跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 14:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳錦毅
研究生(外文):Chin-Yi Chen
論文名稱:高嶺土製備模來石的微結構控制
論文名稱(外文):Microstructural Control of Mullite Prepared from Kaolinite
指導教授:段維新段維新引用關係
指導教授(外文):Wei-Hsing Tuan
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:106
中文關鍵詞:高嶺土偏高嶺土尖晶石相模來石從優取向氧化鋁
外文關鍵詞:kaolin or kaolinitemetakaolinitespinel-type phasemullitepreferred orientationalumina
相關次數:
  • 被引用被引用:2
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:1
在陶瓷原料中,高嶺土(Al2O3·2SiO2·2H2O)為一種不可或缺的主要成分,且已被廣泛應用在陶瓷工業數個世紀之久,因此高嶺土在陶瓷工業中,是相當重要的原料之一。雖然高嶺土已被人類應用了這麼多年,然而由於其相變化極為複雜,導致其化學反應及微結構變化的研究,仍是一項極吸引人的挑戰。高嶺土在高溫下,其最主要的產物為模來石(3Al2O3·2SiO2)。模來石除了其具有高溫的穩定性之外,由於其熱膨脹係數及介電損失極低,也廣泛地被運用在熱及電的絕緣設備上。
在本論文中,是針對高嶺土到模來石的相變化、粉末的製備、微結構的演變、從優取向的關係及控制進行研究。高嶺土顆粒多半呈薄片形狀,其生胚在本研究中,是藉由乾壓以及刮刀的方式成形。高嶺土顆粒傾向平躺於垂直乾壓方向的平面上,以及平行刮刀成形方向的平面上。當燒結溫度升高時,高嶺土會先轉變為偏高嶺土(~550C),再由偏高嶺土轉變為尖晶石相(~950-1000C),最後變為模來石(>1000C)。由於相變的過程會釋放出大量的玻璃相,其最後生成的模來石,為了降低表面能,會於玻璃相中藉由溶解析出的方式,沿著c軸的方向形成長柱狀的晶粒。藉由控制高嶺土的排列方向,其模來石柱狀晶生成時亦會由於高嶺土具有從優取向(preferred orientation),而導致最後生成的模來石亦具有從優取向。
高嶺土以攪磨的方式,以水與酒精做為研磨介質,比較其研磨、分散以及乾燥的行為。其結果顯示,以酒精為研磨介質,其乾燥後不易形成聚結,對成形性與燒結後的各項性質具有正面的影響。同時氧化鋁亦被加入高嶺土粉末中,與高嶺土反應成為模來石。然而氧化鋁的添加,會增加反應燒結的溫度,導致密度下降,最後在相同的燒結溫度下,對強度產生負面的影響。此外,其模來石的長寬比(aspect ratio)會隨著氧化鋁添加量的增加而降低,而從優取向亦隨之降低。
藉由刮刀成形的方式,高嶺土片狀顆粒呈現極明顯的從優取向。幾乎所有的片狀顆粒皆能平躺於平行成形方向的平面上,組織化的微結構因此而形成。利用此獨特的微結構,即能在升溫的過程中,觀察其高嶺土相轉變為模來石的微結構變化。在燒結溫度為1000C以下時,其高嶺土的片狀外觀,幾乎沒有變化。隨著液相的生成,在液相中及原來高嶺土片狀顆粒的表面上,即有極微小的晶粒生成;隨著溫度持續升高,此微小的模來石晶粒會非等向性地以溶解析出的方式,在液相中成長,直到相互碰撞、鎖住後停止。
Kaolinite clay (Al2O3·2SiO2·2H2O) is an indispensable compositions in raw materials, and has been widely used in ceramic industries for centuries. Kaolin is, therefore, one of the most important raw materials for ceramic industries. Though kaolin has been used for many years, to investigate the chemical reactions and microstructural development at elevated temperature is still an attractive challenge due to its complex phase transformations. The main product phase after firing kaolin at high temperature is mullite (3Al2O3·2SiO2). Because kaolin is frequently used as starting material, mullite is an important constituent in whitewares, refractories and structural porcelain bodies. Mullite itself is very stable at high temperature. Furthermore, its thermal expansion coefficient and dielectric loss are low; mullite is, therefore, widely used as thermal and electrical insulation components.
