跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊木榮
研究生(外文):Mu-Rong Yang
論文名稱:利用表面改質改善鈦鋁及鈦鎳介金屬的氧化和腐蝕性質
論文名稱(外文):Oxidation / Corrosion Resistance Improvements of TiAl and TiNi Intermetallics by Using Surface Modification
指導教授:吳錫侃
指導教授(外文):Shyi-Kaan Wu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:211
中文關鍵詞:鈦鋁介金屬鈦鎳形狀記憶合金高溫抗氧化預氧化陽極處理電漿輔助化學沈積法生醫金屬電化學阻抗頻譜分析
外文關鍵詞:TiAl intermetallicsTiNi shape memory alloyshigh temperature oxidation resistancepre-oxidationanodic coatingsplasma enhanced chemical vapor deposition (PECVD)bio-metalselectrochemical impedance spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:2
T-50Al 介金屬可藉著預氧化和陽極處理,來改善其在高溫的抗氧化性。在本論文的三種改善鈦鋁介金屬的高溫抗氧化方法中,以在磷酸溶液的陽極處理效果最好,而在純氧預氧化則比在空氣預氧化和後續的拋光的方法稍好。於800oC空氣中,經48小時的預氧化及後續的拋掉三層氧化層中最外層的TiO2的方法來改善Ti-50Al的高溫抗氧化性,可歸因於其除去TiO2所造成的壓應力減少,藉此可減緩氧化層龜裂或破裂,同時也可以降低氧化層中的應力輔助擴散。除去具有觸媒作用的TiO2也可減緩離子態氧的提供而改善了Ti-50Al的高溫抗氧化性。Ti-50Al介金屬的高溫氧化性質也可以藉著在900oC高壓純氧氣氛(~3.9大氣壓)中,經1、4或16小時的預氧化來改善。其中以經1小時氧化的結果最好,當預氧化時間愈長,其後續的高溫抗氧化性則會愈差。在Ti-50Al表面上,氧化物堆(oxide mound)的生成與否可用以評估氧氣預氧化改善鈦鋁介金屬的有效性。在氧化層下的鋁缺乏區中,Z-相(Ti5Al3O2)的形成機構也在此論文中被詳細探討。在18oC的磷酸水溶液中進行陽極處理也可大幅的降低Ti-50Al在800oC空氣氣氛的氧化。當電壓高達400V時,其拋物線速率常數(parabolic rate constant)可比未處理的鈦鋁介金屬降低至原來的1/600。所產生的陽極鈍化膜是非晶質,而且含有不少的磷。此利用含磷的陽極處理膜改善鈦鋁介金屬高溫氧化可歸因於其磷離子摻雜於氧化鈦所導致的減少氧化鈦內氧缺陷。此可由拉曼光譜分析和掃描式電子顯微鏡觀察發現其含磷的陽極處理鈍化膜可減慢氧化物相變化和其氧化層厚度的增加來證實。對於各種陽極處理條件的最佳化,於本論文中也有評估。對於生醫用的鈦鎳形狀記憶合金,其抗蝕性可藉著電漿聚合六甲基二矽胺(plasma-polymerized hexamethyldisilazane, PHMDSN)膜來改善。由紅外線吸收光譜分析和水接觸角的量測可知,較高的直流電漿能量密度所沈積的PHMDSN薄膜較傾向有機特性。在單體壓力為250mTorr時,其直流電壓大於1000V所沈積的PHMDSN薄膜可有效地提高TiNi在林格爾試液(Ringer''s solution)抗蝕性,其腐蝕電流可降低至四個級數之多。浸泡在37oC林格爾試液中,PHMDSN 薄膜的鈍化特性會隨著浸泡時間的增長而劣化。由交流阻抗頻譜儀(Electrochemical impedance spectroscopy)的分析得知,其劣化可歸因於PHMDSN薄膜的吸水。較高的直流電壓和較高的HMDSN單體壓力可得較佳的沈積PHMDN膜,因其所得沈積膜(PHMDSN)較厚而且平整。
The oxidation resistance of Ti-50Al intermetallics has been improved by the duplex process of pre-oxidizing at 800oC’48hr in air and subsequently polishing the outer TiO2 layer of the oxide scale, pre-oxidation for 1, 4 or 16 hours in high pressure pure oxygen (~3.9 atm) at 900oC and anodic coating in phosphoric acid aqueous solution. Among these three methods to enhance the high temperature oxidation resistance, the anodic coating method exhibits the best performance and the pre-oxidation in pure oxygen gives slightly better result than the duplex process. The improvement of oxidation resistance of Ti-50Al by the duplex process is attributable to the compressive stress relief associated with the removal of the outer TiO2 layer. The stress relief will not only alleviate cracking or rupture of the scales, but also reduce the stress-assisted diffusion in the scale. Moreover, the catalytic effect of outer rutile titania, which favors the dissociation of molecular oxygen into oxygen ions, can be dodged by the duplex process. For the pre-oxidation in pure oxygen (~3.9 atm), specimen pre-oxidized for 1h exhibits better oxidation resistance than 4h-or 16hr-pre-oxidized specimen. Prolonged pre-oxidation time can deteriorate the oxidation resistance in 800oC air. The oxide mound occurrence is an important factor for evaluating the effectiveness of the pre-oxidation treatment in oxygen. The formation mechanism of Z-phase (Ti5Al3O2) in the Al-depleted layer beneath the flat oxide scale and the oxide mound is also proposed in this thesis. In the aspect of the anodic coating, cyclic oxidation test indicates that anodized Ti-50Al can remarkably reduce the oxidation rate at 800oC and the improvement increases with increasing the anodizing voltage up to 400V, at which the parabolic rate constant can be reduced to 1/600 of that for as-homogenized TiAl. The reduce of the oxygen vacancies in the titania, resulting from the doping effect of phosphorus ions, is attributable to the improvement against high temperature oxidation of TiAl from the analysis of Raman spectra and SEM observation analyses. The optimal conditions for anodic coating against oxidation resistance of titanium aluminides are also accessed in this thesis. The corrosion resistance of TiNi shape memory alloy can be substantially improved by the DC plasma-polymerized hexamethyldisilazane (PHMDSN) coatings. The higher DC voltage used in plasma polymerization will develop a film with a more inorganic nature from the IR spectrum analysis and water contact angle measurements. The PHMDSN coatings for DC voltage 3 1000V at fixed monomer pressure of 250 mTorr are protective against the corrosion in Ringer''s solution in potentiodynamic polarization test and can be deformed up to a 2% strain. The corrosion current density of the TiNi can be lowered by as many as 4 orders of magnitude. The pitting potential and re-passivation potential of TiNi alloy can also be enhanced to nobler potential after PHMDSN coatings. The durability of the PHMDSN coatings and the mechanism of the passivity of the PHMDSN coatings can be studied by the electrochemical impedance spectroscopy (EIS). It indicates that all specimens deteriorate with the time of immersion in 37oC Ringer''s solution. The deterioration can be attributed to the water uptake from the analysis of the EIS. The optimal parameters to form a protective PHMDSN coating are the higher DC voltage and high HMDSN pressure to get a thick and smooth coating.
