跳到主要內容

臺灣博碩士論文加值系統

(3.236.28.137) 您好!臺灣時間:2021/07/25 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曹龍泉
研究生(外文):Lung- chuan Tsao
論文名稱:防電磁波干擾電子資訊產品外殼材料研究
論文名稱(外文):The study of EMI shielding enclosures material for information electronic products
指導教授:莊東漢莊東漢引用關係
指導教授(外文):Tung-han Chuang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
中文關鍵詞:防電磁波干擾塑膠金屬化陽極著色處理蒸鍍鍍鋁筆記型電腦超塑性射出成形超塑性Zn22Al/塑膠複合材料
外文關鍵詞:EMI SshieldingZn22Al alloyssuperplastic deformationnotebookmagnesium alloys AZ31
相關次數:
  • 被引用被引用:25
  • 點閱點閱:1372
  • 評分評分:
  • 下載下載:250
  • 收藏至我的研究室書目清單書目收藏:5
本研究是針對防電磁波干擾電子資訊產品外殼材料研究,分別進行超塑性成形評估有Zn22Al合金、超塑性Zn22Al/塑膠複合材料及鎂合金AZ31、筆記型電腦外殼模擬、超塑性Zn22Al陽極著色處理及真空蒸鍍鋁薄膜等研究,而Zn22Al合金及超塑性Zn22Al/塑膠複合材料等超塑性性質,亦併同探討與分析。
以拉伸試驗瞭解薄板超塑性Zn22Al合金的超塑性變形機構,結果顯示熱機處理所造成的織構組織能明顯提升超塑性變形行為,尤其是拉伸方向平行滾軋方向。在增加厚度情況下,超塑性Zn22Al並未顯著地增加延伸率;對於添加不純物0.01%Cu元素,對厚板材料明顯地降低延伸率,而薄板似乎有約略的增加延伸率。另一現象是高速應變率的延伸率明顯地高於低速應變率。
利用吹製成形進行多軸Zn22Al合金超塑性成形評估,結果顯示薄材超塑性Zn22Al合金受到熱機處理所形成織構組織,能有效地增加應變率並降低初期流應力,進而增加成形性;即使在低溫(1200C)低壓(30psi)情形下,能在短時間內超塑性成形完成,如此具有極優的超塑性變形行為,稱此現象為高超塑性變形。B製程之超塑性 Zn22A合金經過吹製成形後,其微硬度約提升4-5Hv,稱此為硬化效應;超塑性成形過程受到溫度時效作用,導致不穩定相α’逐漸轉變成穩定相;並隨著超塑性應變量增加而誘發晶粒成長。
利用第三黏著材料所獲得的超塑性Zn22Al/塑膠複合材料,以熱熔膠薄膜A型與非晶質ABS接合具有高的附著力,且能通過冷熱循環及剪彎曲試驗。此複合材料的機械性質較原材好;經過DSC分析後,其軟化點均明顯提昇。另一項電子資訊產品所關切問題是材料的密度與屏蔽效率。本研究的複合材料的防電磁波干擾(EMI)屏蔽效率均高於110dB,且密度均低於鎂合金(AZ91)的1.81g/cm3。
在超塑性複合材料之超塑性成形評估的結果,發現此複合材料(1.2mm)在任何超塑性成形條件下;其超塑性應變率均高於原材(0.2mm)的1~2倍,至今從未發現與研究過此現象,因此本人稱此現象為超高速超塑性成形現象;是原本超塑性Zn22Al合金的表面硬化層阻礙超塑性變形晶界滑移,然而在超塑性Zn22Al/塑膠複合材料的外層是塑膠,在超塑性成形過程中,因溫度超過此塑膠軟化點,促使變形過程中,內層超塑性Zn22Al合金之表面硬化層則隨著塑膠移動,因而增加超塑性應變率。另一因素是吹製過程之初期,因溫度超過塑膠軟化點,其所儲存能量在超塑性變形過程中,將能量提供給超塑性Zn22Al合金,因而增加初期超塑性應變量,因而形成超高速超塑性變形。
利用筆記型電腦模擬進行超塑性吹製成形,能在溫度120度壓力100Psi-1min即可成形完成。此超塑性複合加工材料與技術將能合於未來的電子資訊產品外殼。
鎂合金AZ31經超塑性成形過程,組織晶粒發生動態再結晶及動態晶粒成長現象。當超過3000C以上具有超塑性行為且減少雙晶現象;其中以4500C~5000C具有最佳的超塑性變形行為,若超過5000C會形成橘皮效應。而雙晶(twinning)發生的起源位置來自於晶界處或表層。經過475度以上的超塑性成形;其晶粒從約12.5μm成長到0.15mm~0.2mm的粗晶粒。微硬度Hv受到兩類超塑性成形條件的影響;當溫度及應變率均低於4500C及120psi的超塑性成形,其硬度隨著成形量而下降。當溫度高4500C及壓力所造成的高應變,任何位置的硬度均較原材料料低15~20Hv。
其3.5%NaCl水溶液中,由動態電位極化曲線量測結果發現,經過超塑性成形後其腐蝕性電位均趨向活性電位;是因孔洞及雙晶的影響。
在陽極著色處理研究方面;純鋅與超塑性Zn22Al合金經過陽極著色處理後,所形成的薄膜結構型態截然不同,其純鋅表面形成水珠狀及平面多孔性,而超塑性Zn22Al表面所形成為中心破洞式花苞狀及平面多孔性;這些孔洞來自於陽極處理過程中電壓升高超過障礙層(ZCLs)的絕緣能力而產生火花所造成的。經過EPMA及XRD分析,此覆蓋薄膜組織結構為:純鋅薄膜除了矽酸鹽氧化物外,表面仍保有鋅鹽特性,而超塑性Zn22 Al合金所形成的薄膜為矽酸鋁鹽氧化物外,表面仍保有鋅鹽特性。經電化學分析,其具有覆蓋薄膜的純鋅及超塑性Zn22Al合金其腐蝕電位均明顯的趨向貴性,表示較耐腐蝕性。
在塑膠金屬化蒸鍍鋁薄膜的研究方面;經過預處理及粗化處理後,其附著力明顯的增加,即使經拉伸試驗,在斷裂附近的薄膜並未脫落,表示此粗化處理能有效的增加薄膜附著力,而附著強度均超過5Mpa,經過機械粗化並化學腐蝕的附著強度最強;然而化學腐蝕後的ABS其拉伸強度明顯的下降,而經機械噴砂的則強度明顯的增加。從防電磁波干擾而言,本研究蒸鍍鋁薄膜的防電磁干擾量測約3.9um厚度之下所獲得dB值約35dB。
The purpose of the research is for the study of EMI shielding enclosures material for information electronic products. In order to reach the purpose, it is necessary to examine superplastic deformation of SP-Zn22Al alloys, SP-Zn22Al/polymer composite materials and magnesium alloys AZ31. Moreover, it is also necessary to test the notebook housing simulation, anodising and coloring treatment for superplastic Zn22Al and vacuum plating for producing aluminum film. At the same time, the research also deal with analysis of the characteristics superplastic Zn22Al and superplastic Zn22Al/polymer composite materials.