In the present study, the kaolinite-mullite transformation, powder preparation, microstructural evolution, orientation relationships, and texture control are investigated. Kaolin particles are usually flaky in shape. Kaolin powder greens, in the present study, were prepared by applying die-pressing and tape casting technique. The kaolin flakes tend to lie down on the plane which is perpendicular to the die-pressing direction and the plane which is parallel to the casting direction. With increasing sintering temperature, kaolinite transforms to metakaolinite (~550C); then, metakaolinite transforms to spinel-type phase (~950-1000C), and finally forms mullite phase (>1000C). A large amount of glassy phase is liberated in these reaction stages. The mullite grains then grow along their c axes into needle-like grains via dissolution and reprecipitation through glass phase. By controlling the arrangement of kaolin flakes, the mullite needles tend to show a preferred orientation, being related to the preferred orientation in the green kaolin powder compacts.
The kaolin powder is attrition milled by using water or alcohol as the milling liquid for comparison. The results reveal that by using alcohol instead of water, kaolin powder exhibits less extent of agglomeration, leading to better properties after sintering. Alumina also is added into kaolin powder to form mullite. However, alumina may increase the sintering temperature, leading to low density and further affects the strength negatively. Furthermore, the aspect ratio of mullite grains is decreased with the increase of alumina content. The extent of preferred orientation is thus reduced.
Using the tape casting technique, kaolinite flakes show a strong preferred orientation. Almost the flakes can lie down on the plane which is parallel to the casting direction. The textured microstructure is thus formed. By the use of the unique microstructure, the morphological evolution from kaolinite to mullite can be observed during sintering. As the temperature is below 1000C, the morphology of kaolinite flakes is almost the same. After liberating the liquid phase, the mullite grains are initially formed on the surface of kaolin flakes. As the sintering temperature continues to raise, the small mullite grains can grow anisotropically by dissolution and reprecipitation mechanism in glass phase to form needle-like grains until they impinge on and interlock to each other.
Cover
中文摘要
Abstract
Contents
List of Tables
List of Figures
Chapter 1 Introduction
1-1 Background
1-2 Motivation
Chapter 2 Literature Survey
2-1 Introduction to Kaolin
2-1-1 Constituent and Structure of Kaolin
2-1-2 Transformation of Kaolin
2-1-3 Metakaolinite Formation
2-1-4 Spinel Formation
2-1-5 Mullite Formation
2-1-6 Cristobalite Formation
2-1-6-1 Mechanism of Cristobalite Formation
2-1-6-2 Phase Transformation of Silica
2-1-7 Effect of Impurities on Transformation of Kaolinite
2-1-8 Liquid Phase Sintering
2-1-8-1 Mechanism of Liquid Phase Sintering
2-1-8-2 Formation Temperature of Liquid Phase
2-1-9 Mullite Ceramics Prepared from Kaolinite and Alumina
2-2 Mullite Ceramics
2-2-1 Composition and Structure Of Mullite
2-2-2 Preparation of Mullite
2-2-3 Morphology of Mullite
2-2-4 Properties and Applications of Mullite
2-3 Mechanical Properties of Kaolinite Ceramics
2-3-1 Effect of Pore on Mechanical Properties of Ceramics
2-3-1-1 Effect of Porosity
2-3-1-2 Pore Growth Mechanism
2-3-2 Mechanical Properties ofTriaxial Ceramics
2-3-3 Effect of Doped Alumina on Mechanical Properties of Kaolinite
Chapter 3 Microstructural Evolution of Mullite During the Smtering of Kaolin Powder Compacts
3-1 Introduction
3-2 Experimental Procedures
3-3 Results and Discussion
3-4 Conclusions
Chapter 4 The Processing of Kaolin Powder
4-1 Introduction
4-2 Experimental Procedures
4-3 Results
4-4 Discussion
4-5 Conclusions
Chapter 5 Preparation of Mullite by Reaction Sintering Kaolinite and Alumina
5-1 Introduction
5-2 Experimental Procedures
5-3 Results and Discussion
5-4 Conclusions
Chapter 6 Morphology Evolution of Mullite Prepared from Tape Cast Kaolinite
6-1 Introduction
6-2 Experimental Procedures
6-3 Results and Discussion
6-4 Conclusions
Chapter 7 General Discussion and Future Works
7-1 General Discussion
7-2 Future Works
Chapter 8 Conclusions
References
作者簡歷
Akasy, I. A., Dabbs, D. M. and Sarikaya, M. (1991) Mullite for Structural Electronic and Optical Application. J. Am. Ceram. Soc., 74 [10] 2343-2358.
