跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/29 18:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張煥文
研究生(外文):Huan-Wen Chang
論文名稱:德國蜚蠊視網膜電位圖譜和活動行為之節律器間的關係
論文名稱(外文):The Relationship Between Locomotor Pacemaker and Circadian Rhythm of ERG in the German Cockroach, Blattella germanica (L.)
指導教授:李後晶李後晶引用關係
指導教授(外文):How-Jing Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:昆蟲學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:49
中文關鍵詞:日週律動德國蜚蠊視網膜電位圖譜
外文關鍵詞:Circadian RhythmGerman CockroachERG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
德國蜚蠊 ( Blattella germanica (L.))雄成蟲的活動行為具有日週律動( circadian rhythm ),此一規律性的活動行為是由視葉中的節律器( pacemaker )所控制。節律器能接受光訊息的引導,使其週期與外界的環境同步,也能在沒有時間訊息的恆定環境中表現出一個內在的規律性─自由律動( free-running )。有些研究指出此一調控活動行為的節律器可能也控制著視覺上的敏感度。蜚蠊的複眼能接受光的訊號,並將此一訊息經由神經網路傳到節律器之中。因此,視覺的敏感度對節律器的影響就顯得十分的重要。而視網膜電位圖譜( electroretinogram, ERG )是一種能簡易並有效的測量視覺敏感度的方法。在德國蜚蠊的視網膜電位圖譜記錄中,雄蟲的ERG波幅大小具有日週律動的現象。此一規律性和活動行為的規律性表現一致。在持續黑暗的環境之中,ERG的最大波幅是出現在相對夜晚,而且其日週期的長度( circadian period )小於24小時。然而,在德國蜚蠊的雌蟲中,其活動行為不表現出日週律動。前人研究顯示,雌性德國蜚蠊活動行為的日週律動是受到其卵巢發育的掩蓋。但從本實驗結果中顯示,此一掩蓋作用並不會影響到ERG的日週律動表現。這表示卵巢的掩蓋作用只出現在活動行為的表現上,而對視覺的敏感度則無此作用。因此,卵巢掩蓋作用的位置,可能是位在活動行為節律器下游的輸出路徑上,而不是作用在節律器的本身。然而在切斷視葉神經的手術後,德國蜚蠊的ERG在持續黑暗的環境中,仍表現出一個接近24小時的規律性。這顯示德國蜚蠊的複眼中,可能有一個獨立於活動行為節律器的生物時鐘在運作。而此一時鐘和活動行為節律器之間的關係則需要更進一步的研究。

The expression of locomotor circadian rhythm in male German cockroach is controlled by the pacemakers which are located in the optic lobes of brain. These pacemakers can be entrained by light to synchronize with environmental cycles or displayed free-running in the constant condition. Some researches findings suggest that the pacemaker in the optic lobe may regulate the visual sensitivity. The compound eyes can receive light signals and convey the information to the pacemakers. The electroretinogram (ERG) has been proven to be a particularly useful as an easily recorded measurement of visual sensitivity. From the ERG recording, the amplitude of light-evoked responses have been shown circadian rhythmicity in male adults. This rhythmicity was coincided with the locomotor circadian rhythm. The peak of response was appeared in the subjective night, and the cycle of response was less than 24 h under DD condition. However, female German cockroaches don't express locomotor circadian rhythm. The female's locomotor circadian rhythm was masked by the development of ovaries. This masking effect was not shown in the female's ERG response. This finding implies that the development of ovaries can mask the locomotor rhythm, but not mask the circadian rhythm of visual sensitivity. By optic nerve severance, the ERG still showed circadian rhythm in amplitude under DD condition. The result suggests pacemaker of visual sensitivity that independent of the locomotor pacemaker is located in retina. The masking factor dose not interact on the locomotor pacemaker but on the output pathway.

1. Introduction………………………………………………………………1
2. Literature reviews…………………………………………………………3
(1) Circadian rhythm………………………………………………3
(2) Circadian system………………………………………………4
(3) The location of the circadian clocks..……………………………7
(4) Circadian neural activity…………………………………………9
(5) The locomotion of German cockroach……………………………11
(6) Masking effect…………………………………………………13
(7) ERG (electroretinogram)………………………………………17
3. Materials and methods……………………………………………………17
(1) Insect…………………………………………………………17
(2) Locomotor activity……………………………………………17
(3) Optic nerve severance…………………………………………18
(4) ERG…………………………………………………………19
4. Results…………………………………………………………………21
(1) ERG waveform………………………………………………21
(2) Circadian rhythm of ERG……………………………………………22
5. Discussion………………………………………………………………26
(1) ERG waveform………………………………………………26
(2) Circadian rhythms of ERG……………………………………27
(3) ERG and locomotion…………………………………………28
6. References………………………………………………………………31
7. Acknowledgments………………………………………………………49

Abe, H., M. Kida, K. Tsuji and T. Mano. 1989. Feeding cycles entrain circadian rhythms of locomotor activity in CS mice but not in C57BL/6J mice. Physiol. Behav. 45: 397-401.
