跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 03:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張永鍾
研究生(外文):Yung Chung Chang
論文名稱:豬血漿凝膠性質之研究
論文名稱(外文):Gelation Properties of Swine Plasma
指導教授:孫璐西孫璐西引用關係張鴻民張鴻民引用關係
指導教授(外文):Lucy Sun HwangHung Min Chang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:1999
畢業學年度:88
語文別:中文
論文頁數:217
中文關鍵詞:豬血漿凝膠鈣離子凝血酵素凝血因子十三膠強度質地特徵血纖維蛋白原
外文關鍵詞:swine plasmagelationcalcium ionthrombinfacter XIIIgel strengthtextural characteristicsfibrinogen
相關次數:
  • 被引用被引用:2
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蛋白質濃度4%之豬血漿70℃加熱即可凝膠,膠強度則隨溫度(70-95oC)升高、加熱時間(0-60min)增長及蛋白質濃度(4.3-7.2%)增加而增加,但隨外加食鹽濃度(0-3%)增加而迅速降低,且於pH 10有最大膠強度值。除加熱可凝膠外,豬血漿尚可在常溫下添加凝血、鈣離子或者經透析移除抗凝血劑後產生凝膠。添加不同量凝血(2.7-11.7U/ml血漿)產生的豬血漿常溫凝膠體經加熱(80oC, 20min)後其膠強度並無明顯差距。豬血漿加鈣常溫凝膠現象受肝素所抑制,故加鈣常溫凝膠是重新引發受抗凝血劑阻斷之天然血液酵素性凝固機制結果,而加鈣常溫凝膠體加熱後之膠強度則隨著鈣離子添加量(500-2200ppm)增加而急劇增加。另外,加凝血以及加鈣常溫產生之凝膠體,經加熱後其膠強度均隨外加食鹽濃度(0-3%)增加而明顯降低。以豬血漿80oC, 20min直接加熱凝膠體之膠強度(33g×cm)作比較,添加凝血(2.7U/ml)常溫凝膠可提高豬血漿熱凝膠體膠強度約達4-5倍;透析常溫凝膠則有14-15倍;低濃度(500-800ppm)鈣常溫凝膠與透析常溫凝膠相近;但高濃度鈣(2200ppm)常溫凝膠可提昇豬血漿熱凝膠體膠強度高達45倍。另一方面,鈣離子以鹽架橋對直接熱凝膠體膠強度最大的提昇(增加70%)出現在濃度500ppm。一次微分處理加鈣常溫凝膠過程之豬血漿濁度變化曲線,所得最大濁度變化斜率(Vm)可視為凝膠聚合速率,而到達Vm值所需時間(Tvm),則是引發凝膠形成所需時間,也可當作豬血漿中凝血酵素系統活性的預測指標。加鈣常溫凝膠時,Min. Tvm出現在鈣離子添加量1200ppm處,但分別在1200ppm與1500ppm 處出現Max.Vm1與Max.Vm2兩個極值,顯示豬血漿加鈣常溫凝膠聚合方式應有兩種。產生Max. Vm2的凝膠聚合方式對膠強度的提昇則比產生Max. Vm1者更有效率。再者,達到Min. Tvm以及產生Max. Vm所需鈣離子濃度則與豬血漿蛋白質濃度倒數呈線性關係。豬血漿加凝血、加鈣離子或透析常溫凝膠體加熱前的質地特徵與直接加熱凝膠體最大的差異為內聚性明顯減少;但加熱後凝膠體的剛性、膠體強度、膠質性及咀嚼性則均比直接加熱凝膠體顯著增加,然而內聚性仍明顯減少。加凝血常溫凝膠體與加鈣常溫凝膠體二者質地特徵差異為凝血添加量>2.7U/ml之後,前者質地特徵測量值即不再有變化,但後者的剛性、膠強度和膠質性均隨鈣離子添加量(500-2200ppm)增加而增加,但粘著性與內聚性則反而降低。
豬血漿以4oC冷沉澱法製備之血纖維蛋白原其凝膠率達54%,回收量為350-400 mg/dl,而以等電點沉澱法製備則凝膠率較高為76%,但易於操作過程造成血纖維蛋白原變性,回收量則約300 mg/dl。經Sephacryl S-300 HR膠濾層析純化後,前者之凝膠率高達96-99%;後者則為92-96%,而SDS-PAGE層析結果亦顯示純化之血纖維蛋白原凝膠過程相當完全,具有極高的純度。粗血纖維蛋白原(4℃冷沉澱回溶物),加鈣常溫凝膠性質與豬血漿相同,顯示粗血纖維蛋白原含有完整凝血酵素系統。於常溫下,蛋白質濃度0.75%之粗血纖維蛋白原混合卵白或大豆分離蛋白(5%蛋白質濃度)加鈣離子(500ppm)可產生凝膠。相同加熱條件下(80oC,20min),混合卵白凝膠者其膠強度與豬血漿加鈣常溫凝膠體相當,而混合大豆分離蛋白凝膠者則較低。
Gelation of swine plasma with 4% protein concentration was observed when heated at 70oC. Gel strength of those gels increased with the increasing heating temperature (70-95oC), heating time (0-60min) and protein level (4.3-7.2%), while decreased with the increasing level of NaCl (0-3%). The optimal pH for gel strength was 10. Except heating, gelation of plasma also could be induced by the addition of thrombin and calcium ion, and by dialysis to remove the anti-coagulant (Na-citrate) at ambient temperature. Addition of various levels (2.7-11.7U/mL plasma) of thrombin did not influence the gel strength of thrombin-induced gel after thermal treatment at 80oC for 20 min. Addition (500-2200ppm) of calcium to plasma enhanced the gel strength of thermally treated gels. However, the calcium-induced gelation was apparently inhibited by the addition of heparin to plasma. Compared with the gel strength (33g x cm) of 80% plasma heat-induced gel (80oC, 20min), addition (2.7U/mL) of thrombin, low level (500-800ppm) of calcium