Aksay, I. A. and Pask, J. A. (1975) Stable and Metastable Equilibria in the System SiO2-Al2O3. J. Am. Ceram. Soc., 58 [11-12] 507-12.
ASTM Standard (1996) Standard Definition of Terms Related to Ceramic Whitewares and Related Products. ASTM Designation C 242. 1996 Annual Book of ASTM Standards, Vol. 15.02. American Society for Testing and Materials, Philadelphia, PA.
Bartsch, M., Saruhan, B., Schmucker, M. and Schneider, H. (1999) Novel low-temperature processing route of dense mullite ceramics by reaction sintering of amorphous SiO2-coated -Al2O3 particle nanocomposites, J. Am. Ceram. Soc., 82 1388-92.
Blodgett, W. E. (1961) High-Strength Alumina Porcelains. Am. Ceram. Soc. Bull., 40, 74-77.
Bradley, W. F. and Grim R. E. (1951) High Temperature Thermal Effects of Clay and Related Minerals. Am. Mineral., 36, 182-201.
Brindley, G. W. and Nakahira, M. (1957) Kinetics of Dehydroxylation Kaolinite and Halloysite. J. Am. Ceram. Soc., 40 [10] 346-50.
Brindley, G. W. and Nakahira, M. (1959a) The Kaolinite-Mullite Reaction Series: Ⅰ, a survey of outstanding problems. J. Am. Ceram. Soc., 42 [7] 311-24.
Brindley, G. W. and Nakahira, M. (1959b) The Kaolinite-Mullite Reaction Series: Ⅱ, metakaolin. J. Am. Ceram. Soc., 42 [7] 311-24.
Brindley, G. W. and Nakahira, M. (1959c) The Kaolinite-Mullite Reaction Series: Ⅲ, the high-temperature phases. J. Am. Ceram. Soc., 42 [7] 311-24.
Brown, I. W. M., MacKenzie, K. J. D., Meinhold, R. H. and Bowden, M. E. (1985) Outstanding Problems in the Kaolinite-Mullite Reaction Sequence Investigated by 29Si and 27Al Solid-State Nuclear Magnetic Resonance: Ⅰ, II. J. Am. Ceram. Soc., 68 [6] 293-301.
Campos, T. W., Santos, H. D. E. S. and Santos, P. D. S., (1976) Mullite Development from Fibrous Kaolin Mineral. J. Am. Ceram. Soc., 59 [7-8] 357-340.
Carty, W. M. (1999) The Colloidal Nature of Kaolinite, J. Am. Ceram. Soc. Bull. Aug., 72-76.
Carty, W. M. and Senapati, U. (1998) Porcelain-Raw Materials, Processing, Phase Evolution, and Mechanical Behavior. J. Am. Ceram. Soc., 81 [1] 3-20.
Chakraborty, A. K. (1979) Formation of Silicon-Aluminum Spinel. J. Am. Ceram. Soc., 62 [3-4] 120-124.
Chakraborty, A. K. and Ghosh, D. K. (1978) Reexamination of the Kaolinite to Mullite Reaction Series. J. Am. Ceram. Soc., 61 [3-4] 170-73.
Chakraborty, A. K., Ghosh, D. K. and Kundu, P. (1986) Comment on Structural Characterization of Spinel Phase in Kaolinite-Mullite Reaction Series through Lattice Energy. J. Am. Ceram. Soc., 69 [8] C-200C-201.
Charkraborty, A. K. and Ghosh, D. K. (1986) Comment on “Diphasic Xerogels, A New Class of Materials: Phases in the System Al2O3-SiO2,” J. Am. Ceram. Soc., 69 [8] C-202C-203.
Chen, C. Y., Lan, G. S. and Tuan, W. H., Microstructural evolution of mullite during the sintering of kaolin powder compacts, Ceramics International, to be published.
Comefore, J. E., Fischer, R. B. and Bradley, W. F. (1948) Mullitization of Kaolinite. J. Am. Ceram. Soc., 31 [9] 254-59.
Comer, J. J. (1960) Electron Microscope Studies of Mullite Development in Fired Kaolinites. J. Am. Ceram. Soc., 43 [7] 378-84.