Armington, J. C. 1974. The Electroretinogram. Academic Press, Inc., New York. 478 pp.
Aschoff, J. 1981. Freerunning and entrained circadian rhythms. pp. 81-93. In: J. Aschoff (ed.) Handbook of Behavioral Neurobiology. Vol. 4. Biological Rhythms. Plenum Press, New York.
Autrum, H. 1958. Electrophysiological analysis of the visual systems in insects. Exp. Cell Res. 5: 426-439.
Bargiello, T. A. and M. W. Young. 1984. Molecular genetics of a biological clock in Drosophila. Proc. Natl. Acad. Sci. USA 81: 2142-2146.
Bell, W. J. and E. Kramer. 1979. Search and anemotactic orientation of cockroaches. J. Insect Physiol. 25: 631-640.
Cheng, Y. and P. E. Hardin. 1998. Drosophila photoreceptors contain an autonomous circadian pacemaker that can function without period mRNA cycling. J. Neurosci. 18: 741-750.
Chiba, Y., M. Uki, Y. Kawasaki, A. Matsumoto and K. Tomioka. 1993. Entrainability of circadian activity of the mosquito Culex pipiens to 24-hr temperature cycles, with special reference to involvement of multiple oscillators. J. Biol. Rhythms 8: 211-220.
Cochran, D. G. 1983. Food and water consumption during the reproductive cycles of female German cockroaches. Entomol. Exp. Appl. 34: 51-57.
Colwell, C. S. and T. L. Page. 1989. The electroretinogram of the cockroach Leucophaea maderae. Comp. Biochem. Physiol. 92: 117-123.
Colwell, C. S. and T. L. Page. 1990. A circadian rhythm in neural activity can be recorded from the central nervous system of the cockroach. J. Comp. Physiol. 166: 643-649.
Cornwell, P. B. 1968. The cockroach. Vol. 1 A Laboratory Insect and an Industrial Pest. Hutchinson and Co LTD. New York. 391 pp.
Daan, S. 1982. Circadian rhythms in animals and plants. pp. 11-31. In: J. Brady (ed.) Biological Timekeeping. Cambridge Univ. Press, London.
Demark, J. J. and G. W. Bennett. 1995. Adult German cockroach (Dictyoptera: Blattellidae) movement patterns and resource consumption in a laboratory arena. J. Med. Entomol. 32: 241-248.
Dreisig, H. and E. T. Nielsen. 1971. Circadian rhythm of locomotion and its temperature dependence in Blattella germanica. J. Exp. Biol. 54: 187-198.
Edmunds, L. N. Jr. 1988. Cellular and Molecular Basis of Biological Clocks. Springer-Verlag, New York. 497 pp.
Fernandez de Miguel, F. and H. Arechiga. 1994. Circadian locomotor activity and its entrainment by food in the crayfish Procambarus clarki. J. Exp. Biol. 190: 9-21.
Francis, A. J. P. and G. J. Coleman. 1988. The effect of ambient temperature cycles upon circadian running and drinking activity in male and female laboratory rats. Physiol. Behav. 43: 471-477.
Gekakis, N., L. Saez, A. M. Delahaye-Brown, M. P. Myers, A. Sehgal, M. W. Young and C. J. Weitz. 1995. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science 270: 811-815.
Giebultowicz, J. M. 2000. Molecular mechanism and cellular distribution of insect circadian clocks. Annu. Rev. Entomol. 45: 769-793.
Goldsmith, T. and G. Bernard. 1974. The Physiology of Insecta, Vol.Ⅱ. pp.166-272. Academic Press, New York.
Hardin, P. E., J. C. Hall and M. Rosbash. 1990. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343: 536-540.
Helfrich-Forster, C., M. Stengl and U. Homberg. 1998. Organization of the circadian system in insects. Chronobiol. Int. 15: 567-594.
Hunter-Ensor M., A. Ousley and A. Sehgal. 1996. Regulation of the Drosophila protein TIMELESS suggests a mechanism for the resetting of the circadian clock by light. Cell 84: 677-685
Jacklet, J. 1982. Circadian clock mechanisms. pp. 173-189. In: J. Brady (ed.) Biological Timekeeping. Cambridge Univ. Press, London.
Johnson, C. H. 1992. Phase response curves: What can they tell us about circadian clocks? pp. 209-249. In: Hiroshige T. and K. Honma. (eds.) Circadian Clocks from Cell to Human. Sapporo: Hokkaido Univ. Press.
Kass, L. and R. B. Jr. Robert. 1992. A circadian clock in the Limulus brain transmits synchronous efferent signals to all eyes. Vis. Neurosci. 9: 493-504.