Cover
Contents
致謝
Abstract
摘要
1. Introduction
1.1 Oxidation resistance improvement of TiA1 by using preoxidation
1.2 Oxidation resistance improvement of TiAl by using anodizing
1.3 Corrosion resistance improvement of TiNi by plasma-HMDSN coatings
2. Literatural review
2.1 TiAl intermetallic compound
2.1.1 Overview of γ-TiA1 development
2.1.2 Overview of γ-TiA1 alloys
2.1.3 Oxidation kinetics of γ-TiA1 alloys
2.1.4 Mechanism of oxidation of γ-TiA1 alloys
2.1.5 Z phase
2.1.6 Surface finish effect
2.1.7 Current methods to improve the high temperature oxidation
2.2 TiNi shape memory alloys
2.2.1 Overview ot TiNi shape memory alloys(SMAs)
2.2.2 The biocompatibility of TiNi SMAs
2.2.3 Current methods to improve the biocompatibilty of TiNi SMAs
2.2.4 Plasma state and plasma polymerization
2.2.5 AC impedance measurement
3. Experimental procedures
3.1 TiA1 oxidation resistance improvement
3.1.1 TiA1 substrate preparation
3.1.2 Pre-oxidization in air and subsequent polishment
3.1.3 Pre-oxidization in pure oxgen
3.1.4 Anodic coatings
3.2 TiNi bio-compatibility improvement
3.2.1 TiNi substrate preparation
3.2.2 Plasma polymerized HMDSN(PHMDSN) on TiNi SMA
3.3 Characterization
3.3.1 Isothermal oxidation test
3.3.2 Cyclic oxidation test
3.3.3 X-ray diffraction
3.3.4 SEM morphology observation
3.3.5 Glow discharge optical spectroscopy
3.3.6 Thickness measurement
3.3.7 Water contact angle
3.3.8 Infrared spectroscopy
3.3.9 Raman spectroscopy
3.3.10 Potentiodynamic test]
3.3.11 Bending test of the TiNi with PHMDSN coatings
3.3.12 Electrochemical impedance spectroscopy
4. TiA1 oxidation resistance improvement by pre-oxidization in air and subsequent polishing
4.1 Microstructures of the pre-oxidized specimens in air
4.2 The oxidation kinetics of the cyclic oxidation test
4.3 Microstructures of pre-oxidized specimens after cyclic oxidation
4.4 Mechanism of the oxidation-resistanct improvement
4.5 Conclusions
5. TiA1 oxidation resistance improvement by pre-oxidization in high pressure oxygen
5.1 Microstructures of the pre-oxidized specimens
5.2 XRD anlaysis of the pre-oxidized specimens
5.3 The formation mechanism of Z-phase in the A1-depleted layer beneath the flat oxide scale
5.4 The formation mechanism of Z-phase in the A1-depleted layer beneath the oxide mound
5.6 Microstructures of pre-oxidized specimens after cyclic oxidation
5.7 Effect of oxygen pressure and pre-oxidation time on the oxidation resistance improvement of Ti-50A1 alloy
5.8 Conclusions
6. TiA1 oxidation resistance improvement by anodizing ing phosphorous acid solution
6.1 Anodizing process ot Ti-50A1 specimen
6.2 Microstructure of the anodic coatings
6.3 The cyclic oxidation kinetics of TiA1 with the anodic coatings
6.4 Microstructures of anodized speciments after cyclic oxidation
6.5 Mechanism of the oxidation-resistant improvement
6.6 Optimizatoin of operational parameters of anodization phosphoric aqueous solution
6.7 Conclusions
7. TiNi corrosion resistance improvement by plasma-HMDSN coatings
7.1 Depositions rate
7.2 FTIR
7.3 Water contact angle
7.4 Surface morphologies of deposited films
7.5 Corrosion resistance
7.6 Electrochemical impedance spectroscopy
7.7 Bending test
7.8 Conclusions
8. Conclusions
Reference
Publications
1. R.L. Fleisher, J. Mater. Sci., 22 (1987) 2281.
2. T. Suzuki and H. Umehara, J. Mater. Res. 9(8) (1994) 1984.
3. T. Tetsui, S. Ono, Intermetallics 7 (1999) 689.
4. H.A. Lipsitt, Proc. MRS. Sym., 39 (1985) 35.
5. D.M. Dimiduk, D.B. Miracle and C.H. Ward, Mater. Sci. Tech. 8(4) (1992) 367.
6. M. Fukaya, P.Z. Zhao, T. Kozakai and T. Miyazaki, JOM, 25(1990) 522.
7. E.P. George, M. Yamaguchi, K.S. Kumar and C.T. Liu, Annu. Rev. Mater. Sci., 24 (1994) 409.
8. M. Yamaguchi, Y. Umakoshi and T. Yamane, Proc. MRS, 1987, p.81.
9. D.M. Dimiduk, D.B. Miracle, Y.W. Kim, M.G. Mendiratta, ISIJ International 31(10) (1991) 1223.
10. H.A. Lipsitt: in "High temperature ordered intermetallic alloys", MRS Proc. Vol. 39, (ed. C.C. Koch et at.); 1985, p.351.
