis by TEM
4.3.3 Well-dispersed and Hierarchical Structure
4.3.4 Gradient Structure
4.3.5 Microstructural Development
4.3.6 Systematical Development of Two-Phase Composites
4.3.7 Property Characterization
Chapter 5 Conclusion
5.1 Fluidization and Simulation
5.2 MOCVD in Porous Matrices
5.3 Sintering Behavior and Microstructural Development
References
Appendix
Publication
Resume
作者 簡歷
References
1. Roy, R., R. A. Roy, and D. M. Roy (1986) “Alternative perspectives on quasi-crystallinity: Non-uniformity and nanocomposites,” Mater. Lett., 4, pp. 323-328.
2. Niihara, K. (1991) “New design concept of structural ceramics — ceramic nanocomposites,” J. Ceram. Soc. Jpn., 99 (10), pp. 947-982.
3. Kinemuchi, Y., T. Yanai, and K. Ishizaki (1996) “In-situ formation of Si3N4-nano SiC composite,” Nanostruct. Mat., 9, pp. 23-32.
4. Nawa, M., T. Sekino, and K. Niihara (1994) “Improvement of fracture toughness of Al2O3/Mo nanocomposites,” J. Mat. Sci., 29, pp. 3185-3192.
5. Nawa, M., K. Yamazaki, T. Sekino, and K. Niihara (1994) “A new type of nanocomposite in TZP-Mo system,” Mat. Letters., 20, pp. 299-304.
6. Wei, W. J., S. C. Wang and F. H. Cheng (1998) “Microstructural development of Al2O3-compoistes with fine Mo particulates, I. Microstructural development,” NanoStructured Mat., 10 (6), pp. 965-981.
7. Wang, S. C. and W. J. Wei (1998) “Microstructural development of Al2O3-compoistes with fine Mo particulates, II. Densification and mechanical properties,” NanoStructured Mat., 10 (6), pp. 983-1000.
8. Hahn, H. (1997) “Gas phase synthesis of nano-crystalline materials,” NanoStructured Mat., Vol.9, pp. 3-12.
9. McCreary, W.J. (1975) “Microspherical laser targets by CVD,” Proc. 5th Int. Conf. On CVD Electrochemical Society, Princeton, NJ, pp. 714-725.
10. Geldart, D. (1973) “Types of fluidization,” Powder Technol., 7, pp. 285-290.
11. Kwauk, M. (1992) “Fluidization, Idealized and Bubbleless, with Applications,” Chap.14: Powder Assessment, pp. 229-232, Ellis Horwood, New York, NY, USA.
12. Lange, F. F. (1989) “Powder processing science and techanology for increased reliability,” J. Am. Ceram. Soc., 72 (1), pp. 3-15.
13. Horn, R. G. (1990) “Surface force and their action in ceramic materials,” J. Am. Ceram. Soc., 73 (5), pp. 1117-1135.
14. Cundall, P. A. (1971) “A computer model for simulating progressive, large-scale movements in block rock systems,” Proceedings of the Symposium of the International Society of Rock Mechanics, Vol. II, Art. 8, Nancy, France.
15. Cundall, P. A. and O. D. L. Strack (1979) “A discrete numerical model for granular assemblies,” Geotechnique, 29, pp. 47-65.
16. Tsuji, Y., T. Kawaguchi, and T. Tanaka (1993) “Discrete particle simulation of two-dimensional fluidized bed,” Powder Technology, 77, pp. 79-87.
17. Tsuji, Y., T. Tanaka, and S. Yonemura (1994) “Particle induced turbulence,” Appl. Mech. Rev., 47 (6), part 2, pp. 75-79.
18. Hong, C. W. (1996) “Discrete element modeling of colloidal packing dynamics during centrifugal casting,” J. Ceram. Soc. Jpn., 104 (9), pp. 793-795.
19. Hong, C. W. (1997) “New concept for simulating particle packing in colloidal forming processes,” J. Am. Ceram. Soc., 80 (10), pp. 2517-2524.