Koehler, P. G., H. R. Agee, N. C. Leppla and R. S. Patterson. 1987. Spectral sensitivity and behavioral response to light quality in the German cockroach (Dictyoptera: Blattellidae). Ann. Entomol. Soc. Am. 80: 820-822.
Koehler, W. K. and G. Fleissner. 1978. Internal desynchronization of bilaterally organized circadian oscillators in the visual system of insects. Nature 174: 708-710.
Konopka, R. J. and S. Benzer. 1971. Clock mutants in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68: 2112-16.
Leppla, N. C., P. G. Koehler and H. R. Agee. 1989. Circadian rhythms of the German cockroach (Dictyoptera: Blattellidae): locomotion in response to different photoperiods and wavelengths of light. J. Insect Physiol. 35: 63-66.
Lee, H. J. and Y. L. Wu. 1994. Mating effects on the feeding and locomotion of the German cockroach, Blattella germanica. Physiol. Entomol. 19: 39-45.
Lin, T. M. and H. J. Lee. 1996. The expression of locomotor circadian rhythm in female German cockroach, Blattella germanica (L.). Chronobiol. Int. 13: 81-91.
Lin, T. M. and H. J. Lee. 1998. Parallel control mechanisms underlying locomotor activity and sexual receptivity of the female German cockroach, Blattella germanica (L.). J. Insect Physiol. 44: 1039-1051.
Menaker, M. and A. Eskin. 1966. Entrainment of circadian rhythms by sound in Passer domesticus. Science 154: 1579-1581.
Miyamoto, Y. and A. Sancar. 1998. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. PNAS 95: 6097-6102.
Moore-Ede, M. C., F. M. Sulzman and C. A. Fuller. 1982. The Clocks That Time Us. Harvard Univ. Press, Cambridge. 448 pp.
Myers, M. P., K. Wager-Smith, A. Rothenfluh-Hilifinker and M. W. Young. 1996. Light-induced degradation of TIMELESS and entrainment of Drosophila circadian clock. Science 1271: 1736-1740.
Nishiitsutsuji-Uwo. J. and C. S. Pittendrigh. 1968. Central nervous system control of circadian rhythmicity in the cockroach. Ⅲ. The optic lobes, locus of the driving oscillation. Z. Vergl. Physiol. 58: 14-46.
Owens, J. M. and G. W. Bennett. 1983. Comparative study of German cockroach population sampling techniques. Environ. Entomol. 12: 1040-1046.
Pyza, E. and I. A. Meinertzhagen. 1997. Circadian rhythms in screening pigment and invaginating organelles in photoreceptor terminals of the housefly's first optical neuropile. J. Neurobiol. 32: 517-529.
Regal, P. J. and M. S. Connolly. 1980. Social influences on the biological rhythms. Annu. Rev. Physiol. 55: 17-54.
Roberts, S. K. 1974. Circadian rhythms in cockroach: effects of optic lobe lesions. J. Comp. Physiol. 88: 21-30.
Saez, L. and M. W. Young. 1988. In situ localization of per clock protein during development of Drosophila melanogaster. Mol. Cell. Biol. 8: 5378-5385.
Sassone-Corsl, P. 1998. Molecular clocks: mastering time by regulation. Nature 392: 871-874.
Sauman, I. and S. M. Reppert. 1996. Circadian clock neurons in the silkworm, Antheraea pernyi: novel mechanism of period protein regulation. Neuron 17: 889-900.
Silverman, J. 1986. Adult German cockroach ( Orthoptera: Blattellidae ) feeding and drinking behavior as a function of density and harborage- to-resource distance. Environ. Entomol. 15: 198-204.
Siwicki, K. K., C. Eastman, G. Petersen, M. Rosbash and J. C. Hall. 1988. Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron 1: 141-150.
Sommer, S. H. 1975. Experimental investigation of the circadian locomotor activity of Blattella germanica L. (Dictyoptera: Blattellidae). Biol. Zentralbl. 94: 455-467.
Tomioka, K. and Y. Chiba. 1986. Circadian rhythm in the neurally isolated lamina-medulla-complex of the cricket, Gryllus bimaculatus. J. Jnsect Physiol. 32: 747-755.
Tsai, C. W. and H. J. Lee. 2000. Circadian locomotor rhythm mask by the female reproduction cycle in cockroaches. Physiol. Entomol. 25: 63-73.
Wen, H. W. and H. J. Lee. 2000. Unequal coupling between locomotor pacemakers of the German cockroach, Blattella germanica (L.). J. Insect Physiol. 46: 89-97.
Wills, S. A., T. L. Page. and C. S. Colwell. 1985. Circadian rhythms in the electroretinogram of cockroach. J. Biol. Rhythms 1: 35-37.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top