The test is using the tensile testing to understand the superplastic deformation mechanism of sheet superplastic Zn22Al alloys.
It shows that the texture constructure which results from the thermomechanical treatment can obviously enhance the deformation of superplasticity, especially, tensile direction parallel to rolling direction. To add the thickness, the superplastic Zn22Al does not increase its elongation obviously. To add the impurity, 0.01%Cu, it decreases the elongation of thick materials. But on the other hand, it seems to increase the elongation of thin materials slightly. Besides, another phenomenon of the thin materials is that the elongation of the high strain rate is much higher than the low strain rate.
Using free bulging of superplastic sheet to test the superplastic deformation of Zn22Al alloys. It shows that after the thermomechanical treatment of the thin superplastic Zn22Al alloys, it results in texture microstructure and then it enhances strain rate and decreases the initial flow stress. It increases the characteristics of superplasticity. Even it is under the situation of low temperature (1200C) and low pressure(30psi), it can finish superplastic deformation in a short time. Due to the excellent superplastic deformation, it is called high superplastic deformation.
After superplastic deformation of the superplastic Zn22Al alloys of the process B, the microhardness about raises 4-5Hv, which is called hardening effect. It is because the aging effect during the process of superplastic deformation which results in the non-stabilizing phase(α’ ) transfer to be stabilizing(α). At the same time, following the increase of the superplastic strain, it induced the grain growth.
Using modified copolymer A, to adhere superplastic Zn22Al and polymer, and then become composite material. The amorphous of Acrylonitrile-butadiene-styrene(ABS) has high adhesion strength and can pass the test of cooling-thermal cycling and shear-flexure.
The mechanic characteristics of the composite material is better than as-material. After DSC analysis, it shows that the glass of temperature of all composite materials has increased. About the important element of the density and shielding effect which the information electronic products care about, the test shows that the composite material’s shielding effect is more than 110dB and the density is lower than magnesium alloys AZ91 1.81g/cm3.
After the superplastic deformation of superplastic composite materials, it discovers that the strain rate of the composite materials (1.2mm) is 1-2 times higher than superplastic Zn22Al(0.2mm). The phenomenon is the new discovery. Therefore, I named it “high superplastic deformation.” One of the reasons is that the hardening of the surface layer of superplastic Zn22Al alloys disturbs grain boundary sliding. The outside layer of superplastic Zn22Al/polymer composite materials is plastic. During the process of superplastic deformation, the temperature exceed the glass temperature of polymer. The surface harden layer of the inner layer superplastic Zn22Al alloys is following the movement of the polymer. It promotes the strain rate of superplastic deformation. Another reason is that during the superplastic deformation process, the storage energy of polymer transfers to superplastic Zn22Al alloys and raises the initial stage strain rage, and then results in high the superplastic deformation.
Conducting free bulging of superplastic sheet to deal with the notebook housing simulation, it can be made successfully on the temperature 1200C and pressure 100psi. The method can be applied to information electronic products.
After the superplastic deformation process of magnesium alloys AZ31, the grain occurs the phenomena of dynamic recrystallzation and dynamic grain growth. When the temperature is over 3000C, it will has the characteristics of superplastic deformation and twinning will be decreased, and then grain size will grow from 12.5μm to 0.15mm~0.2mm. The best temperature of occurring superplastic deformation is between 4500C-5000C. When the temperature is over 5000C, it will happen orange effect. The origin of the twinning comes from grain boundary and surface layer. Referring to the microhardness, when the test of superplastic deformation is below the temperature 4500C and strain rate 120psi, it hardness will decrease following by forming. On the other hand, when the temperature is higher than 4500C and the pressure is higher than 120psi, the hardness of material will be lower 15-20Hv than as material.