Comer, J. J. (1961) New Electron-Optical Data on the Kaolinite-Mullite Transformation. J. Am. Ceram. Soc., 44 [11] 561-63.
Davis, R. F. and Pask, J. A. (1972) Diffusion and Reaction Studies in the System Al2O3-SiO2. J. Am. Ceram. Soc., 55 [10].
Dokko, P. C., Pask, J. A. and Mazdiyasni, K. S. (1977) High-Temperature Mechanical Propertirs of Mullite under Compression. J. Am. Ceram. Soc., 60 [3-4] 150-55.
Doremus, R. H. (1973) pp. 102, in Glass Science, John Wiley & Sons, New York.
Fenstermacher, J. E. and Hummel, F. A. (1961) High-Temperature Mechanical Properties of Ceramic Materials: Ⅳ, Sintered Mullite Bodies. J. Am. Ceram. Soc., 44 [6] 284-289.
Gaskell, D. R. (1981) Introduction to Metallurgical Thermodynamics, 2nd ed., McGraw-Hill Book Co., New York, NY., USA, pp. 586.
Gentile, A. L. and Foster, W. R. (1961) private communication, Dec. 12.
German, R. M. (1985) Liquid Phase Sintering. Plenum Press, New York.
Grimshaw, R. W., Heaton, E., and Roberts, R. L. (1945) Refractory Clays II. Trans. Br. Ceram. Soc., 44, 76-92.
Hamano, K., Hasegawa, M. and Nakagawa, Z. (1991a) Effect of Grain Size of Quartz on Mechanical Strength Porcelain Bodies. J. Ceram. Soc. Jpn., 99, 149-153.
Hamano, K., Hasegawa, M. and Nakagawa, Z., (1991b) Effect of Coarse Quartz Grains on Mechanical Strength Porcelain Bodies. J. Ceram. Soc. Jpn., 99, 1070-1703.
Harada, R., Sugiyama, N. and Ishida, H. (1996) Al2O3-Strengthened Feldspathic Porcelain Bodies: Effects of the Amount and Particle Size of Alumina. Ceram. Eng. Sci. Proc., 17, 88-98.
Hasselman, D. P. H. and Fulrath, R. M. (1966) Proposed Fracture Theory of a Dispersion-Strengthened Glass Matrix. J. Am. Ceram. Soc., 49, 68-72.
Hirao, K., Ohashi, M., Brito, M. E., and Kanzaki, S. (1995) Processing Strategy for Producing Highly Anisotropic Silicon Nitride. J. Am. Ceram. Soc., 78 [6] 1687-90.
Hoffman, D. W., Roy, R. and Komarneni, S. (1984) Diphasic Xerogels, A New Class of Materials: Phases in the System Al2O3-SiO2. J. Am. Ceram. Soc., 67 [7] 468-71.
Hong, S.-H. and Messing, G. L. (1999) Development of Textured Mullite by Templated Grain Growth. J. Am. Ceram. Soc., 82 [4] 867-72.
Huling, J. C. and Messing, G. L. (1989) Hybrid Gels for Homoepitactic Nucleation of Mullite. J. Am. Ceram. Soc., 72 [9] 1725-29.
Hyatt, M. J. and Bansal, N. P. (1990) Transformations in Xerogels of Mullite Composition. J. Mater. Sci., 25, 2815-21.
Hyslop, J. F. and Rooksby, H. B. (1928a) Effect of Heat on Crystalline Break Up of Kaolin. Trans. Br. Ceram. Soc., 27 [4] 93-96.
Hyslop, J. F. and Rooksby, H. B. (1928b) Further Note on Crystalline Break Up of Kaolin. Trans. Br. Ceram. Soc., 27 [4] 299-302.
Igarashi, H., Matsunaga, K., Taniai, T., and Okazaki, K. (1978) Dielectric and Piezoelectric Properties of Grain-Oriented PbBi2Nb2O9 Ceramics. Am. Ceram. Soc. Bull., 57 [9] 815-17.
Insley, H. and Ewell, R. H. (1935) Thermal Behavior of the Kaolin Minerals. J. Res. Natl. Bur. Stand., 14 [5] 615-27.
Ishida, H. and Watanabe, O. (1993) Effect of Particle Size of Feldspar on Densification. J. Ceram. Soc. Jpn., 101, 456-459.