11. F. Zhang, S.L. Chen, Y.A. Chang, and U.R. Kattner, Intermetallics 5 (1997) 471.
12. S.C. Huang, E.L. Hall and M.F.X. Gigliotti, High-Temperature Ordered Intermetallic Alloy II, ed. N.S. Stoloff, CC.Koch, C.T. Liu and O. Izumi (Pittsburgh, PA:MRS, 1987), p.481.
13. J.L. Murray, Binary Phase Diagram, ed. T.B. Massalski (Metals Park, OH: ASM, 1986), p.173.
14. F. Appel, R. Wagner, Mater. Sci. Eng. R22 (1998) 187.
15. H.A. Lipsitt, D. Shechtman, and R.E. Schafrik, Metall. Trans. A, 6A (1975) 1975.
16. Y.W. Kim, JOM, July, (1989) 24.
17. J.D. Sunderkotter, H.J. Schmutzler, V.A.C. Haanappel, R. Hofman, W. Glatz, H. Clemens and M.F. Stroosnijder, Intermetallics 5(7) (1997) 525.
18. Y.W. Kim JOM, 41(7) (1994) 30.
19. F.H. Froes, C. Suryanarayana, D. Eliezer, J. Mater. Sci. 27 (1992) 5113.
20. M. Yamaguchi, Mater. Sci. Tech., 8 (1992) 299.
21. Y.W. Kim: High-Temperature Ordered Intermetallics Alloys IV, ed. By J.O. Siegler, L.A. Johnson and D.P. Pope, MRS Symp. Proc., Vo. 213, MRS, Pittsburgh, (1991) p. 777.
22.J.C. Beddoes, W. Wallace and M.C. de Malherbe., Mater. Manufacturing Processes, 7 (1992) 527.
23. S.C. Huang and E.L. Hall, Metall. Trans. A, 22 (1991) 427.
24. R.A. Varin and M.B. Winnicka, Mater. Sci. Eng. A137 (1991) 93.
25. G.E. Co., US patent 5,545,265, Aug. 13, 1996.
26. M. Yamaguchi and H. Inui, Structural Intermetallics (Warendale, PA: TMS, 1993) p. 1467.
27. I.C.I Okafor and R.G. Reddy, JOM, June (1999) 35.
28. G. Welsch and A.I. Kahveci, "Oxidation behaviou of titanium lauminide alloys", in Oxidation of High-Temperature Intermetallics, edited by T. Grobstein and J. Doychak, The Mineral, Metals & Materials Society, 1989, p.207.
29. A. Rahmel and P.J. Spencer, Oxid. Meta. 35 (1991) 53.
30. G. H. Meier, Mater. Sci. Eng., A120 (1989) 1.
31. G.H. Meier and F.S. Pettit, Mater. Sci. Eng., A153 (1992) 548.
32. G.H. Meier and F.S. Pettit, Mater. Sci. Tech., 8 (1992) 331.
33. G.H. Meier in Oxidation of High-Temperature Intermetallics, edited by T. Grobstein and J. Doychak, The Mineral, Metals & Materials Society, 1989, p.1.
34. C. Wagner, Z. Elektrochem., 63, (1959) 772.
35. R.A. Perkins and K.T Chiang, and G.H. Meier, Scripta Metall. Mater., 21 (1987) 1505.
36. G.H. Meier etal., Oxidation of High-Temperature Intermetallics, edited by T. Grobstein and J. Doychak, The Mineral, Metals & Materials Society, 1989, p.185.
37. Y. Shida and H. Anada, Mater. Trans. JIM, 34(3) (1993) 236.
38. A. Rahmel, W.J. Quadakkers, M. Schutze, Werkstoffe und Korrosion, 46 (1995) 271.
39. Umakoshi, M. Yamaguchi, T. Sakagami, T. Yamane, J. Mater. Sci., 24 (1989) 1599.
40. M.G. Fontana, Corrosion Engineering, McGraw-Hill, Inc, New York, 1986, p. 513.
41. P. Kofstad, High Temperature Corrosion, Elsevier Applied Science Pub. Ltd, New York, 1988, p.163.
42. K.Maki, M.Shioda and M. Sayashi, T. Shimizu and S. Isobe, Mater. Sci. Eng., A153 (1992) 591.
43. P. Kofstad, High-temperature Oxidation of Metals, Wiley, New York, 1966.
44. P. Kofstad, High Temperature Corrosion, Elsevier Applied Science Pub. Ltd, New York, 1988, p.132.
45. M.R. Shanabarger, Mater. Sci. Eng., A153 (1992) 608.
46. R.A. Outlaw, W.S. Lee, S.N. Sankaran, D. Wu, and R.K. Clark, Scripta Met, et Mater., 24 (1990) 171.
47. M. Schmitz-Niederau and M. Schutze, Oxid. Meta., 52(3/4) (1999) 225.
48. J.M. Rakowski, F.S. Pettit, G.H. Meier, F. Dettenwanger, E. Schumann and M. Ruhle, Scripta Metall. et Mater., 33(6) (1995) 997.