In the aspect of anodising and coloring treatment, the constructure of film is totally different, after pure Zinc and superplastic Zn22Al alloys dealt with anodising and coloring treatment. The pure Zinc forms glob and many a plane with many porous; the superplastic Zn22Al forms a bud with a porous in the center and a plane with many porous. The porous come from the sparks of the enhance of electronic pressure exceed the isolation of ZCLs during the anodising and coloring treatment process. After the analysis of EPMA and XRD, the material of film of the glob, in the pure film, is silicic acid and the plane with many porous is Zinc salt. On the other hand, the material of film of the bud, in the superplastic Zn221Al alloys, is silicic aluminate and the plane with many porous is Zinc salt. After the electrochemical analysis, the pure Zinc and superplastic Zn2l with the covery of film is tend to be passive in corrosion-potential. It means it is more corrosion-resistant.
In the metallizing aluminum film research, after initial treatment and rough treatment, it adhesion is increased obviously. That is after tensile testing, the film near the broking area did not fall off. It means rough treatment can raise the adhesive of the film effectively. When the adhesion is over 5Mpa, the adhesive will be most intensive if it deals with the mechanic rough treatment and chemical etch. After etching, ABS decreases obviously. After mechanic spraying sand, the adhesion increase obviously. In the aspect of EMI, the test of the shielding effect of aluminum film is about 35dB under density 3.9um.
封面
誌謝
中文摘要
英文摘要
目錄
表目錄
圖目錄
第一章 緒論
第二章 理論與文獻回顧
2-1 EMI原理與屏蔽材
2-2 材料超塑性組織與超塑性成型
2-3 塑膠加工
2-4 塑膠/超塑性複合加工技術
2-5 鋅合金腐蝕行為與防蝕處理技術
2-6 塑膠表面金屬化
第三章 實驗方法
3-1 實驗材料
3-2 超塑性性質及成形評估
3-3 塑膠/Zn22Al複合加工實驗方法
3-4 塑膠金屬化之真空蒸鍍實驗
3-5 電化學試驗
3-6 性質試驗與量測
第四章 結果與討論
4-1 超塑性Zn22Al合金超塑性成形研究
4-2 超塑性Zn22Al性質研究
4-3 三明治式超塑性Zn22Al/塑膠複合材料研究
4-4 三明治式超塑性Zn22Al/塑膠複合材料超塑性成形研究
4-5 鎂合金AZ31超塑性成形研究
4-6 障蔽層薄膜組織節4-7 塑膠金屬化之真空蒸鍍附著性研究
4-7 塑膠金屬化之真空蒸鍍附著性研究
第五章 結論
第六張 未來研究方向
參考文獻
附錄 作者簡歷及著作
參 考 文 獻
1. 林哲弘、趙建宏,由1999年國內產銷總體現況看國內資訊產業之發展”, 資策會MIC1999,
2. 趙建宏,1999年我國筆記型電腦產業發展現況及未來發展,資策會MIC1999,11
3. 翁建一,日本資訊市場盛行低價PC,資策會MIC, 2000/02/14
4. 趙建宏,由「全球生產王國」看台灣筆記型電腦產業的成功關鍵資策會MIC,趙建宏,99/11/15
5. 趙建宏,全球筆記型電腦的展現況及未來市場預測,資策會MIC,趙建宏,2000/01/05
6. 卓盛鵬編譯,EMC的基礎和實踐,全華書局,p3-7
7. 劉秀琴譯,個人電腦的EMI屏蔽對策與導電化電鍍市場,工業材料,132期,1997,pp.67-71。
8. 經濟部標準檢驗局,商品電磁相容性管理辦法,http://www.bsmi.gov.tw/elect/1.htm。
9. 黃振燦,塑膠導電及電磁干擾之遮屏,塑膠資訊,1998,8,pp51-57。
10. 李煥松 “電磁相容性(EMC)測試” 電子月刊第五卷第八期
11. J. Butler, “Shielding Effectiveness- Why Don’t We Have a Consensus Industry Srandard?”, IEEE, 1997,pp29~35.
12. 經濟部,“資訊電子產品外殼塑件防EMI技術”,工業技術人才培訓計畫講義。
13. 金忠孝,“能量?殺手?醫學觀點看電磁波”。消費者報導,229期,pp8 ~11.
14. 莊東漢,“防電磁波干擾材料技術’’,電子月刊電子月刊第五卷第六期,p168-178.
15. 沈曉復,新產業 EMI/EMC 之市場與商機,塑膠資訊,1998,8,pp.65-72。
16. 李玉鈴,由Bluetooth 1.0的推出論台灣應積極投入IA產業資策會MIC 99/08/09
17. 李煥松 “電磁相容性(EMC)測試” 電子月刊第五卷第八期
18. A. Kruse, G. Krűger, A. Baalmann and O.-D. Hennemann, “surface pretreatment of plastic for adhesive bonding” J. Adhesion Sci. Technol., Vol.9. No. 12. 1995, pp. 1611-1621
19. 卓盛鵬編譯,EMC的基礎和實踐,全華書局,pp3-7
20. Gary G. Bush, “Measurement Techniques for Permeability, Permittivity and Emi Shielding: A Review”, IEEE, 1994, pp333~339.
21. 王彙中、馬振基,”EMI/RFI 遮蔽用導電性高分子複合材料”, 塑膠資訊,N0.33, 1999, pp.1-14.
22. W. Graf and E. F. Vance, “ Shielding Effectiveness and Electromagnetic Protection”, IEEE Trans. Ele. Comp. Vol.30, No.3, 1988, pp.289-293.