and high level (2200ppm) of calcium increased the gel strength by 4-5 times, 14-15 times and 45 times, respectively. Gel strength of thermally treated dialysis-induced gel approximated to low level (500-800ppm) of thermally treated calcium-induced gel. Besides, optimal effect of calcium bridges on increasing the gel strength (by 70%) of heated gel was at the level of 500ppm calcium in plasma. The first derivative of the time-dependent turbidity change of 80% plasma added with various level of calcium present the maximal slope (Vm) of absorbance change which revealed the rate of blood-clotting. The period of time (TVm) to Vm indicated the time required for the activation of blood-clotting enzymes. In 80% plasma (containing 0.4% Na-citrate) two peaks (Max. Vm1 at 1200ppm calcium and Max Vm2 at 1500ppm calcium) and one valley (Min. Vm at 1350ppm calcium) were observed in the Vm curve, while only one valley (Min. Tvm at 1200ppm calcium) was in TVm curve. Those results revealed two types (Max. Vm1 and Max. Vm2) of gelation mechanisms were involved in the plasma clotting in the presence of calcium. Max. Vm2 was more contributory to the gel strength. Furthermore, linear relationships of Max. Vm1, Max. Vm2 and Min. TVm between calcium content and 1/protein concentration were observed. The major characteristic of unheated gels prepared by the addition of thrombin or calcium, or by dialysis to remove anti-coagulant was the lack of cohesiveness, compared with that of the heated gels. However, thermal treatment enhanced the rigidity, gel strength, gumminess and chewiness of plasma gels. The properties of thrombin-induced gel did not varied with the level of thrombin if the level of it was higher than 2.7U/mL plasma. However, some properties of calcium-induced gels, such as rigidity, gel strength and gumminess, increased with the increasing calcium content (500-2200ppm) in the 80% plasma.
Clottability and recovery of fibrinogen from plasma by cold (4oC) precipitation method was 54% and 350-400mg/dL plasma, respectively. While those of fibrinogen from plasma by isoelectric point method was 76% and 300mg/dL plasma, respectively. However, isoelectric point method was liable to cause fibrinogen denaturation. Through separation of Sephacryl S-300 HR filtration chromatography, clottability of fibrinogen prepared by the former method and the latter method was increased to 96-99% and 92-96%, respectively. Results from SDS-PAGE also revealed the high purity of fibrinogen prepared. Addition of calcium caused the gelation of crude fibrinogen (prepared by 4oC cold precipitation), similar to that of plasma, revealed the existence of blood blotting-enzymes in the crude fibrinogen. Mixture of crude fibrinogen (0.75 % protein) and egg white or soy protein isolate (5.0 % protein) could cause gelation in the presence of 500ppm calcium. Gel strength of heated fibrinogen mixed with egg white gels (80oC, 20min) was almost the same to that of plasma gel but higher than that mixed with soy protein isolate.
