跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃育麒
研究生(外文):Hunag,Yu-Chi
論文名稱:熱處理對銅鋁錳形狀記憶合金之麻田散體相之結構及穩定化效應之研究
論文名稱(外文):The Effect of Thermal Treatment on Martensite Structure and Stabilization in a Cu-Al-Mn Shape Memory Alloy
指導教授:王文雄王文雄引用關係
指導教授(外文):Wang, Wen-Hsiung
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:106
中文關鍵詞:麻田散體穩定化序化結構變態溫度
外文關鍵詞:martensite stabilizationorder structuretransformation temperature
相關次數:
  • 被引用被引用:1
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗熔配了兩種不同成份的Cu-Al-Mn形狀記憶合金(Cu-8wt%Al-9wt%Mn, Cu-8wt%Al-10wt%Mn),分別進行直接淬火、100℃、150℃及200℃階段淬火等四種熱處理。熱處理後進行四點電阻量測、微硬度試驗、形狀回復率測試等試驗來瞭解合金的性質,並輔以掃描式電子顯微鏡、穿透式電子顯微鏡及X光繞射儀等儀器進行進一步的分析,定出合金中各相的晶體結構。此外也利用四點電阻熱循環實驗以探討熱循環對合金麻田散體變態之效應。
實驗的結果顯示,兩種合金的直接淬火與階段淬火試片,其麻田散體的結構均屬於單斜結構中的M18R,而其單斜性的程度大小,與合金種類,熱處理方式有很大的關係。在Cu-8Al-10Mn合金中,以150℃階段淬火的相對序化程度最大,而Cu-8Al-9Mn合金則是直接淬火者序化程度最大;此外,階段淬火試片進行四點電阻熱循環實驗時,其電阻遲滯迴路面積會隨著熱循環次數的增加而越來越小,表示其形狀回復能力隨著熱循環而有下降的趨勢,而在直接淬火下則無此情形,顯示後者具有較佳的形狀記憶效應,此點也在形狀回復率測試中得到證明。

In this work, two kinds of Cu-Al-Mn shape memory alloys with different chemical compositions (Cu-8wt%Al-10wt%Mn, Cu-8wt%Al-9wt%Mn) were melted by VAR. After homogenized and hot rolled, the specimens were heat-treated by direct-quench or step-quench into oil-bath at 100℃, 150℃and 200℃. Then they were investigated by electrical resistance measurement, hardness test and shape memory recovery test to get their characteristics. Further studies were also conducted by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and X-ray diffraction (XRD) in order to get the different phase structures of the alloys. Besides, thermal cycling experiments were used to study the effect of thermal cycling on the Shape Memory Alloy.
The results shows that whether under direct-quench or step-quench treatments, both martensites in the two alloys are M18R type, and the extent of monoclinicity is greatly influenced by alloy-type and methods of heat treatment. In Cu-8Al-10Mn alloy, the 150℃ step-quenched specimen has the relatively greatest ordering; while in Cu-8Al-9Mn alloys, it is the direct-quenched one gets the first place. Moreover, when the step-quenched specimen proceeds cycling tests, the hysteretic loop area will get smaller with increasing cycling numbers, which means the shape recovery ability has a decreasing tendency. However, it doesn’t go this way under direct-quench treatment and shape recovery test shows that direct-quenched specimen has better shape memory effect.