Ismail, M. G. M. U., Nakai, Z. and Somiya, S. (1987) Microstructure and Mechanical Properties of Mullite Prepared by the Sol-Gel Method. J. Am. Ceram. Soc., 70 [1] C-7C-8.
Johnson, H. B. and Kessler, F., (1969) Kaolinite Dehydroxylation Kinetics. J. Am. Ceram. Soc., 52 [4] 199-204.
Johnson, S. M. and Pask, J. A. (1982) Role of Impuritires on Formation of Mullite from Kaolinite and Al2O3-SiO2 Mixtures. Am. Ceram. Soc. Bull., 61 838-842.
Johnson, S. M., Pask, J. A. and Moya, J. S. (1982) Influence of Impurities on High-Temperature Reactions of Kaolinite. J. Am. Ceram. Soc., 65 [1] 31-35.
Kanzaki, S., Tabata, H., Kumazawa, T., and Ohta, S. (1985) Sintering and Mechanical Properties of Stoichiometric Mullite. J. Am. Ceram. Soc., 68 [1] C-6~C-7.
Kaobayashi, Y., Ohira, O., Satoh, T. and Kato, E. (1994) Compositions for Strengthening Porcelain Bodies in Alumina-Feldspar-Kaolin System. British Ceram. Trans., 93 [2] 49-52.
Kingery, W. D. Bowen, H. K. and Uhlmann, D. R. (1991) Introduction to Ceramics, 2nd edn, Wiley, New York.
Klug, F. J., Prochazka, S. and Doremus, R. H. (1987) Al2O3-SiO2 System in the Mullite Region. J. Am. Ceram. Soc., 70 [10] 750-59.
Klug, F. J., Prochazka, S. and Doremus, R. H. (1990) Al2O3-SiO2 Phase Diagram in the Mullite Region. pp. 15-43 in Ceramic Transactions, Vol. 6, Mullite and Mullite Matrix Composites. Edited by R. F. Davis, J. A. Pask, and S. Somiya. American Ceramic Society, Westerville, OH.
Kobayashi, Y., Ohira, O., Ohashi, Y. and Kato, E. (1992) Effect of Firing Temperature on Bending Strength of Porcelains for Tableware. J. Am. Ceram. Soc., 75 [7] 1801-1806.
Kubaschewski, O., Evans, E. LL. and Alcock, C. B. (1967) Metallurgical Thermochemistry, 4th ed., Pergamon Press, London, U.K., pp. 424.
Kumazawa, T., Kanzaki, S., Ohta, S. and Tabata, H. (1988) Influence of Chemical Composition on the Mechanical Properties of SiO2-Al2O3 Ceramic. J. Ceram. Soc. Jpn. Inter. Ed., 96 85-91.
Lee, S., Kim, Y. J. and Moon H.-S.(1999) Phase Transformation Sequence from Kaolinite to Mullite Investigated by an Energy-Filtering Transmission Electron Microscope. J. Am. Ceram. Soc. 82 [10] 2841-48.
Lee, W. E. and Rainforth, W. M. (1994) Structural oxides I: Al2O3 and mullite. In Ceramic Microstructures  Property Control by Processing, Chapman & Hall, London, U.K., pp. 255-312.
Leonard, A. J. (1977) Structural Analysis of the Transition Phases in the Kaolinite to Mullite Thermal Sequence. J. Am. Ceram. Soc., 60 [1-2] 37-43.
Levin, E. M., Robbins, C. R., and McMurdie, H. F. (1964) Fig. 407 in Phase Diagrams for Ceramists. Edited by M. K. Reser, American Ceramic Society, Columbus, OH.
Li, D. X. and Thomson, W. J. (1990) Mullite Formation Kinetics of a Single-Phase Gel. J. Am. Ceram. Soc., 73 [4] 964-69.
Liu, K. C., Thomas, G., Caballero, A., Moya, J. S. and Aza, S. (1994a) Time-Temperature-Transformation Curves for Kaolinite-Alumina. J. Am. Ceram. Soc., 77 [6] 1545-52.
Liu, K-C., Thomas, G., Caballero, A., Moya, J. S. and Aza, S. de (1994b) Mullite formation in kaolinite--alumina, Acta Metall., 42, 489-95.
Lundin S. T. (1964) Microstructure of Porcelain (in Microstructure of Ceramic Materials). NBS Misc. Publ., 257, 93-106.