封面
目錄頁次
中文摘要
英文摘要
目錄
圖次
表次
前言
第一章、文獻整理
血液利用
一、血液收集
二、血液組成與營養
1.血液蛋白質
2.胺基酸組成
三、血液蛋白質的功能特性
四、血液蛋白質的熱凝膠特性
1.蛋白質熱凝膠機制
2.膠體與質地的關係
3.血漿蛋白質的熱凝膠性
4.血球蛋白的熱凝固性
五、血液蛋白質在食品工業上的應用
血液凝固的機制
一、凝血作用的啟動─凝血?原活化因子之形成
1.外在機制
2.內在機制
二、凝血?原轉變為凝血?
三、血纖維蛋白原轉變為血纖維蛋白─血凝塊的形成
1.血凝塊的形成
2.血管內的抗凝血質
3.血凝塊的分解
血纖維蛋白原之製備與純化
一、沈澱劑法
二、等電點沉澱法
三、層析法
凝膠食品質地改善與強化
一、混合膠體結構
二、混合凝膠對蛋白質膠體質地之改善
三、轉麩醯胺?對蛋白質膠體質地之改善
圖1-1. 血液之利用
圖1-2. 衛生屠畜血液收集與分離系統之流程
圖1-3. 開放式血液收集系統
圖1-4. 封閉式血液收集系統
圖1-5. 豬隻血液之一般組成
圖1-6. 因局部凝集現象所導致的膠體結構變化
圖1-7. 血液蛋白質分離製備之流程
圖1-8. 以血漿中血纖維蛋白原分子為中心的脊椎動物血液凝固機制
圖1-9. 透過雙硫鍵結合形成巨大雙元體((αβγ)2)之血纖維蛋白原分子並與肌凝蛋白分子作比較
圖1-10. 凝血過程中由血纖維蛋白單體聚合而成血凝塊之進程
圖1-11. 因血管壁或附近組織受損導致凝血?原活化因子產生之外在路徑
圖1-12. 因血液本身受損導致凝血?原活化因子產生之內在路徑
圖1-13. 低溫乙醇-甘胺酸萃取法製備人類血纖維蛋白原流程
圖1-14. 混合膠體之網狀結構
第二章、豬血漿熱凝膠性質之探討
摘要
前言
材料與方法
結果與討論
一、熱凝膠
1.溫度與時間之效應
2.蛋白質濃度之效應
3.pH以及鹽之效應
二、鈣凝膠
1.鈣濃度之影響
2.NaCl濃度之影響
三、以凝血?凝膠
1.凝血?濃度之影響
2.凝血?對加鈣凝膠之影響
3.NaCl濃度之影響
結論
第三章、豬血漿加鈣常溫凝膠機制探討
摘要
前言
材料與方法
結果與討論
一、加鈣常溫凝膠過程豬血漿濁度之變化
二、鈣離子濃度對凝膠聚合模式之影響
三、血漿蛋白質濃度之影響
結論
第四章、凝膠方式對豬血漿膠強度之影響
摘要
前言
材料與方法
結果與討論
一、凝膠方式對膠體結構的影響
二、凝血?對膠強度的貢獻
三、Factor XIIIa對膠強度的貢獻
四、鈣離子對膠強度的貢獻
結論
第五章、製備血纖維蛋白原
摘要
前言
材料與方法
結果與討論
一、4℃冷沉澱法製備血纖維蛋白原
二、以膠濾層析法快速純化豬血中血纖維蛋白原
結論
第六章、冷沉澱製備之血纖維蛋白原凝膠性質
摘要
前言
材料與方法
結果與討論
一、冷沉澱回溶物凝膠性質
1.加熱凝膠
2.加凝血?常溫凝膠
3.加鈣離子常溫凝膠
4.加鈣常溫凝膠機制探討
二、冷沉澱回溶物之可能用途
三、與其他食品蛋白質混合凝膠
結論
第七章、凝膠方式對豬血漿質地特徵之影響
摘要
前言
材料與方法
結果與討論
一、凝膠質地組織分析
1.直接加熱凝膠
2.凝血?常溫凝膠
3.透析凝膠
4.加鈣常溫凝膠
二、不同方式凝膠之質地特徵比較
結論
圖2-1. 豬血漿(7.2%蛋白質)以加熱20分鐘凝膠時加熱溫度對凝膠體膠強度之影響
圖2-2. 豬血漿(7.2%蛋白質)以80℃加熱凝膠時加熱時間對凝膠體膠強度之影響
圖2-3. 豬血漿(7.2%蛋白質)加熱凝膠時加熱時間、溫度與凝膠體膠強度之關係
圖2-4. 豬血漿以80℃加熱20分鐘凝膠時血漿蛋白質濃度對凝膠體膠強度之影響
圖2-5. 豬血漿(7.2%蛋白質)以80℃加熱20分鐘凝膠時血漿pH值對凝膠體膠強度之影響