20. Hong, C. W. (1998) “From long-range interaction to solid-body contact between colloidal surfaces during forming,” J. Europ. Ceram. Soc., 18, pp. 2159-2167.
21. Hunter, R. J. (1987) “Foundations of Colloid Science,” Vol. 1, pp. 168-227, Oxford University Press, New York, NY, USA.
22. Bergstroem, L., A. Meurk, H. Arwin, and D. J. Rowcliffe (1996) “Estimation of Hamaker constants of ceramic materials from optical data using Lifshitz theory,” J. Am. Ceram. Soc., 79 (2), pp. 339-348.
23. Israelachvili, J. N. and B. W. Ninham (1997) “Intermolecular forces ─ the long and short of it,” J. Colloid Interface Sci., 58, pp. 14-25.
24. Hwang, K. S., R. M. German, and F. V. Lenel (1987) “Capillary forces between spheres during agglomeration and liquid phase sintering,” Metallurgical Transactions A, 18A, pp. 11-17.
25. Bruley, J., J. Cho, H. M. Chan, M. P. Harmer, and J. M. Rickman (1999) “STEM analysis of grain boundaries in creep-resistance Y- and La-doped Al2O3 microstructures,” J. Am. Ceram. Soc., 82 (10), pp. 2865-2870.
26. Kawaguchi, T. (1995) “Numerical simulation of two-dimensional fluidized beds using DEM (The case of spouted bed: Comparison between 2-D model and 3-D model),” Trans. of the Japan Soc. of Mech. Eng., Part B, 61, 589, pp. 3169-3175.
27. Yuu, S. (1995) “Three-dimensional numerical simulation of the motion of particles discharging from a rectangular hopper using distinct element method and comparison with experimental data (effects of time steps and material properties),” Advanced Powder Tech., 6, 4, pp. 259-269.
28. Hoomans, B. P. B., J. A. M. Kuipers, W. J. Briels and W. P. M. Van Swaaij (1996) “Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized bed: a hard-sphere approach,” Chem. Eng. Sci., 51 (1), pp. 99-118.
29. Mikami, T. (1998) “Numerical simulation of cohesive powder behavior in a fluidized bed,” Chem. Eng. Sci., 53, 10, pp. 1927-1940.
30. Fan, L. S., J. Zhang, Y. Li, C Zhu, R. Pfeffer, and D. Qi (1999) “Particle and bubble dynamics in gas-liquid-solid fluidization,” 化工冶金增刊, Vol. 20, pp. 69-73, 珠海, 中國.
31. Mishra, B. K., R. K. Rajamai (1994) “Simulation of charge motion in ball mills. Part 2: Numerical simulations,” Inter. J. of Mineral Processing, 40 (3-4), pp. 187-197.
32. Agrawala, S. (1997) “Mechanics of media motion in tumbling mills with 3D discrete element method,” Minerals Eng., 10 (2), pp. 215-227.
33. Lian, G., C. Thornton, and M. J. Adams (1997) “A microscopic simulation of oblique collisions of ‘wet’ agglomerates,” In: Powder & Grains 97, pp. 159-162, R. P. Behringer and J. T. Jenkins Eds, Balkema, Rotterdam, The Netherlands.
34. Greening, D. R., G. G. W. Mustoe, and G. L. DePoorter (1997) “Discrete Element Modeling of Fabrication Flaw Precursors in the Compaction of Agglomerated Ceramic Powders,” In: Powder & Grains 97, pp.113-116, R. P. Behringer and J. T. Jenkins Eds, Balkema, Rotterdam, The Netherlands.
35. Bortzmeyer, D. (1997) “Mechanical properties and attrition resistance of porous agglomerates,” In: Powder & Grains 97, pp. 121-124, R. P. Behringer and J. T. Jenkins Eds, Balkema, Rotterdam, The Netherlands.
36. Houghton, E. L., N. B. Carruthers (1986) “Aerodynamics for Engineering Students,” third edition, Chapter 2. The relevant properties of a fluid. pp. 9-18, Edward Arnold Co., USA.