目錄
摘要
第一章 前言………..….….………………………………………………. 1
第二章 文獻回顧……..………………………………………………... 4
2-1形狀記憶效應……………………………………………………… 4
2-2熱彈性麻田散體變態…………...………………………………... 4
2-3 CuAlMn形狀記憶合金各相的結構…………………………… 7
2-3-1 母相…………….………………………….………………… 8
2-3-1-1 A2結構(高溫非序化β母相)…………….….. 8
2-3-1-2 B2結構(高溫序化β2母相)………………….. 8
2-3-1-3 DO3及L21結構(中間溫度序化β1母相)…... 9
2-3-2 麻田散體相…………………………………………….…... 11
2-3-2-1 α’(3R)、γ’(2H)、β1’(9R໪R)…………………. 12
2-3-2-2 M18R及N18R結構及判定的方法……………… 14
2-4 加入第三相元素的作用 ………………………………………… 17
2-5 形狀記憶合金安定化現象及影響變態溫度的因素…….… 18
2-6 熱處理對形狀記憶合金之影響………………………………... 21
2-6-1 時效的影響……………………….………………………... 21
2-6-2 直接淬火與階段淬火的影響…………………………… 22
2-7 序化程度的決定……………………………………………...…… 24
第三章 實驗方法………………………………………………………… 31
3-1 合金熔煉………………………………………………………….… 31
3-2 熱軋與試片加工…………………………………………………... 31
3-3 EPMA/氧氮成份分析……………………………………………… 32
3-4 直接淬火與間接淬火熱處理………………………………….... 32
3-5 四點電阻變態溫度量測…………………………………………. 33
3-6 金相顯微鏡觀察……………………..……………………………. 33
3-7 X光繞射分析………………………………………………………. 34
3-8 微硬度測試………………………………………………………… 34
3-9 形狀回復率測試…………………………………………………... 34
3-10 穿透式電子顯微鏡(TEM)觀察…………………………….. 35
第四章 結果與討論……………………………………………………... 40
4-1 合金成份分析及熱處理方式之選擇………………………….. 40
4-2 麻田散體變態溫度及熱循環測試結果………………………. 41
4-2-1 Cu-8Al-10Mn合金直接淬火之麻田散體變態溫度及熱循環測試結果…………………………….……………………… 42
4-2-2 Cu-8Al-10Mn合金100℃階段淬火之麻田散體變態溫度及熱循環測試結果…………………………………..….…… 42
4-2-3 Cu-8Al-10Mn合金150℃階段淬火之麻田散體變態溫度及熱循環測試結果………………………………………….. 44
4-2-4 Cu-8Al-10Mn合金200℃階段淬火之麻田散體變態溫度及熱循環測試結果………………………………………….. 45
4-2-5 Cu-8Al-9Mn合金直接淬火之麻田散體變態溫度及熱循環測試結果…………………………………………….……… 46
4-2-6 Cu-8Al-9Mn合金100℃階段淬火之麻田散體變態溫度及熱循環測試結果……………………………………………... 47
4-2-7 Cu-8Al-9Mn合金150℃階段淬火之麻田散體變態溫度及熱循環測試結果……………………………………………... 48
4-2-8 Cu-8Al-9Mn合金200℃階段淬火之麻田散體變態溫度及熱循環測試結果……………………………………………... 49
4-2-9 合金成份、熱處理對Cu-Al-Mn合金的影響………… 50
4-3 OM及SEM顯微組織觀察………………………………………… 52
4-4 X光繞射結構分析………………………………………………… 57
4-5 形狀記憶回復率測試…………………………………………….. 62
4-6 微硬度測試……………………………………………………….… 63
4-7 TEM顯微組織觀察………………………………………………… 64
第五章 結論………………………………………………………………... 102
第六章 參考文獻………………………………………………………… 104

[1]舟九保著,賴耿陽譯,形狀記憶合金,p.5
[2] L. Delaey, R. V. Krishnan, H. Tas and Warlimont, J Mat Sci.,9(1974) 1521.
[3] R. V. Krishnan, L. Delaey, H. Tas and H.Warlimont, J.Mat.Sci., 9(1974) 1536.
[4] H. Warlimont, L. Delaey, R. V. Krishnan and H. Tas, J.Mat.Sci., 9(1974) 1545.
[5] Ortin , J. and Planes , A., Acta. Met., 36 1873(1988).
[6] R. Kainuma, S. Takahashi, and K. Ishida:Metallurigical and Materials transation A., vol.27A., August 1996.,pp.2187-2194.
[7] S. Chakravorty and C. M. Wayman :Acta. Metallurgica, Vol. 25, pp.989-1000.