Mackenzie, J. K. and Shuttleworth, R. (1949) A phenomenological theory of sintering, Proc. Phys. Soc., London, 62, 633-652.
MacKenzie, K. J. D., Brown, I. W., Meinhold, R. H. and Bowden, M. E. (1985a) Outstanding Problems in Kaolinite-Mullite Reaction Sequence Investigated by 29Si and 27Al Solid-State Nuclear Magnetic Resonance: I, Metakaolinite. J. Am. Ceram. Soc., 68 [6] 293-97. MacKenzie, K. J. D., Brown, I. W., Meinhold R. H. and Bowden, M. E., (1985b) Outstanding Problems in Kaolinite-Mullite Reaction Sequence Investigated by 29Si and 27Al Solid-State Nuclear Magnetic Resonance: II, High-Temperature Transformations of Metakaolinite. J. Am. Ceram. Soc., 68 [6] 298-301.
Mah, T. I. and Mazdiyasni, K. S. (1983) Mechanical Properties of Mullite. J. Am. Ceram. Soc., 66, 699-703.
Maity, S. and Sarkar, B. K. (1996) Development of High-Strength Whiteware Bodies. J. Eur. Ceram. Soc., 16, 1083-88.
Maity, S., Mukhopadhyay, T. K. and Sarkar, B. K. (1996) Sillimanite Sand-Feldspar Porcelains: I. Vitrification Behavior and Mechanical Properties. Interceram, 45, 305-12.
Manfredini, T., Pellacani, G. C., Romagnoli, M. and Pennisi, L. (1995) “Porcelainized Stoneware Tile. Am. Ceram. Soc. Bull., 74 [5] 76-79.
Mattyasovszky-Zsolnay, L. (1957) Mechanical Strength of Porcelain. J. Am. Ceram. Soc., 40, 299-306.
Mazumdar, S. and Mukherjee, B. (1986) Reply to Comment on Structural Characterization of Spinel Phase in Kaolinite-Mullite Reaction Series through Lattice Energy. J. Am. Ceram. Soc., 69 [8] C-201.
Moya, J. S., Aza, S., Sane, J., Madani, A., and Serratosa, J. M. (1988) “Aluminum-27 and Silicon-29 Magic-Angle Spinning Nuclear Magnetic Resonance Study of the Kaolinite-Mullite Transformation,” J. Am. Ceram. Soc., 71 [10] C-418C-421.
Mroz, T. J. and Lanughner, J. W. (1989) Microstructure of Mullite Sintered from Seeded Sol-Gels. J. Am. Ceram. Soc., 72 [3] 508-509.
Muan, A. (1958) Stability of the Phase Fe2O3·Al2O3, Am. J. Sci., 256, 413-22.
Norris, A. W., Taylor, D. and Thorpe, I. (1979) Range curves: an experimental method for the study of vitreous pottery bodies. Trans. J. Br. Ceram. Soc., 78, 102-108.
Norton, F. H. (1974) Elemens of Ceramics, 2nd edn, Addison Wesley Pulishing Co. Ins., Reading. Mass.
Ohnishi, H., Kawannami, T., Nakahira, A. and Niihara, K. (1990) Microstructure and Mechanical Properties of Mullite Ceramics. J. Ceram. Soc. Jpn., 98 [6] 541-47.
Okada, K. and Otsuka, N. (1986) Characterization of the Spinel Phase from SiO2-Al2O3 Xerogels and the Formation Process of Mullite. J. Am. Ceram. Soc., 69 [9] 652-56.
Okada, K. and Otsuka, N. (1987) Change in Chemical Composition of Mullite formed from 3Al2O3·2SiO2 Xerogel during the Formation Process. J. Am. Ceram. Soc., 70 [10] C245-47.
Okada, K. and Otsuka, N. (1990) Formation Process of Mullite. in Mullite and Mullite Matrix Composite, Ceram. Trans., Vol. 6 (eds S. Somiya, R. F. Davis and J. A. Pask), American Ceramic Society, Ohio, pp. 375-87.
Okada, K., Otsuka, N. and Ossaka, J. (1986) Characterization of Spinel Phase Formed in the Kaolin-Mullite Thermal Sequence. J. Am. Ceram. Soc., 69 [10] C-251-C-253.
Okada, K., Otsuka, N. and Somiya, S. (1991) Review of Mullite Synthesis Routes in Japan. Am. Ceram. Soc. Bull., 70 [10] 1633-1639.