49. H. Ichimura and A. Kawanna, J. Mater. Res., 5 (1993) 1093.
50. V.A.C. Haanappel, J.D. Sunderkotter and M.F. Stroosnijder, Intermetallics, 7 (1999) 529.
51. F. Dettenwanger, E. Schumann, M. Ruhle, J. Rakowski, and G.H. Meier, Oxid. Meta., 50(3/4) (1998) 269.
52. N. Zheng, W. Fischer, H. Grubmeier, V. Shemet, W.J. Quadakkers, Scripta Metallurgica et Materialia, 33(1) (1995) 47.
53. S. Taniguchi, T. Shibata and S. Itoh, Mater. Trans. JIM, 32(2) (1991) 151.
54. M. Schmitz-Niederau and M. Schutze, Oxid. Meta., 52(3/4) (1999) 225.
55. H. Hindam and D.P. Whittle, Oxid. Meta., 18(5/6) (1982) 245.
56. T. Shimizu, T. Iikubo and S. Isobe, A153 (1992) 602.
57. Y. Shida and H. Anada, Mater. Trans. JIM, 34(3) (1993) 236.
58. S. Becker, A. Rahmel, M. Schorr, and M. Schutze, Oxid. Meta., 38 (1992) 425.
59. N. Zheng W.J. Quadakkers, A. Gil, and H. Nickel, Oxid. Meta., 44(5/6) (1995) 477.
60. N.S. Choudhury, H.C. Gradham and J.W. Hinze, Oxidation behavior of titanium alumnides, in Z.A. Foroulis and F.S Pettit (eds), Properties of High Temperature Alloys, Electrochemical Society, London, 1976, p. 668.
61. Z. Yao and M. Marek, Mater. Sci. Eng. A192 (1995) 995.
62. M. Kumagai, K. Shibue, M.-S. Kim and M. Yonemitsu, Intermetallics 4 (1996) 557.
63. W.E. Dowling, Jr. and W.T. Donlon, Scripta Metall. Mater., 27 (1992) 1663.
64. R.W. Beye, and R. Gronsky, Acta. Metall. Mater. 42, (1994) 1373.
65. R. Beye, M. Verwerft, J.T.M. De Hosson and R. Gronsky, Acta Mater., 44 (1996) 4225.
66. V. Shemet, P. Karduck, H. Hoven, B. Grushko, W. Fischer, and W.J. Quadakkers, Intermetallics, 5 (1997) 271.
67. E.H. Copland, B. Gleeson and D.J. Young, Acta Mater., 47 (1999) 2937.
68. V. Shemet, H. Hoven and W.J. Quadakkers, Intermetallics, 5 (1997) 311.
69. R. Beye, M. Verwerft, J.T.M. De Hosson and R. Gronsky, Acta Mater., 44 (1996) 4225.
70. Y.F. Cheng, F. Dettenwanger, J. Mayer, E. Schumann and M. Ruhle, Scripta Metall. Mater., 34 (1996) 707.
71. E.H. Copland, B. Gleeson and D.J. Young, Acta Mater., 47 (1999) 2937.
72. F. Dettenwanger, E. Schumann, J. Rakowski, G.H. Meier and M. Ruhle, Mater. And Corr., 48 (1996) 23.
73. E. Abe, M. Ohnuma and M. Nakamura, Acta Mater., 47 (1999) 3607.
74. J.M. Rakowski, G.H. Meier, F.S. Pettit, F. Dettenwanger, E. Schumann and M. Ruhle, Scripta Metall. Mater., 35 (1996) 1417.
75. S.A. Kekare and P.B. Aswath, J. Mater. Sci, 32 (1997) 2485.
76. D. Banejee, A.K. Gogia, T.K. Nandy, K. Muraleedharan and R.S. Mishra, Structural Intermetallics, Warendale, PA: TMS, (1993) p.19.
77. B.G. Kim, G.M. Kim and C.J. Kim, Scripta Metall. et Mater. 33(7) (1995) 1117.
78. S. Taniguchi, T. Shibata, T. Saeki, H. Zhang and X. Liu, Mater. Trans. JIM, 37(5) (1996) 998.
79. H. Nickel, N. Zheng, A. Elschner, and W.J. Quadakkers, Mikrochimica Acta, 119 (1995) 23.
80. Y. Shida and H. Anada, Oxid. Meta., 45(1/2) (1996) 197.
81. ABB Patent GmbH, US patent 5,393,356, Feb. 28, 1995.
82. M. Yoshihara and K. Miura, Intermetallics, 3 (1995) 357.
83. Y. Shida and H. Anada, Mater. Trans. JIM, 35(9) (1994) 623.
84. H. Anada and Y. Shida, Mater. Trans. JIM, 36(4) (1995) 533.
85. S. Taniguchi, H. Juso and T. Shibata, Mater. Trans. JIM, 37(3) (1996) 245.
86. S.C. Huang and E. L. Hall, "The effects of Cr additions of binary TiAl-base alloys", Metallurgical Transations A, 22A, 1991, 2619-2627
87. R.A. Perkins, K.T. Chiang, G.H. Meier, R. Miller, Oxidation of High-Temperature Intermetallics, edited by T. Grobstein and J. Doychak, The Mineral, Metals & Materials Society, 1989, p.157.
88. F. Wang, Z. Tang and W. Wu, Oxid. Meta., 48(5/6) (1997) 381.
89. B. Y. Huang, Y.H. He, J.N. Wang, "Improvement in mechanical and oxidation properites of TiAl alloys with Sb additions", Intermetallics 7 (1999) 881-888.
90. Y. Shida and H. Anada, Corrosion. Sci., 35(5-8) (1993) 945.
91. G. Schumacher, F. Dettenwanger, M. Schutze, U. Hornauer, E. Richter, E. Wieser, W. Moller, Intermetallics, 7 (1999) 1113.