[8] Ming-hsiung Wu’s Ph.d. Thesis,University of Illinois,1985
[9] Dong W . Roh, Eon-Sik Lee, and Young G. Kim:Metallurigical Transaction A. Vol.23A.,October 1992.,pp.2753~2760.
[10] Zenji Nishiyama, Martensitic Transformation, Academic Press, New York, (1978)74
[11] Hiroyasu Funakubo, Shape Memory Alloys, p.176
[12] D. P. Dunne and N. F. Kennon:Scripta. Metallurigical Vol. 16, pp.729~734,1982.
[13] Rapacioli and Ahlers:Scripta. Metallurigical ,11,1147,1982.
[14] L. Delaey, T. Susuki and J. Van Humbeeck. Scipta Metall. 18 (1984)899
[15] L. Delaey, M. Chandrasekaran, M. Andrade and J. Van Humbeeck, in Proceedings of the International Conference on Solid-Solid Phase Transformation, edited by H. I. Aaronson et al. (pittsburh, 1981)p.1429
[16] G. Scarsbrook and W. M. Stobbs, Acta Metall. 35(1987)47
[17]Jianian Gui, Changhong Luo, Hege Zhang, Wei Hu and Renhui Wang Journal of Materials Science 25(1990),pp.1675~1681.
[18] W.H.Zou, C.W.H. Lam, C.Y. Chung and J.K.L. Lai:Scripta Materialia, Vol. 36, No.8 pp. 955-960,1997
[19] M. A .Morris and T. Lipe:Acta metall. Mater. 42, 1583(1994)
[20] T. Lipe and M.A. Morris,:Acta metall. Mater. 43, 1293(1995)
[21] J.S. Lee and C.M. Wayman, Trans. JIM27,584(1986)
[22] J.S. Lee and C.M. Wayman, Proc. Int. Conf. On Martensite Trans. (ICOMAT-86), Japan Inst. Met., Sendai, 920(1987)
[23] W.H.Zou, C.W.H. Lam, C.Y. Chung and J.K.L. Lai:Scripta Materialia, Vol. 36, No.8 pp. 955-960,1997
[24] D. Dunne, J. Van Humbeeck and M. Chandrasekaran, Mater. Sci. Forum 56-58, 463(1990)
[25] Z.G. Wei and D.Z. Yang, J. Mater. Sci. Technol. 11,409(1995)
[26] R. Kainuma, S. Takahashi, and K. Ishida:Metallurigical and Materials transation A., vol.27A., August 1996.,pp.2187-2194.
[27] M. De Graf, J. Van Humbeeck and L. Delaey, Proc. Int. Conf. Martensitic Transformations, Nara, Japan, p.850(1986)
[28] T. Suzuki, R. Kojima, Y. Fujii and A. Nagasawa, Acta Metall. 37,1 pp163-168(1989)
[29] N.F. Kennon, D.P. Dunne, and L. Middleton, Metall. Trans. A, 13A, p.551(1982)
[30]S Jan Van Humbeeck, Jan Janssen, Mwamba-Ngoie and Luc Delaey, Scripta Metall. 18, pp.893-898(1984)
[31] J. Van Humbeeck, J. Segers and L. Delaey, Scripta Metall. 19,pp477-480(1985)
[32] 邱傳聖, 台大材料所碩士論文, p.31
[33] 高家揚, 台大材料所碩士論文, p.39
[34] 高崇源, 台大材料所碩士論文, p.79
[35] Mariàngels Jurado, Lluís Mañosa, and Antoni Planes, Physical Review B, 48,5 p.3540(1993)
[36] S.C. Singh, Y. Murakami and L. Delaey, Screpta Metall., 12(1978)435
[37] R. Rapacioli and M. Ahlers, Acta Met. P.777, 27(1979)
[38] 金巖, 台大材料所碩士論文, p.11
[39] 金巖, 台大材料所碩士論文, p.25-27
[40] G. Scarsbrook, J. M. Cook and W. M. Stobbs, Met. Trans, 15A(1977)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top