圖2-6. 豬血漿(7.2%蛋白質)以80℃加熱20分鐘凝膠時NaCL添加量對凝膠體膠強度之影響
圖2-7. 不同方式凝膠之豬血漿(5.8%蛋白質)凝膠體外觀
總結
參考文獻
二見(松島)端子、齊藤佑尚、稻田祐二,1986。家畜血液の有效利用に關する基礎的研究。食肉に關する助成研究調查成果報告書,第296-301頁。
王逢興,1992。豬血塊理化特性之研究。碩士論文,國立臺灣大學畜牧學研究所。
王逢興、林慶文,1993。屠畜血液理化及營養特性。科學農業41:112-118。
早川 茂,1989。グロビ蛋白の開發と應用。食品と開發25:26-30。
朱賢斌,1994。豬血蛋白與糯米澱粉於豬血糕製程中變化之研究。碩士論文,國立臺灣大學畜牧學研究所。
李瑞宗,1970。自豬隻血液提製天然食用色素之研究。碩士論文,國立臺灣大學畜牧學研究所。
阮進惠,1984。脫色豬血血球蛋白之加熱修飾及其在食品上之應用。東海學報23:1013
阮進惠、張為憲,1984。豬血血漿與血球蛋白之分離回收及其功能性質。食品科學11:178-188。
林松筠,1983。血蛋白質的利用。食品工業15:32-36。
林金鵬,1995。利用陰電性多醣類沉澱回收豬血漿蛋白之研究。食品科學22:533-541。
林金鵬,1992。以膠原蛋白、明膠及褐藻酸鈉製備仿魚翅之研究。博士論文,國立臺灣大學食品科技研究所。
林高塚,1987。冷凍豬血漿在肉品上利用之研究。中國畜牧學會會誌16:133-151。
林慶文,1985。屠畜血液的有效利用。中華農學會會報(新)131:56-70。
林慶文,1991。豬血之利用。現代肉品17:14-16。
張永鍾、張鴻民,1996。等電點沉澱法自豬血中製備血纖維蛋白原。中國農業化學會誌34:364-370。
莊榮輝、蘇仲卿,1986。蛋白質膠體電泳檢定法。電泳分離技術研討會論文集,主編:曾義雄、陳信芬、陳慶三,第69-85頁,行政院國家科學委員會。
端木梁、李建雄、翁郁嘉、黃淑姿,1989。調節鈣代謝的激素。生物化學下冊,第739-74頁,藝軒圖書出版社,台北市。
陳怡宏、張為憲,1995。蛋白質之功能性質。食品化學(國立編譯館主編),第131-144頁,華香園出版社,台北市。
陳明造、劉登城、郭秀蘭,1984。禽畜血液在肉品加工上的應用(I):血液之血漿、血球蛋白之功能性質測定及影響因素之調查。中國農業化學會誌22:201-206。
陳明造、蔡宏聰、劉登城,1987。禽畜血液在肉品加工上的應用(II):豬血漿蛋白質之磷酸和乳糖修飾及其功能性質之探討。農林學報36:93-102。
陳麗卿、林慶文,1983。明膠的抽取與利用。食品工業15:25-31。
楊正護、劉益忠、蘇和平、紀學斌、林慶文,1995。台灣省衛生豬血收集系統之設計。科學農業43:32-35。
楊盛行、魏嘉碧、顧鍇、蔡錫舜,1991。台灣地區食品農業廢棄物之產量。中華生質能源會誌10:70-87。
劉益忠,1995。不同集血方式豬血液於貯藏期間品質之變化。碩士論文,國立臺灣大學畜牧學研究所。
劉登城、陳明造、郭秀蘭,1993。血糕一般組成與儲藏品質之研究。中國畜牧學會會誌22:463-468。
賴達人,1978。自屠畜血液萃製食用天然紅色素之研究。碩士論文,國立臺灣大學畜牧學研究所。
Ando, H., Adachi, M., Umeda, K., Matsuura, A., Nonaka, M., Uchio, R., Tanaka H. and Motoki, M. 1989. Purification and characteristics of a novel transglutaminase derived from Microorganisms. Agric. Biol. Chem. 53:2613-2617.