23. R. M. Gresham, “EMI/RFI Shielding of plastics”, Plating and Surface Finishing, Feb, 1988, pp.63-69.
24. Ferraris, L.; Chang-Yu Wu “EMI shielding-common problems and containment strategies” Electromagnetic Compatibility Proceedings, 1997., 1997 International Symposium on , 1997 , Page(s): 86 —89
25. 廖秋峰、詹益松,” ESD消除及EMI屏蔽材料””,工業材料161期,2000年, pp. 163-176.
26. 蔡秋藤,”電磁干擾的理論與防制”,pp.1-25
27. 陳柏宏編譯,“電磁干擾與防止對策”,文笙書局,
28. 黃若谷, “ 電子產品在設計上應如何滿足EMI的要求”,pp.1-14
29. S.Yasufuku, “Thechnical Progress of EMI Shielding Materials in Japan”, IEEE, 1990, pp.21-30.
30. H. Rahman, P. K. Saha, J. Dowling and T. Curran, “Shielding Effectiveness Measurement Techniques for Various Materials Used for EMI Shielding”, pp.9/1~9/6
31. Grimes, C.A.; Grimes, D.M. “A brief discussion of EMI shielding materials” Aerospace Applications Conference, 1993. Digest., 1993 IEEE , 1993 , Page(s): 217 —226v
32. R.B.Schulz, V.C.Plantz and D.R.Brush , “Shilding Theory and Practice “, IEEE, 1988.pp.187-201.
33. 針谷 學藏,”防電磁波干擾材料電磁波之評估方法上效果”,日本工業材料,pp.22-30.
34. R.B. SchulZ, V.C.Plantz and D.R. Brush,”Shielding Theory and Practice”, IEEE,1988,pp.187-201。
35. P. B. Jana, A. K. Mallick, and S. K. De, “Effects of Sample Thickness and Fiber Aspect Ratio on EMI Shielding Effectiveness of Carbon Fiber Filled Polychloroprene Composites in the X-Band Frequency Range”, IEEE Transactions on Electromagnetic Compatibility, Vol.34, No.4, November 1992, pp478~481.
36. N. V. Mandich, “EMI Shielding by Electroless Plating of ABS Plastics”, Plating and Surface Finishing, 1994, pp.60-63.
37. B. L. Brench and C. E. Brench, “Shield Degradation in the Presence of External Conductors”, IEEE, 1994, pp269~273.
38. 清水 康敬,”電磁波干擾材料與電波吸收材料” ,日本工業材料,pp26-29.
39. Marilyn Lye, “Operation fulcrum and the fulcrum concept” materials & Design pp.33-38
40. David Markham, “shielding: quantifying the shielding the requirements for portable electronic design and providing new solutions by using a combination of materials and design”, Material and Design 21, 2000, pp.45-50.
41. Chris P. J. H. Borgmans, DSM Polymers and Raymond H. Glaser, DSM Engineering Plastics, “Design Considerations for EMI Shielding-Conductive Plastic Compounds”, EE-Evaluation Engineering, July 1995, ppS-32~S-37.
42. S. H. Peng and W. S. Vincent Tzeng, “Recent Developments in Elastomeric EMI Shielding Gasket Design”, pp94~97
43. C. H. Lee, S.L.Chang,K. M. Wang and L.C. Wen,”Management of Scrap Computer Recycling in Taiwan”, J.Hazardous Materials, A73, 2000, pp.209-220.
44. 周萬盛,”筆記型電腦外殼的走向” 工業材料126期pp66-70.
45. L. G. Bhatgadde and S. Joseph, “Electroless Techniques for EMI Shieldings”, Proceedings of the International Conference on Electromagnetic Interference and Compatibility, 1997, pp.443~445.
46. 莊東漢 “防電磁波干擾材料技術” 電子月刊第五卷第八期
47. B.E. Brown, J. T. Hill and L.C. Archibald, “ RFI/EMI Shielding of Plastic Enclosures”, IEEE, pp.285-289.
48. 黃振燦,”塑膠導電及電磁干擾之遮屏”,塑膠資訊,1998.8, pp.51-57.
49. D. S. Dixon and Dr. Tames Masi, “Thin Coatings Can Provide Significant Shielding Against Low Frequency EMF/Magnetic Fields’, IEEE, 1998, pp1035~1040.
50. B C Jackson and P Zkuzyk, “A Practical Guide on the Use of Electroless Coatings for EMI Shielding”, Electromagnetic Compatibility, 5-7 September, Conference Publication No 396, IEE, pp119~124.
51. 沈曉復,”新產業 EMI/EMC之市場與商機”,塑膠資訊,1998.8, pp.65-72.
52. A. P. Hale, “ Electromagnetic Shielding”, IEEE, International Electromagnetic Compatibity Symposium Record , New York, 1973, pp.330-339.
53. K.Higuchi and K. Nakajima,” Closed Loop Recycling of Magnesium PC Housing”, IEEE, Electronic and the Enviroment, 1996, pp.102-108.
54. 劉文海,”鈦製筆記型電腦外殼”,金屬工業研究發展中心, 2000/04/11
55. D. M. Bigg, “The Effect of Chemical Exposure on the EMI Shielding of Conductive Plastics”, Polymer Composites, Vol.8, No.1, February 1987, pp1~7.
56. C. T. Lin, P. W. Kao and M. —H. R. Jen, “Thermal Residual Strains in Carbon Fibre-Reinforced Aluminium Laminates”, Composites, Vol.25, Number 4, 1994, pp303~307.
57. R. W. Simpson, “ Flexible Laminates for Use in EMI Shielding Applications”, IEEE, Electrical Insulation Magazine,Vol.4, No.1, 1988, pp.11-13.