Osborn, E. F. and Muan, A. (1960a) revised and redrawn “Phase Eguilibrium Diagrams of Oxide Systems ,” Plate 4, published by the American Ceramic and the Edward Orton, Jr., Ceramic Foundation.
Osborn, E. F. and Muan, A. (1960b) revised and redrawn “Phase Eguilibrium Diagrams of Oxide Systems ,” Plate 3, published by the American Ceramic and the Edward Orton, Jr., Ceramic Foundation.
Papargyris, A. D. and Cooke, R. D. (1996) Structure and Mechanical Properties of Kaolin Based Ceramics. British Ceram. Trans. 95 [3] 107-120.
Pask, J. A. and Tomsia, A. P. (1991) Formation of Mullite from Sol-Gel Mixtures and Kaolinite. J. Am. Ceram. Soc., 74 [10] 2367-73.
Percival, H. J., Duncan, J. F. and Foster, P. K. (1974) Interpretation of the Kaolinite-Mullite Reaction Sequence from Infrared Absorption Spectra. J. Am. Ceram. Soc., 57 [2] 57-61.
Perry, C. (1997) Microstructural Evolution in Alumina Porcilains. B.S. Thesis. New York State College of Ceramics at Alfred University, Alfred, NY.
Rana, A. P. S., Aiko, O., and Pask, J. A. (1982) Sintering of -Al2O3 / Quartz, and -Al2O3 / Cristobalite Related to Mullite Formation. Ceram. Inter., 8 [4] 151-53.
Reed, J. S. (1995) Principles of Ceramics Processing, 2nd edn. Wiley, New York.
Rice, R. W., Freiman, S. W., Pohanka, R. C., Mecholsky, J. J., Jr. and Wu, C. C. (1978) Microstructural Dependence of Fracture Mechanics Parameters in Ceramic. In “Fracture Mechanics of Ceramics, Vol. 4.” Crack Growth and Microstructure, R. C. Bradt, D. P. H. Hasselman, and F. F. Lange Ed., Plenum Press p.849.
Risbud, S. H. and Pask, J. A., (1977) Calculated Thermodynamic Data and Metastable Immiscibility in the System SiO2-Al2O3. J. Am. Ceram. Soc., 60 [9-10] 418-24.
Roberts, A. L. (1945) Refractory Clays I. Trans. Br. Ceram. Soc., 44, 69-75.
Roy, R., Roy, D. M., and Francis, E. E. (1955) New Data on Thermal Decomposition of Kaolinite and Halloysite. J. Am. Ceram. Soc., 38 [6] 198-205.
Ryshkewitch E. (1953) Compression Strength of Porous Sintered Alumina and Zirconia. J. Am. Ceram. Soc., 36 [2] 65-68.
Sacks, M. D., Bozkurt, N., and Scheiffel, G. W. (1991) Fabrication of Mullite and Mullite-Matrix Composites Transient Viscous Sintering of Composite Powder. J. Am. Ceram. Soc., 74 [10] 2428-37.
Sacks, M. D., Lee, H. W. and Pask, J. A. (1990) A Review of Powder Preparation Methods and Densification Procedures For Fabrication High Density Mullite. 167-207, in Mullite and Mullite Matrix Composites, The American Ceramic Society.
Sacks, M. D., Lin, Y. J., Wang, K. and Bozkurt, N. (1995) Effect of Seeding on Phase Development, Densification Behavior, and Microstructure Evolution in Mullite Fabricated from Microcomposite Particle. J. Am. Ceram. Soc., 78 [11] 2897-2906.
Sacks, M. D., Scheiffele, G. W., and Staab, G. A. (1996) Fabrication of Textured Silicon Carbide via Seeded Anisotropic Grain Growth. J. Am. Ceram. Soc., 79 [6] 1611-16.
Sane, S. C. and Cook, R. L. (1951) Effect of Grinding and Firing Treatment on the Crystalline and Glass Content and the Physical Properties of Whiteware Bodies. J. Am. Ceram. Soc., 34, 145.
Schneider, H., Majdic, A. and Vasudevan, R. (1986) Kinetics of the Quartz-Cristobalite Transformation in Refractory-Grade Silica Materials. Mater. Sci. Forum, 7, 91-102.
Schneider, H., Okada, K. and Pask, J. (1994) Mullite and Mullite Ceramics, Wiley, New York, pp. 106.