37. Davidson, J. F. and D. Harrison (1971) “Fluidization,” pp. 1-64, Academic Press, New York, NY, USA.
38. Wen, C. Y. and Y. H. Yu (1966) “A generalized method for predicting the minimum fluidization velocity,” A. I. Ch. E. Jour., 12 (3), pp. 610-612.
39. Cheremisinoff, N. P. and P. N. Cheremisinoff (1986) “Hydrodynamics of Gas-Solid Fluidization,” pp. 137-206, Gulf Publishing Co. London, U. K.
40. Hughes, W. F. and J. A. Brighton (1967) “Fluid Dynamics,” pp. 243-245, Schaum Publishing Co., New York, USA.
41. Kanen, John D. (1986) “Applied Hydraulics for Technology,” Chapter 6 Fluid flow. pp. 172-184, Holt, Rinehart and Winston Co., New York, NY, USA.
42. Wei, W. J. and M. H. Lo (1998) “Processing and properties of (Mo,Cr) oxycarbides from MOCVD,” Appl. Organometal. Chem., 12, pp. 201-220.
43. Lo, M. H. and W. J. Wei (1997) “Analysis of (Cr,Mo) oxycarbide films grown on stainless steel via metalloorganic chemical vapor deposition,” J. Am. Ceram. Soc., 80 (4), pp. 886-892.
44. Morooka, S., K. Kusakabe, A. Kobata and Y. Kato (1988) “Fluidization state of ultrafine powders,” J. Chem. Eng. Jpn., 21, pp. 41-46.
45. Matsukata, M., K. Suzuki, K. Ueyama, T. Kojima (1994) “Development of a microwave plasma-fluidized bed reactor for novel particle processing,” Inter. J. of Multiphase Flow, 20, n 4, pp. 763-773.
46. Wood, B. J., A. Sanjurjo, G. T. Tong, S. E. Swider (1991) “Coating particles by CVD in fluidized bed reactors,” Surface & Coatings Tech., V 49, n 1-3, pp. 228-232, San Diego, CA, USA.
47. Itoh, H., N. Watanabe, S. Naka (1988) “Preparation of titanium nitride coated powders by rotary powder bed CVD,” J. of Mater. Sci., 23, pp. 43-47.
48. Itoh, H., K. Hattori, S. Naka (1989) “Rotary powder bed CVD of titanium nitride on spherical iron powder,” J. of Mater. Sci., 24, pp. 3643-3646.
49. Li, C. Z., J. Y. Han, Z. T. Zhang, and H. C. Gu (1999) “Preparation of TiO2-coated Al2O3 particles by CVD in rotary reactor,” J. Am. Ceram. Soc., 82 (8), pp. 2044-2048.
50. Williams, B. E., J. J. Jr. Stiglich, R. B. Kaplan (1991) “CVD coated tungsten powder composites, Part I. Powder processing and characterization,” pp. 95-101, Publ. by Minerals, Metals & Materials Soc. (TMS), Warrendale, PA, USA.
51. Kimura, I. (1989) “Synthesis of TiN/Al2O3 composite powder by floating-type fluidized-bed CVD,” J. of Ceram. Soc. of Jpn., 97, n12, pp. 1525-1529.
52. Kimura, I. (1991) “Synthesis of AlN/SiC composite powders by floating-type fluidized-bed CVD,” Powder Tech., 68, n2, pp. 153-158.
53. Tsugeki, k. T. Kato, Y. Koyanagi, K. Kusakabe, S. Morooka (1993) “Electroconductivity of sintered bodies of —Al2O3-TiN composite prepared by CVD reaction in a fluidized bed,” J. Mater. Sci., 28, pp. 3168-3172.
54. Itagaki, T. (1995) “Coating of HfC on tungsten powder by fluidized bed CVD,” J. of Jpn. Institute of Metals, 59, 11, pp. 1157-1164.