58. Chi-Yuan Huang and Jui-Fen Pai, “Studies on Processing Parameters and Thermal Stability of ENCF/ABS Composites for EMI Shielding”, Thermal Stability of ENCF/ABS Composites, pp115~123.
59. X. Luo and D.D.L. Chung, “ Electromagnetic interference Shielding reaching 130 dB Using Flexible Graphite”, Carbon, Vol.34.No.10,1996, pp.1293-1303.
60. J. F. Pai and C. Y. Huang, “Effect of Electroless Nickel Coated Carbon Fibers on EMI Shielding”, pp325~329.
61. A. P. Lagace, “Markets and Applications for Conductive Plastics”, International polymer Science and Technology, Vol. 13, No.9,1986.pp.T/12-T/14.
62. T. Mäkelä, S. Pienimaa, T. Taka, S. Jussila, H. Isotalo, Thin polyaniline in EMI shielding” Synthetic Metals 1997 pp.1335-1336
63. G. Busse and K. P. Meyer, “Bonding of Rubber Surface-Protecting Materials to Metals”, Intermational Polymer Science and Technology, Vol.22, No.2, 1995, ppT/15~T/22.
64. C.A. Grimes, “ Sputter Deposition of Magnetic Thin Films onto Plastic: The Effect of Undercoat and Spacerlayer Composition on The Magnetic Properties of Multilayer Permalloy Thin Films”, IEEE, Trans. On Magnetics. Vol. 3. No.6, 1995, pp.4109-4111.
65. Ervin E. Underwood, “A Review of Superplasticity”, Journal of Metals, Vol.14, No.12, December 1962, pp914~919.
66. 陳崇一 “超塑性研究” 60年6月,pp90~96
67. H.W. Hayden, R.C. Gibson and J.H. Brophy, “ Superplastic metals”, Scientific America March, 1969, pp.28-36
68. Farghalli A. Mohamed and Terence G. Langdon, “Flow Localization and Neck Formation in a Superplastic Metal’, Acta Metallurgica, Vol.29, 1981, pp.911~920.
69. M. I. Mazurski and F.U.Enikeev, “ An New Theoretical Concept for Micrograin Superplasticity Providing the Prediction of the Optimum Conditions for Superplastic Deformation”, Phys. Stat. Sol.(b) 206,1998, pp.519-534.
70. A. E. W. Hart, “Theory of the Tensile Test”, Acta Metallurgica, Vol.15, No.2, 1967, pp.351~355.
71. W. R. Kerr, “Flow Stress, Strain Rate, Strain Relationships in Superplastic Deformation”, Journal of Materials Science, Vol.15, No.12, 1980, pp3104~3104.
72. F.A.Mohamed, M.M. Ahmed and T.G.Langdon, “Factors Influencing Ductility in the Superplastic Zn-22pct Al Eutectoid”, Metall. Trans. A, 1977, Vol.8A, pp.933-938.
73. 何景秀素、王燕文”金屬的超塑性”” 科學出版社
74. A.K. Ghosh and C.H. Hamilton, “Influences of material Parameters and Microstructure on Superplastic Fprming”, Metall. Trans. A, Vol. 13A.1982, pp. 733-743.
75. A. Ramsevak B. Vastava and Terence G. Langdon, “An Investigation of Intercrystalline and Interphase Boundary Sliding in the Superplastic Pb-62% Sn Eutectic”, Acta Metallurgica, Vol.27, pp.251~257.
76. R. Z. Valiev and O.A. Kaibyshev, “On the Quantitative Evaluation of Superplastic Flow Mechanisms”, Acta Metall., Vol.31, No.12, 1983, pp2121~2128.
77. R. C. Gifkins, “Grain Rearrangements during Superplastic Deformation”, Journal of Materials Science, Vol.13, No.9, 1978, pp1926~1936.
78. H. Naziri, R. Pearce, M. Henderson Brown, and K. F. Hale, “Microstructural-Mechanism Relationship in the Zinc/Aluminium Eutectoid Superplastic Alloy”, Acta Metallurgica, Vol.23, April 1975, pp.489~496.
79. S. Tandon and G. S. Murty, “Microstructural Evolution and Threshold Stress for Superplastic Flow in the Zn-Al Eutectoid”, Journal of Materials Science, 28(1993), pp.6360~6364.
80. Sanjeev Tandon and Gollapudi S. Murty, “Threshold Stress for Superplastic Flow in the Zn-Al Eutectoid Alloy” Materials Transactions, JIM, Vol.34, No.4, 1993, pp.319~324.
81. J. Q. Jiang and P.S. Bate, “ The Use of Microstructural Gradients in Hot Gas-Pressure Forming of Zn-Al sheet”, Metall. Material. Trans. Vol. 27A, 1996,pp. 3250-3258.
82. Y. Torisaka and S.Kojima, “Superplasticity and Internal Friction of a Superplastic Zn-22% Al Eutectoid Alloy”, Acta metal. Mater, Vol. 39. No.5 1991, pp. 947-954.
83. Tae Kwon Ha, Won Beom Lee, Chan Cyung Park, and Young Won Chang, “Communications Room-Temperature Superplasticity in a Zn-0.3 Wt Pct Al Alloy”, Metallurgical and Materials Transactions A, Vol.28A, No.8, August 1997, pp1711~1713.
84. Terence G. Langdon, “An Evaluation of the Strain Contributed by Grain Boundary Sliding in Superplastic”, Materials Science and Engineering,A174(1994), pp225~230.
85. J. W. Bowden and B. Ramaswami, “Interface Sliding, Migration, and Cracking during Fatigue Deformation of a Superplastic Aluminum-Zinc Eutectoid Alloy”, Metallurgical Transactions A, Vol.21A, September 1990, pp2497~2504.