92. M. Schnutze, M. Hald, Mater. Sci. Eng., A239-240 (1997) 847.
93. U. Hornauer, R. Gunzel, H. Reuther, E. Richter, E. Wieser, W. Moller, G. Schumacher, F. Dettenwanger, M. Schutze, Surf. Coat. Tech. 125 (2000) 89.
94. Ikematsu, Y., Hanamura, T., Morikawa, H., Tanino, M. and Takamura, J., in Proc. Int. Symp. On Intermetallic Compounds (JIMIS-6), ed. O. Izumi, Japan Inst. Metals, Sendai, Japan, 1991, p.191.
95. W.B. Retallick, M.P. Brady and D.L. Humphrey, Intermetallics 6 (1998) 335.
96. W.B. Retallick, U.S. Patent No. 5,635,303, Jun. 3, 1997.
97. R.P. Skowronski, J. Am. Ceram. Soc., 77(4) (1994) 1098.
98. Y. Yoshida and H. Anada, High Temp. Corrosion of Advanced Materials and Protective Coatings, Elsevier, New Youk, (1992) p.317.
99. I.C. Hsu, S.K. Wu, R.Y. Lin, Materials Chemistry and Physics 49 (1997) 184.
100. H. Mabuchi, H. Tsuda, T. Kawakami, S. Nakamatsu, T. Matsui and K. Morii, Scripta Materialia, 41(5) (1999) 511.
101. I.C. Hsu and S.K. Wu, Surf. Coat. Tech., 90(1-2) (1997) 6.
102. S. Taniguchi, T. Shibata, T. Yamada, L. Xianghuai and Z. Shichang, ISIJ International, 33(8) (1993) 869.
103. X. Liu, et at., Surf. Coat. Tech., 66 (1994) 271.
104. X. Dong, Z. Zhihong, L. Xianghuai, Z. Shichang, S. Taniguchi, T. Shibata and T. Yamada, Surf. Coat. Tech., 66 (1994) 486.
105. J.P. Kim, H.G. Jung, K.Y. Kim, Surface and Coatings Tecnology 112 (1999) 91-97.
106. M. Yamaguchi and H. Inui, Structural Intermetallics, TMS, Warrendale, PA, (1993), p.127.
107. S. Taniguchi, T. Shibata and K. Takeuchi, Mater. Trans. JIM, 32(3) (1991) 299.
108. Z. Tang, F. Wang and W. Wu, Mater. Sci. Eng., A276 (2000) 70.
109. M. Yoshimura, W. Urushihara, M. Yashima, M. Kakihana, Intermetallics, 3 (1995) 125.
110. Z. Tang, F. Wang and W. Wu, Surf. Coat. Technol. 110 (1998) 57.
111. Z. Tang, F. Wang and W. Wu, Surf. Coat. Technol. 99 (1998) 248.
112. Rockwell International Co., US patent 558,945, Jun 2, 1992.
113. S. Kim, Y. Yoon, H. Kim and K. Park, Mater. Sci. Tech., 14 (1998) 435.
114. C. Leyenes, M. Shmidt, M. Peters, W.A. Kaysser, Mater. Sci. Eng., A239-240 (1997) 680.
115. Z. Tang, F. Wang and W. Wu, Oxid. Metals, 48, (1997) 511.
116. H.N. Lee, Z.M. Park, M.H. Oh, K.Y. Kim and D.M. Wee, Scripta Materialia, 41(10), (1999) pp. 1073.
117. M.J. Bennet and A.T. Tuson, Mater. Sci. Eng., A116 (1989) 79.
118. M.F. Stroosnijder, Surf. Coat. Tech., 100-101 (1998) 196.
119. H.J. Schmutzler, N.Zheng, W.J. Quadakkers, M.F. Stroosnijder, Surf. Coat. Tech. 83 (1996) 212.
120. M.F. Stroosnijder, N. Zheng, W.J. Quadakkers, R. Hofman, A. Gil and F. Lanza, Oxid. Meta., 46(112) (1996) 19.
121. M.F. Stroosnijder, H.J. Schumutzler, V.A.C. Haanappel, J.D. Sunderkotter, Mater. Corros. 48 (1997) 40.
122. S. Taniguchi, K. Uesaki, Y.-C. Zhu, Y. Matsumoto, T. Shi-bata, Mater. Sci. Eng. A266 (1999) 267.
123. U. Hornauer, E. Richter, E. Wieser, W. Moller, G. Schumacher, C. Lang and M. Schutze, Nuclear Instruments and Methods in Physics Research B, 148 (1999) 858.
124. S. Taniguchi, T. Kuwayama, Y.-C. Zhu, Y. Matsumoto, T. Shibata, Mater. Sci. Eng., A227 (2000) 229.
125. S. Taniguchi, K. Uesaki, Y.-C. Zhu, H.-X. Zhang, T. Shibata, Mater. Sci. Eng. A249 (1998) 223.
126. A. Gil, B. Rajchel, N. Zheng, W.J. Quadakkers, H. Nickel, J. Mater. Sci., 30 (1995) 5793.
127. C.L. Chu and S.K. Wu, Surf. Coat. Tech., 78 (1996) 219.
128. Boeing North American, Inc., US patent 5,695,827, Dec. 9, 1997.
129. F.D. Richardson and J.H. Jeffes, J. Iron Steel Inst., 160 (1948) 261.
130. M. Yoshihara, T. Suzuki and R. Tanaka, ISIJ International, 31 (1991) 1201.
131. E. Kobayashi, M. Yoshihara and R. Tanaka, High Temp. Tech., 8(3) (1990) 179.
132. S. Taniguchi, T. Shibata and Ayumi Murakami, Oxid. Meta., 41(1/2) (1994) 103.
133. S. Taniguchi, T. Shibata, A. Murakami and K. Chihara, Oxid. Meta., 42(1/2) (1994) 17.
134. S. Taniguchi, T. Shibata and S. Sakon, Mater. Sci. Eng., A198 (1995) 85.
135. S. Taniguchi, Y. Tachikawa, T. Shibata, Mater. Sci. Eng., A232 (1997) 47.
136. S. Wernick, R. Pinner, The surface treatment and finishing of aluminum and its alloys, 4th ed., Teddington Draper, Inc., 1972.