Schroeder, J. E. (1978) Inexpensive High-Strength Electrical Porcelain. Am. Ceram. Soc. Bull., 57, 526.
Schuller, K. H. (1964) Reactions between Mullite and Glassy Phase in Porcelains. Trans. Br. Ceram. Soc., 63, 102-17.
Schuller, K. H. (1984) Process Mineralogy of Ceramic Materials; Ch. 1. Edited by W. Baumgart, Ferdinand Enke, Stuttgart, Germany.
Searle, A. B. (1940) Refractory Materials, 3rd edn.; pp. 158-65. Charles Griffin, London, U.K.
Singer, F. and Singer, S. S. (1963) Industrial Ceramics; pp. 9-12, 167-69, 236-64, 393-99, 430-78. Chapman and Hall, London, U.K.,.
Somiya, S. and Hirata, Y. (1991) Mullite Powder Technology and Applications in Japan. Am. Ceram. Soc. Bull., 70 [10] 1624-1632.
Sonuparlak, B., Sarikaya, M. and Aksay, I. A. (1987) Spinel Phase Formation during 980C Exothermic Reaction in the Kaolinite-to-Mullite Reaction Series. J. Am. Ceram. Soc., 70 [11] 837-42.
Speight, M. V. (1968) Growth Kinetics of Grain Boundary Precipitate,” Acta. Metall., 16 [1] 133-35.
Srikrishna, K., Thomas, G., Martinez, R., Corral, M. P., Aza, S. De and Moya, J. S. (1990) Kaolinite-Mullite Reaction Series: A TEM Study. J. Mater. Sci., 25, 607-12.
Takenaka, T. and Sakata, K. (1980) Grain Orientation and Electrical Properties of Hot-Forged Bi4Ti3O12 Ceramics. Jpn. J. Appl. Phys., 19 [1] 31-39.
Wachtman, J. B. (1967) Mechanical Properties of Ceramics: An Introductory Survey. Am. Ceram. Soc. Bull., 46[8], 756.
Warshaw, S. I. and Seider, R. (1967) Comparison of Strength of Triaxial Porcelains Containing Alumina and Silica. J. Ceram. Soc. Jpn., 50 [7] 337-343.
Wataname, T., Shimizu, H., Nagasawa, K., Masuda, A. and Saito, H. (1987) “29Si and 27Al Mas/NMR Study of the Thermal Transformations of Kaolinite,” Clay Miner., 22, 37-48.
Wei, W. Ch. and Halloran, J. W. (1988) Phase Transformation of Diphasic Aluminosilicate Gels. J. Am. Ceram. Soc., 71, 166-72.
Weiss, A., Range, K. J. and Russow, J. (1970) The Al,Si-Spinel Phase from Kaolinite. pp.34-37 in Proceedings of the International Clay Conference, Tokyo, 1969, Vol. Ⅱ. Edited by L. Heller. Applied Publishing, Israel University Press, Jerusalem,.
Wotting, G., Kanka B. and Ziegler, G. (1986), pp. 83-96, Microstructural development, microstructural characterization and relation to mechanical properties of dense silicon nitride, in New Oxide Technical and Engineering Ceramics, ed. By S. Hampshire, Elsevier Applied Science, London.
Yamada, H. and Kimura, S. (1962) Studies on the Co-precipitaes of Alumina and Silica Gels and its Transformations at High Temperatures. Yogyo Kyokaishi, 70 [3] 87-93.
Yoe, J. H., Surface tension of liquid elements. CRC Handbook, 58th edition, ed. by Weast, R. C., CRC Press, Florida (1978) F-45.
Youngblood, G. E. and Gordon, R. S. (1978) Texture-Conductivity Relationships in Polycrystalline Lithia-Stabilized 〞-Alumina. Ceram. Int., 4 [3] 93-98.
Zoellner, A. (1908) Zur Frage der Chemischem und Physikalischen Natur der Porzellans. (Some Chemical and Physical Properties of Porcelains). Sprechsaal, 41, 471-73.
李信義 (1995) 高壓電瓷研究開發的思維. 工業材料, 100 73-80.
許志雄, 顏富士 (1986) 以溶膠-凝膠法合成高純度富鋁紅柱石.陶業季刊.
鄭武輝,林銅柱(1994)建築用陶瓷材料,陶瓷技術手冊,第三十三章。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top