86. M. F. Ashby and R. A. Verrall, “Diffusion-Accommodated Flow and Superplasticity”, Acta Metallurgica, Vol.21, February 1973, pp149~163.
87. R. Z. Valiev and O.A. Kaibyshev, “On the Quantitative Evaluation of Superplastic Flow Mechanisms”, Acta Metall., Vol.31, No.12, 1983, pp2121~2128.
88. J. R. Spingarn and W.D Nix, “ Diffusional Creep and Diffusionally Accommodated grain rearrangement”, Acta Metall. Vol.26. 1978, pp.1389-1398.
89. J.pilling and N.Ridley ,” superplasticity in cry stalline Solids .Institute of Metals, 1989.
90. R. C. Gifkins ,”Grain-Boundary Sliding and its Accommodation During Creep and Superplasticicity”, Metall. Trans. A Vol.7A, 1976, pp.1976-1225.
91. M.G.Zelin and A.K.Mukherjee,”Geometrical aspects of superplastic flow”, Mater. Sci , pp.210-225
92. I.Novikov, V. .K. Portnoy , and T. E. Terentieva, “Analysis of Superplastic Deformation Mechanisms in Zn-22%Al Alloy on the Basis of Electron Microscopy Topographic Investigations”, Acta Metallurgica, Vol.25, No.10, 1977, pp.1139~1149.
93. O.A.KaiByshev, A.I. Pshenichniuk and V.V. Astanin.” Superplasticity Resulting from cooperative Grain Boundary sliding”, Acta mater. Vol. 46. No. 14. 1998, pp.4911-4916.
94. C.J. Shyu, J.S.Shyu and T.H. Chuang, “Study on superplastic forming of 8090and 7475 alloy”, Trans.Aer.& Ast. Soc. ROC, Vol. 26.No.4, 1994, pp.289-298.
95. A.H. Chokshi and T. G. Langdon, “The Influence of Rolling Direction on the Mechanical Behavior and Formation of Cavity Stringers in the Superplastic Zn-22% Al Alloy”, Acta Metall. Vol.37, No.2, 1989, pp.715~723.
96. Xing-Gang Jiang, Susan T. Yang, James C. Earthman, and Farghalli A. Mohamed, “Effect of Fe on Ductility and Cavitation in the Superplastic Zn-22 Pct Al Eutectoid”, Metallurgical and Materials Transactions A, Vol.27A, No.4, April 1996,pp863~872
97. A. Kyung-Tae Park and Farghalli A. Mohamed, “Effect of Impurity Content on Cavitation in the Superplastic Zn-22 Pct Al Alloy”, Metallurgical Transactions A, Vol.21A, September 1990, pp2605~2610.
98. Xing-Gang Jiang, Susan T. Yang, James C. Earthman, and Farghalli A. Mohamed, “Effect of Fe on Ductility and Cavitation in the Superplastic Zn-22 Pct Al Eutectoid”, Metallurgical and Materials Transactions A, Vol.27A, No.4, April 1996,pp863~872
99. C. H. Caceres and D.E. Lescano,”The Growth of Aetifical Voids During Superplastic Deformation of a Zn-Al-Cu Alloy”, Mater. Sci and Eng. A128, 1990, pp.147-154.
100. Xing-Gang Jiang, James C. Earthman, and Farghalli A. Mohamed, “Review Cavitation and Cavity-induced Fracture during Superplastic Deformation”, Journal of Materials Science, 29(1994), pp5499~5514.
101. K.A. Padmannabhan and G. J. Davies, “Superplasticity —Mechanical and Structural Aspects, Environmental Effects, Fundamentals and Applications”, Spring-Verlag, Berlin, 1980, pp.226-268.
102. C.H.Hamilton and A.K. Ghosh, “Superplastic Sheet Forming”, in Metals Handbook, Vol. 14, ASM, Metals Park, Ohio,1983,pp.862-873.
103. Kaifeng Zhang, Qingyun Zhao, Changwen Wang, and Z. R. Wang, “Simulation of Superplastic Sheet Forming and Bulk Forming”, Journal of Materials Processing Technology, 55(1995), pp24~27.
104. K.Tully and J. Monaghan, “ Bulk forming of superplastic alloys”, J. Mater. Pro. Tech.,26, 1991,pp.159-171.
105. 葉明勳,” 英高鎳718超合金之接合技術與超塑性成形複合加工研究”,國立台灣大學材料科學與工程學研究所博士論文,1996, 指導教授:莊東漢博士。
106. G. C. Cornfield and R. H. Johnson, “The forming of Superplastic Sheet Metal” Int. J. mech. Sci. Pergamon Press., Vol.12, No.6, pp479~490.
107. J. A. Belk, “A Quantitative Model of the Blow-Forming of Spherical Surfaces in Superplastic Sheet Metal”, Int. J. mech. Sci. Pergamon Press., Vol.17, No.8, pp505~511.
108. David L. Holt, “An Analysis of the Bulging of a Superplastic Sheet by Lateral Pressure”, Int. J. mech. Sci. Pergamon Press., Vol.12, No.6, pp491~497.
109. A.R.Ragab,”Rhermoforming of superplastic sheet in shaped dies”, metals Technoligy vol.10. 1983, pp340-348.
110. T.B.Massalski et al “Binary Alloy phase Diagrams”, Amer. Soc. Metals.
111. T.B.Massalski et al “Binary Alloy phase Diagrams”, Amer. Soc. Metals.
112. R. Ciach, and B.D. Zawadzka, “ A study of the Homogenization Process of aluminium-Zinc alloys”, J. mater. Sci. 13, 1978, pp.2676-2686.