137. V.F. Henley, Anodic oxidation of aluminium & its alloys, Pergamon Press,4th ed., 1982.
138. M.E. Sibert, J. Electrochemical Society, 110(1) (1963) 65.
139. W.J. Buehler and E. Wang, J. Appl. Phys., 34 (1963) 1475.
140. J. Beyer and M. Chandrasekaran, 75th AGARD Structures and Materials Panel Meeting, Lindau, Germany, 13 (1992) 1.
141. JH. Zhu and C.T. Liu, Scripta Mater., 41(1) (1999) 55.
142. S. Miyazaki, K. Otsuka and Y. Suzuki, Scripta Metall., 15 (1981) 287.
143. R.E. Reed-Hill, R. Abbaschian, Physical metallurgy principles, PWS-Kent Pub., 3rd ed., Boston, 1992.
144. S. K. Wu and H. C. Lin, Mater. Chem. Phys., (1999) in press.
145. T.G. Frank, W. Xu and A. Cuschieri, "Shape memory applications in minimal access surgery-the Dundee experience", SMT-97:Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies, California, USA, 1997, p. 509.
146. S.A. Shabalovskaya, Bio-Medical Mater. Eng., 6 (1996) 267.
147. F.C. McLean, M.R. Urist, Bone fundamentals of the physiology of skeletal tissue, 3rd ed., the University of Chicago Press, 1973, p.44.
148. D. Reynaerts, J. Peirs, and H. Van Brussel, Design of a shape-memory alloy actuated drug delivery device", SMT-97:Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies, California, USA, 1997, p.555.
149. L''H Yahia, G. Droin, C.H. Rivard, N. Hagemeister, M. Assad, and M. Masson, Biomater. -Liv. Sys. Inter., 2 (1994) 79.
150. Yahia L. Lombardi S. Selmani A. Drouin G. Hlaouti M., Bio-Medical Mater. Eng., 4(5) (1994) 347.
151. C.L. Hurst, M.G. Duncanson, Jr., R.S. Nanda and P.V. Agolkar, Am. J. Orthod. Dentofac. Orthop., 98(1) (1990) 72.
152. B. Mohlin, H. Muller, J. Odman, and B. Thilander, Euro. J. Orthod., 13 (1991) 386.
153. J.L. Longas, J.A. Puertolas, R. Rios, M.A. de Gregorio, R. Aguiran, "Design characteristics and mechanical properties of a new Ni-Ti stent", SMT-97:Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies, California, USA, 1997, p.567.
154. G. Jinfang, Z. Ming and M. Xujun, "Designs and medical applications of NiTi SMA self-expanding stents in China", SMT-97:Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies, California, USA, 1997, p.573.
155. F.C. McLean, M.R. Urist, Bone fundamentals of the physiology of skeletal tissue, 3rd ed., the University of Chicago Press, 1973, p.64.
156. K. Takaurra, K. Hayashi, N. Ishinishi, T. Yamada, and Y. Sugioka, "Evaluation of carcinogenicity and chronic toxicity associated with orthopedic implants in mice", J. Biomed. Mater. Res., 28 (1994) 583.
157. S. Castleman and S.M. Motzkin, "Biocompatibilty of clinical implant materials", D.F. Williams (ed.) in CRC Series in Biocompatibility, CRC Press, Boca Raton, FL, 1981.
158. J.A. Helsen and H.J. Breme, Metals as biomaterials, Wiley, New York,1998.
159. H.Zitter, H.Plenk Jr., J. Biomed. Res., 21 (1987) 881.
160. D.J. Wever, A.G. Beldhuizen, J. de Vries, H.J. Busscher, D.R.A. Uges, J.R. van Horn, Biomaterials, 19 (1998) 761.
161. S.A. Shabalovskaya, J.W. Anderegg, J. Vac. Sci. Technol. 13 (1995) 2624.
162 K.M. Speck and A.C. Fraker, J. Dent Res, 59(10) (1980) 1590.
163. J.H. Chern Lin, S.K. Lo, C.P. Ju, J. Oral Rehabilitation, 23 (1996) 129.
164. X. Wen, N. Zhang, X. Li and Z. Cao, Bio-Medical Mater. Eng., 7 (1997) 1.
165. C. Montero-Ocampo, H. Lopez, and A. Salinas Rodrguez, J. Biomed. Mater. Res., 32 (1996) 583.
166. Y. Oshida, R. Sachdeva, S. Miyazaki, and S. Fukuyo, Mater. Sci. Forum, 56-58 (1990) 705.
167. K. Endo, R. Sachdeva, Y. Araki and H. Ohno, "Corrosion behavior of Ni-Ti shape memory alloy in a cell culture medium", Proceedings of the First International Conference on Shape Memory and Superelastic Technologies, California, USA, 1994, 197.
168. P. Filip, V. Tomasek and K. Mazanec, Metallic Mater., 32(2) (1994) 63.
169. J. Buehler, F.E. Wang, Ocean Eng. 1 (1968) 105.
170. D.J. Wever, A.G. Veldhuizen, M.M. Sanders, J.M. Schakenraad and J.R. van Horn, Biomaterials 18 (1997) 1115.
171. G. Rondelli, Biomaterials 17 (1996) 2003.
172. G. Rondelli and B. Vicentini, Biomaterials, 20 (1999) 785.
173. Y. Nakayama, T. Yamamuro, Y. Kotoura, M. Oka, Biomaterials, 10 (1989) 420.
174. F. Villermaux, M. Tabrizan, L''H Yahia, M. Meunier, D.L. Piron, Applied Surf. Sci., 109/110 (1997) 62.
175. H. Kimura and T. Sohmura, Dent. Mater. Apparatus, 6(1) (1987) 73.
176. N.K. Sarkar, W. Redmond, B. Schwaninger and A.J. Goldberg, J. Oral Rehabil., 10 (1983) 121.
177. J. Ryhanen, E. Niemi, W. Serlo, E. Niemela, P. Sandvik, H. Pernu, T. Salo, J. Biomed. Mater. Res., 35 (1997) 451.
178. H. Schliephake, G. Reiss, R. Urban, F.W. Neukam, S. Guckel, International J. Oral & Maxillofacial Implants 8(5) (1993) 502.