55. Lander, J. J. and L. H. Germer (1947) “Plating molybdenum, tungsten and chromium by thermal decomposition of their carbonyls,” Metal. Tech., 14 (6), pp. 1-42.
56. Kmetz, B. J. Tan, W. Willis, S. Suib, (1991) “CVD Mo, W, and Cr oxycarbide, carbide and silicide coating on SiC yarn,” J. of Mater. Sci., 26, pp. 2107-2110
57. Matsuura Y. and Harrington, J. A. (1995) “Infrared hollow glass waveguides fabricated by chemical vapor deposition,” Optics Letters, 20 (20), pp. 2078-2080.
58. Szekely, J., J. W. Evans, and H. Y. Sohn (1976) “Gas-Solid Reactions,” pp. 23-46, Academic Press, New York, NY, U. S. A.
59. Steinherz, H. A. (1963) “Handbook of High Vacuum Engineering,” pp. 13-25, Reinhold Publishing Co., New York, U. S. A.
60. Niihara, K. and A. Nakahira (1991) “Structural ceramic nanocomposites by sintering method: roles of nano-size particles: Towards the 21st Century,” The Ceramic Society of Japan, pp. 404-417.
61. Siegel, R. W. (1994) “Nanostructured materials - mind over matter,” Nanostructured Mater., 4 , No. 1, pp. 121-138.
62. Pezzotti, G., V. Sergo, K. Ota, O. Sbaizero, N. Muraki, T. Nishida and M. Sakai (1996) “Residual stresses and apparent strengthening in ceramic-matrix nanocomposites,” J. Ceram. Soc. Jap., 104, No.6, pp. 479-503.
63. Sternitzke, M. (1997) “Review: structural ceramic nanocomposites,” J. Europ. Ceram. Soc., 17, pp. 1061-1082.
64. Ohji, T., Y. K. Jeong, Y. H. Choa, and K. Niihara (1998) “Strengthening and toughening mechanisms of ceramic nanocomposites,” J. Am. Ceram. Soc., 81 (6), pp. 1453-1460.
65. Stearns, L. C., J. Zhao, and M. P. Harmer (1992) “Processing and microstructure development in Al2O3-SiC nanocomposites,” J. Europ. Ceram. Soc., 10, pp. 473-477.
66. Stearns, L. C. and M. P. Harmer (1996) “Particle-inhibited grain growth in Al2O3-SiC: I. Experimental results,” J. Am. Ceram. Soc., 79 (12), pp. 3013-3019.
67. Stearns, L. C. and M. P. Harmer (1996) “Particle-inhibited grain growth in Al2O3-SiC: II. Equilibrium and kinetic analyses,” J. Am. Ceram. Soc., 79 (12), pp. 3020-3028.
68. Huang, Jow-Lay and Ching-Jang Lin (1993) “The role of elastic property mismatch in the failure of ceramic composites,” J. Mater. Sci., 28, pp. 1074-1080.
69. Brook, R. J. (1969) “Pores and grain growth kinetics,” J. Am. Ceram. Soc., 52 (6), pp. 339-340.
70. Chiang, Y. M., D. Birnie III, and W. D. Kingery (1997) “Physical Ceramics,” pp. 371-391, John Wiley & Sons, New York , NY, USA.
71. Brook, R. J. (1969) “Pores-grain boundary interactions and grain growth,” J. Am. Ceram. Soc., 52 (1), pp. 56-57.
72. German, R. M. (1996) “Sintering Theory and Practice,” pp.115-121 & pp. 282-284, John Wiley & Sons, INC., NJ, USA.
73. Gorden, P. (1968) “Principles of phase diagrams in materials systems,” pp. 1613-1614, McGraw-Hill, NY, USA.
74. Cheney, R. F. (1984) “Sintering of refractory metals,” in Powder Metallurgy, Metal Handbook, Vol. 7, 9th Ed., pp. 389-393, ASM, Metals Parks, Ohio, USA.