113. N. Prasad, “Low-stress Creep Behaviour of Superplastic Zn-22% Al Alloy”, Journal of Materials Science, 28(1993), pp1585~1594.
114. 黃盛杰,” 3C 產業未來發展不可或缺的主角-鎂合金”,工業材料144期,1998, 12, pp.73-75.
115. R. Udhayan and D. P. Bhatt, “On the behaviour of Magnesium and its alloys using electrochemical techniques”, J. power Sources ,63, 1996, pp.103-107.
116. R.E. Reed-Hill, “Physical metallurgy principles “,D. Van Nostrand, New YorK, 1973, pp.311.
117. H. TaKuda, H. Fujimoto and N. Hatta, “ Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures”, J. Mater. Pro. Tech. 80-81, 1998, pp.513-516.
118. K. Nakajima and K. Higuchi, “Manufacture of thin wall magnesium alloy enclosure”, pp.15-22.
119. T.G.NiCh,J.Wadsworth and O.D. Sherby, “Superplasticity in Metals and Ceramics” Cambridge Uni. Pre. 1997 pp.69-72.
120. 楊智超、林景扶,”鎂合金鑄造技術研討會講義”,中華民國全國工業總會,台灣區電機電子工業同業工會及工業技術研究院主辦,1998年12月。
121. M.Mabuchi, K. Ameyama, H. Iwasakp and K. Higashi, “Low temperature superplasticity of AZ91 Magnesium alloy with non-equilibrium grain boundaries”, Acta mater. Vol.47. No. 7. 1999, pp.2047-2057.
122. H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe and K. Higashi, “effect of Temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 agnesium alloy”, Acta mater. Vol.47. No.14. 1999,pp.3753-3758.
123. Mcqueen , A. Mwembela,E.V. Konopleva, “ Hot working characteristics of Mg-2.8Al-0.9Zn”, Magnesium Alloys and their Applications, pp.201-208.
124. J. K. Solberg, J. Torklep, O. Bauger and H. Gj estland, “Superplasticity in magnesium alloy AZ91”, Mater. Sci. Eng, A134(1991), pp.1201-1203.
125. M.m.Tilman, R. L.Crosby and L.A. Neumaier, “Superplasticity in selected magnesium-base alloys”, RI8382, Bureau of Mines, U.S. Department of the Interior, 1979.
126. A. Karim, D.L. Holt and W.A Backofen, “ Diffusional creep and superplasticity in a Mg-6Zn-0.5Zr alloys, “ Trans. Metall. Soc.-AIME, 245,1969, pp.1131-1132.
127. 馬振基編著,「高分子複合材料」,國立編譯館pp.103-127.
128. 孫志雄譯著,” 塑膠加工原理”,新陸書局,pp.15-1~15-6.
129. 劉大佼著,”高分子加工原理與應用”, 國立編譯館pp.103-127.
130. X.L.Luo and R.I. Tanner, “ A computer study of film blowing’, Polm. Eng. Sci, 1985, pp. 620-629.
131. 莊東漢、楊申語、楊智富、葉明勳,” 防電磁波干擾電子資訊產外殼之超塑性成形加工技術研究。國科會產學研究計畫書。1998年11月。
132. 駱錦榮,” 內夾鋅鋁合金之三明治塑膠的成型性評估”,中華大學,碩士論文,1999.
133. D.A.Jones, “Principles and prevention of corroson” Macmillan Publishing Company, New York, 1992, Chapter1~3,pp.1-74.
134. 錢苗根,” 材料表面技術及其應用手冊”,機械工業出版社,1998,pp.30-46.
135. M.S. Yeh, J.C. Chang and T.H.Chuang, “ Stress Corrosion Cracking of a Superplastic and Nonsuperplastic Zn-22.3Al Alloy in 3% NaCl Solution.J. Mater. Eng. & Per. Vol. 1999, pp.219-224.
136. H. Shuzhi, L. Minzhu and M. Longxiang, “ A study on the strength and corrosion resistance of Zn-Al eutectoid superplastic alloys”, J. Mater. Process. Technol. 1994. pp.77-88.
137. W.J. Tomlinson and D.R. Brearey, “ Cathodic polarization and corrosion of Zn and ZnAl in 3% NaCl Solution “, Corrosion ,Vol.44, No.1, 1987, pp.62-63.
138. J.R. Cheng , “Research on the corrosion prevention and coloring of the hot-dip galvanized steels”, 國立清華大學材料與科學工程學研究所博士論文,施漢章教授指導(1994)
139. M. K. Budinski and B. E. Wilde, “An Electrochemicaal criterion for the development of galvanic coating alloys for steel”, Corrosion, vol.43. No.1 1987, pp.60-63.
140. M.P. Gigandet J. Faucheu, and M. Tachez, “ Formation of Chromate conversion coating on pure and Zinc alloy electrolytic deposites: role of the main constituents”, Surface and coating Technology, 1997, pp.285-291.
141. F.X. Perrin, M.P Gigandet, M. Werry and J. Pagetti, “ Chromium Phospate conversion coating on Zinc electroplates: cathodic formation and characterization”, Surface and coating Technology, 1998, pp.135-140.
142. E. Almeida, T.C. Diamantito, M.O.Figueuredo and C.Sá, “ Oxidising alternative species to chromium VI in zinc galvanized steel surface treatment . Part — A morphological and chemical study”, surface and coating Techology 106 , 1998, pp.8-17.