179. L.S. Castleman, S.M. Motzkin, F.P. Alicandri, and V.L. Bonawit, J. Biomed. Mater. Res., 10 (1976) 695.
180. Berger-Gorbet, B. Broxup, C. Rivard, and L''H. Yahia, J. Biomed. Mater. Res., 32 (1996) 243.
181. L. Shi-Bi, Chin. J. Surg., 31 (1993) 259.
182. C. Sella, J.C. Martin, J. Lecocur, A.L. Chanu, M.F. Harmand, A. Naji and J.P. Davidas, Mater. Sci. Eng., A139 (1991) 49.
183. T. Sohmura in The Third Word Biomaterial Congress, 3rd WBC Proc., Kyoto, Japan, 1988, p. 574.
184. S.K. Wu, C.L. Chu, H.C. Lin, Surf. Coat. Tech. 92 (1997) 206.
185. S.K. Wu, C.L. Chu, H.C. Lin, Surf. Coat. Tech., 92 (1997) 197.
186. D.M. Grant, S.M. Green, J.V. Wood, Acta Metall. Mater. 43(3), 1045 (1995).
187. S.M. Green, D. M. Grant, J.V. Wood, A. Johnson, E. Johnson and L. Sarholt-Kristyensen, J. Mat. Sci. Lett., 12 (1993) 618-619.
188. F. Villermaux, M. Tabrizan, L''H Yahia, M. Meunier, D.L. Piron, Applied Surf. Sci. 109/110 (1997) 62.
189. F. Villermaux, I. Nakatsugawa, M. Tabrizian, D.L. Piron, M. Meunier, L''H. Yahia, "Corrosion kinetics of laser treated NiTi shape memory alloy biomaterials", Mat. Res. Soc. Symp. Proc., Pittsburgh, PA, MRS, Vol. 459, 1997, p.477.
190. C. Trepanier, M. Tabrizian, L''H. Yahia, L. Bilodeau, D.L. Piron, "Improvement of the corrosion resistance of NiTi stents by surface treatments", Mat. Res. Soc. Symp. Proc., Pittsburgh, PA, MRS, Vol. 459, 1997, p.363-369.
191. F. Villermaux, M. Tabrizian, L. Yahia, G. Czeremuszkin and D.L. Piron, Bio-Medical Mater. Eng., 6 (1996) 241.
192. M.R. Yang, K.S. Chen and J.L. He, Mater. Chem. Phy., 48 (1997) 71.
193. D.J. Li, F.Z. Cui, H.Q. Gu and J. Zhao, Applied Surf. Sci., 126 (1998) 1.
194. B. Chapman, Ed., Glow Discharge Processes", John Wiley & Sons, Inc., 1980.
195. N. Inagaki, Ed., Plasma Surface Modification and Plasma Polymerization, Technomic Publishing Company, Lancaster Basel, 1996.
196. H. Yasuda Ed., Plasma polymerization, Academic Press, lnc., Orando, 1985.
197. R. d''Agostino, Plasma deposition, treatment, and etching of polymers, Academic Press, Inc., Boston, 1990.
198. K. Hozumi, K. Kitamura, H. Hashimoto, T. Hamaoka, H. Fujisawa, T. Ishizawa, J. Appl. Polym. Sci., 28, (1983) 1651.
199. Roger E.Marchant, Steven D.Johnson, Bemard H.Schneider, Mary Patricia Agger, and James M.Anderson, J. Biomedical Mater. Res., 24 (1990) 1521.
200. N. Inagaki, N. Kobayashi and M. Matsushima, J. Membr. Sci., 38 (1988) 85.
201. N. Inagaki and J. Ohkubo, J. Membr. Sci., 27 (1986) 63.
202. L. Agres, Y. Segui, R. Delsol and P. Raynaud, J. Applied Polym. Sci., 61 (1996) 2015.
203. J. Janca and L. Sodomka, Thin Solid Films, 216 (1992) 235.
204. K.W. Gerstenberg, Colloid Polym. Sci, 268 (1990) 345.
205. H. Yasuda, J. Membr. Sci. 18 (1984) 273.
206. D. Korzec, D. Theirich, F. Werner, K. Traub, J. Engemann, Surf. Coat. Tech., 74 (1995) 67.
207. M. Vogt, R. Hauptmann, Surf. Coat. Tech., 74-75 (1995) 676.
208. M.P. Bonnar, B.M. Burnside, A.Little, R.L. Reuben, and J.I.B. Wilson, Advanced Mater., 9(10) (1997) 201.
209. T.S. Sudarshan, Surface Modification Technologies, an Engineer''s Guid, Marcel Dekker, Inc., 1989, p.317.
210. S. Eufinger, W.J. van Ooij, and T.H. Ridgway, J. Appl. Polym. Sci., 61 (1996) 1503.
201. K.S. Chen, M.R. Yang, Sih-Liang Lin, Yen-Hung Chen, The study of deposited SiOx passivation layer on metallic surface by DC PECVD technique, Proceeding of the 1996 Annual conf. of the Chinese Soc. for Materials Sci., ROC 1996, p.482.