75. Hwang, K. S. (1994) “Powder Metallurgy Technology Handbook,” Chap. 17 High Melting Metal Materials, pp. 359-374, ROC.
76. Wang, S. F., J. P. Dougherty, W. Huebner, and J.G. Pepin (1994) “Silver-palladium thick-film conductors,” J. Am. Ceram. Soc., 77 (12), pp. 3051-3072.
77. Mchugh, C. O., T. J. Whalen, and M. Humenik, JR. (1966) “Dispersion-strengthened aluminum oxide,” J. Am. Ceram. Soc., 49 (9), pp. 486-491.
78. Rankin, D. T., J. J. Stiglich, D. R. Petrak, and R. Ruh (1971) “Hot-pressing and mechanical properties of Al2O3 with an Mo-dispersed Phase,” J. Am. Ceram. Soc., 54 (6), pp. 277-281.
79. Waku, Y., M. Suzuki, Y. Oda, and Y. Kohtoku (1995) “Improvement of fracture toughness of Al2O3 composites by micro-dispersion flaky refractory metal Mo, Ta and Nb,” J. Ceram. Soc. Jpn., 103, pp. 702-708.
80. Simpson, L. A. and A. Wasylyshyn (1971) “Fracture energy of Al2O3 containing Mo fibers,” J. Am. Ceram. Soc., 54 (1), pp. 56-57.
81. Matsumoto, R. L. K. (1986) “Generation of powder compaction response diagrams,” J. Am. Ceram. Soc., 69 (10), C-246-C247.
82. Walker, Jr. W. J. and J. S. Reed (1999) “Influence of granule character on strength and Weibull modulus of sintered alumina,” J. Am. Ceram. Soc., 82 (1), pp. 50-56.
83. Nishitani, H., K. Mori and H. Noguchi (1986) “Analysis of single-edge-cracked specimen under three- or four-point bending by body force doublet method,” Trans. Japan Soc. Mech. Eng., 52, 474, pp. 539-543.
84. Keithley (1993) “Low Level Measurements, Precision DC current, Voltage and Resistance Measurement,” Keithley Instruments, Inc. Cleve., OH, USA
85. German, R. M. (1994) “Powder Metallurgy Science,” 2nd Ed., pp. 160-163, MPIF, Princeton, NJ, USA.
86. Rietema, K. (1991) “The Dynamics of Fine Powder,” pp. 152-157. Elsevier Applied Science, New York, NY, USA.
87. Kingery, W. D., H. K. Bowen, and D. R. Uhlmann (1976) “Introduction to Ceramics,” 2nd Ed., pp. 177-216, John Wiley & Sons, New York, NY, USA.
88. Papargyris, A. D. (1998) “Estimator type and population size for estimating the Weibull modulus in ceramics,” J. E. Ceram. Soc., 18, pp. 451-455.
89. Lok, Y. K. and T. C. Lee (1997) “Processing of advanced ceramics using the wire-cut EDM process,” J. Mat. Pro. Tech., 63, pp. 839-843.
90. Okuyama, F. and Y. Fujimoto (1984), J. Appl. Phsy., 56, p. 566.
91. Flynn, D. K., J.I. Steinfeld and D. S. Sethi (1986), J. Appl. Phsy., 59, p. 3914.
92. Ferguson, I.F., J. B. Hinseough, D. Morse and A.W. Miller (1964), Nature (London) 202, p. 1327.
93. McLachlan, D. S., M. Blaszkiewicz, and R. E. Newnham (1990) “Electrical resistivity of composites,” J. Am. Ceram. Soc., 73 (8) pp. 2187-2203.
94. Wurst, J. C. and J. A. Nelson (1972) “Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics,” J. Am. Ceram. Soc., 55 (2) p. 109.
95. Shewmon, P. G. (1986), “Diffusion in Solid,” pp. 54-62, McGraw-Hill Co., New York, NY, USA.
96. Leasage, B and A. M. Huntz (1983), J. Mater. Sci., 18, p. 189.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top