143. 曾準梁、呂配仁等,”電鍍工藝手冊”,機械工業出版社。
144. E. Almeida, L. Fedrizzi and T.C. Diamantinio, “ Oxidising alternative species to chromium VI in zinc-galvanised steel surface treatment. Part 2-An electrochemical study”, Surface and Coating Technology 105, 1998, pp.97-101.
145. B. Trumble and P. Lawless, “Case study: Alternatives to chromate conersion coating for corrosion protection of zinc plated electronic shelves”, IEEE, 1997,pp.38-41.
146. T.R. Tan, J.R. Cheng, J. H. Wang, J.G.Duh, and H.C.Shih,” Morphology and characterization of the anodic coating on galvanized steels prepared by alternating currents”, Surface coating Technology,110, 1998, pp.194-199.
147. J.R. Cheng, T.R. Tan,J.Z.Qio, M.Y. Wu and H.C. Shih, “ Preparation and characterization of a colored anodic coating on hot dip galvanized steel”, Plating and surface finishing, pp.59-64.
148. M. M. Pushpavanam, S. Joph and B.A. Shenoi, “ Studies on Colour anodizing of zinc”, Electrochemical Society of India, 1984, pp.115-118.
149. 友野理平著,“塑膠金屬化加工技術”,復漢出版社,1987.1
150. R. Suchentrunk,”Metallizing of Plastics- A Handbook of Theory and Practice”, ASM, Inter. Mater. Park.
151. 易克堅,” 塑膠金屬化”,機械月刊第13卷第8期,pp.146-150.
152. J.A. Pomposo, J. Rodriguez and H. Grande,”Polypyrrole-based conducting hot melt adhesives for EMI Shilding applications”, Sythetic Metals, 1999,pp.107-111..
153. 唲瑞銘,” 導電高分子-市場與技術發展現況”,化工資訊,1992.6,pp.28-39.
154. H. Frerichs, J. Stricker, D. A. Wesner and E.W. Kreutz , “ Laser-induced surface modification and metallization of polymers”, Applied Surface Science, 1995, pp.405-410.
155. W.L. Baun, “Determining locus of failure with modern surface analysis methods”, Plenum Press, 1983, pp.131-146.
156. C.A. Deckert and D.A. Peters,” Adesion , wettability, and surface chemistry”, Plenum Press, 1983, pp.469-498.
157. J.Wiley & Sons, “ Encyclopedia of Polymer Science and Engineering” New York, pp.476-519.
158. M.S. Bhatia, “A technique for depositing metal layers over large areas for EMT sheildung “ IEEE, pp.321-324
159. 廖明榮編譯,” 塑膠鍍金與非導體的表面處理法”,文源書局,1976,pp.262-277.
160. 錢苗根,” 材料表面技術及其應用手冊”,機械工業出版社,1998,pp.700-715.
161. J. Affinito, P.Martin, M. Gross, C. Coronado, and E. Greenwell, “ Vacuum deposited polymer/metal multiplayer films for optical application”, Thin Solid Films , 1995, pp.43-48.
162. W.Fruth, H. Meerkamm, T. Krumpiegl, C. Schaufler, G.Erkens, and M.Ruttor, “ Tribological behaviour of PVD-coated PA plastic material sliding against metal counterparts”, Surface coating tech. 1999, pp.470-475.
163. L.S.Penn and H. Wang, “Chemical Modification of polymer surfaces : A review”, Polymers for Advanced Tech. 1994, pp.809-817.
164. O.A. Kaibyshev, I. V. Kazachkov and S. Y. Salikhov, “The Influence of Texture on Superplasticity of the Zn-22% Al Alloy”, Acta metal. Vol.26., pp.1887-1894.
165. D. Lee, “Structural Changes during the Superplastic Deformation”, Metallurgical Transactions, Vol.1, January 1970, pp309~311.
166. R. Kossowsky and J. H. Bechtold, “Structural Changes during Superplastic Deformation in Al-78 Wt Pct Zn Alloy”, Transactions of the Metallurgical Society of Time, Vol.242, April 1968, pp716~719.
167. Yao Hua Zhu and Frank E. Goodwin, “Microstructures of Thermomechanically treated Eutectoid Zn-Al Alloy”, J. Mater. Res. Vol.10, No.8, Aug 1995, pp1927~1932.
168. C.F.Yang, L.H.Chiu and Y.P Sheu,” Effect of Thermomechanical Treatment on Superplastic of Zn-22% Al alloy”, Materials and Manufacturing Processes Vol. 12, No. 2, 1997, pp.199-214.
169. A. Kruse, G. Krűger, A. Baalmann and O.-D. Hennemann, “surface pretreatment of plastic for adhesive bonding” J. Adhesion Sci. Technol., Vol.9. No. 12. 1995, pp. 1611-1621
170. Hideyuki Sasaki, Ichiro Kobayashi, Saichi Sai, Hidetoshi Hirahara, Yoshiyuki Oishi, and Kunio Mori, “Adhesion of ABS Resin to Metals Treated with Triazine Trithiol Monosodium Aqueous Solution”, J. Adhesion Sci. Techmol., Vol.13, No.4, 1999, pp523~539.
171. J. Jang and J. H. Lee, “Effect of Imidization Temperature on the Adhesion of Polyimide on Aluminum”, Journal of Applied Polymer Science, Vol.62, 1996, pp199~205.
172. Ferraris, L.; Chang-Yu Wu “EMI shielding-common problems and containment strategies” Electromagnetic Compatibility Proceedings, 1997., 1997 International Symposium on , 1997 , Page(s): 86 —89
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top