212. W.J. van Ooij, S. Eufinger, and S. Guo, Plasma Chemistry and Processing, 17(2), (1997) 123.
213. W.J. van Ooij, A. Sabata, D.B. Zeik, C.E. Taylor, F.J. Boerio, and S.J. Clarson, J. Test. Eval., 23 (1995) 33.
214. I. Sekine, Progress in Organic Coat., 31 (1997) 73.
215. K. Hladky, L.M. Gallow and J.L. Dawson, Br. Corros. J., 15(1) (1980) 20.
216. F. Mansfeld, Corrosion-NACE, 36(5) (1981) 301.
217. J.A. Helsen, H.J. Breme, Metals as Biomaterials, John Wiley & Sons, New York, 1998, p. 405.
218. J.R. Macdonald, Impedance spectroscopy, John Wiley & Sons, New York, 1987.
219. A. Amirudin, D. Thierry, Progress in Organic Coat., 26 (1995) 1.
220. K. Darowicki, Corrosion Sci., 39(6) 1997 1087.
221. K. Kasahara and A. Takei, J. Japan Inst. Metals, 57 (1993) 544.
222. V.A.C Haanappel and M.F. Stroosnijder, Corrosion Science, 39(6) (1997) 1083.
223. G. E. Co., US patent 4,780,342, Oct. 25, 1988.
224. T. Asam, Surface and Coatings Technol., 310 (1999) 116.
225. Z. Liu and R.J. Davis, J. Phys. Chem. 98 (1994) 1253.
226. S. Taniguchi, T. Shibata, K. Nakamura, X.-H. Liu, Z.-H Zheng, W. Huang and S.-C Zou, Mater. Sci. Eng. A, 120 (1989) 519.
227. H. Anada and Y. Shida, Mater. Trans. JIM, 36 (1995) 553.
228. P. Kofstad, High Temperature Corrosion, Elsevier Applied Science Pub. Ltd, New York, 1988, p.164.
229. P. Kofstad, High Temperature Corrosion, Elsevier Applied Sci., London, 1988, p.244.
230. P.G. Shewmon, Diffusion in Solids, McGraw-Hill, New York, 1963, p.23.
231. V.F. Kiselev and O.V. Krylov, Adsorption and Catalysis on Transition Metals and Their Oxides, Springer-Verlag, New York, 1989, p.177.
232. P.W. Atkins, Physical Chemistry, Oxford University Press, New York, 1994, p.80.
233. C. Jin, W.J. Chen, K.L. Jing and X.J. Wan, Scripta Metall. Mater., 29 (1993) 747.
234. M.Grob, V. Kolarik, and A. Rahmel, Oxid. Met., 48 (1997) 171.
235. C. Lang, and M. Schutze, Oxid. Met., 46 (1996) 255.
236. A.K. Misra, Metall. Trans., 22A (1991) 715.
237. X.L. Li, R. Hillel, F. Teyssandier, S.K. Choi, and F.J. van Loo, Acta Metall. Mater., 40 (1992) 3149.
238. J.M. Albella, I. Montero, O. Sanchez and J.M. Martinez-Duart, J. Electrochem. Soc.: Electrochemical Sci Tech., 133(5) (1986) 876.
239. C.K. Dyer and J.S.L. Leach, 125(7), 1978, pp. 1032.
240. S.P.S. Porto, P.A. Fleury and T.C. Damen, Phys. Rev. 154 (1967) 522.
241. A. Aminzadeh, Applied Spectroscopy, 51(6) (1997) 817.
242. T. Ohsaka, F. Izumi and Y. Fujiki, J. Raman Spectrosc., 7 (1978) 321.
243. R.A. Eppler and G.H. Spencer-Strong, J. Am. Ceramic Soc., 52(5) (1969) 263.
244. R.D. Shannon and J.A. Pask, J. Am. Ceram. Soc., 4(8) (1965) 391.
245. R.A. Eppler, J. Am. Ceram. Soc. 79(4) (1987) C64.
246. K.S. Chen, Mu-Rong Yang and Shao Ta Hsu, Mater. Chem. Physic, 61 (1999) 214.
247. A.M. Sarmadi, T.H. Ying and F. Denes, Eur. Polym. J., 31(9) (1995) 847.
248. G. Grundmeier and M. Stratmann, Ber. Bunsenges. Phys. Chem., 99(11) (1995) 1387.
249. E. Radeva, D. Tsankov, K. Bobev, and L. Spassov, J. Applied Polym. Sci., 50 (1993) 165.
250. L. Zuri, M.S. Silverstein, and M. Narkis, J. Applied polym. Sci., 62 (1996) 2147.
251. H. Kobayashi, A. T. Bell, and M. Shen, J. Appl. Polym. Sci., 17 (1973) 885.
252. U. Mackens and U. Merkt, Thin solid films, 97 (1982) 53.
253. R.E. Barker, Jr., Pure and Appl. Chem., 46 (1976) 157.
254. S.R. Taylor, IEEE Trans. Electrical Insulation, 24(5) (1989) 787.
255. F. Mansfeld, G. Zhang and C. Chen, Plating & Surface Finishing, 11 (1997) 72.
256. J. Pan, D. Thierry and C. LeyGrafElectrochimica Acta, 41(7/8) (1996) 1143.
257. C. Vautrin-Ul, C. Boisse-Laporte, N. Benissad, A. Chausse, P. Leprince, R. Messina, Progress in Organic Coatings, 38 (2000) 9.
258. F. Mansfeld, Corrosion 36 (1981) 301.
259. N. Tang, W.J. van Ooij, G. Gorecki, Progress in Organic Coatings, 30 (1997) 255.
260. P.L. Bonora, F. Deflorian and L. Fedrizzi, Electrochimica Acta, 41(7/8) 1996 1073.
261. D.L. Logan, Mechanics of Materials, HarperCollins Pub. Inc., New York, 1991, p. 243.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top