A.O.A.C., 1980. Official Methods of Analysis, 14th ed. Assoc. of Oficial Analytical Chemists, Washington, D.C.
Arthur, J. V., Sherman, J. H. and Lucisano, D. S. 1986. Circulation. In Human Physiology, J. V. Arthur, J. H. Sherman, and D. S. Lucisano (Ed.), pp. 301-378. McGraw-Hill Book Company, New York.
Autio, K., Lyytikainen, H., Malkki, Y. and Kanko, S. 1985. Penetration studies of blood globin gels. J. Food Sci. 50:612-617.
Becker, U. 1984. Fibrinogen. In Methods of Enzymatic Analysis III, H. U. Bergmeyer, J. Bergmeyer, and M. Grassl (Ed.), pp. 473-477. Weinheim, Verlag Chemie.
Blomback, B. and Blomback, M. 1956. Purification of human and bovine fibrinogen. Ark. Kemi. 10:415-420.
Bourne, M. C. 1978. Texture profile analysis. Food Technol. 37:62-66,70.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-253.
Brown, J. R. 1977. Structure and evaluation of serum albumin. In Albumin Structure, Biosynthesis, Function. Proc. FEBS Meeting 50:1-20.
Bull, H. B. and Breese, K. 1970. Water and solute binding by protein and electrolysis. Arch. Biochem. Biophys. 137:299-305.
Caldironi, H. A. and Ockerman, H. W. 1982. Incorporation of blood proteins into sausage. J. Food Sci. 47:405-408.
Carpentier, A. 1984. Low molecular weight (LMW) heparin derivatives in experimental extra-corporeal circulation (ECC) Haemostasis 14:325-331.
Chanyongvorakul, Y., Matsumura, Y., Nonaka, M., Motoki, M. and Mori, T. 1995. Physical properties of soy bean and broad bean 11s globulin gels formed by transglutaminase reaction. J. Food Sci. 60:483-489, 493.
Chavin, S. I. 1984. Factor VIII:Structure and function in blood clotting. Am J. Hematol. 16:997-1003.
Civille, G. V. and Szczesniak, A. S. 1973. Guidelines to training a texture profile panel. J. Texture Studies 4:204-223.
Cohn, E. J., Strong, L. E., Hunghes, W. L., Mulford, D. J., Ashwort H, J. N., Melin, M. and Taylor, H. L. 1946. Preparation and properties of serum and plasma protein. IV. A system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids. JACS. 68:459-465.
Crenwelge, D. D., Dill, C. W., Tybor, P. T. and Landmann, W. A. 1974. A comparison of the emulsification capacities of protein concentrates. J. Food Sci. 39:175-177.
Curtis, C.G. and Lorand, L. 1976. Fibrin stabilizing factor. Meth. Enzymol. 45:177-181.
Doolittle, R. F. 1973. Structural aspects of the fibrinogen to fibrin conversion. In Advances in Protein Chemistry, Vol. 27, C. B. Anfinsen, J. T. Edsall, and F. M. Richards (Ed.), pp. 1-109. Acadmic Press, New York.
Doolittle, R. F. 1975. Fibrinogen and fibrin. In The Plasma Proteins. 2nd ed., F. W. Putnam (Ed.), pp. 109-161. Acadmic Press. New York.
Egelandsdal, B. 1980. Heat-induced gelling in solution of ovalbumin. J. Food Sci. 45:570-573,581.
Etheridge, P. A., Hickson, D. W., Young, C. A., Landmann, W. A. and Dill, C. W. 1981. Functional and chemical characteristics of bovine plasma isolated as a metaphosphate complex. J. Food Sci. 46:1782-1784,1788.
Ferry, J. D. 1948. Protein gels. Adv.Protein Chem. 4:1-74.
Finlayson, J. S. and Mosesson, M. W. 1963. Heterogeneity of human fibrinogen. Biochemistry. 2:42-46.
Finlayson, J. S. and Mosesson, M. W. 1964. Chromatographic heterogeneity of animal fibrinogens. Biochim. Biophys. Acta. 82:415-420.
Foegeding, E. A., Allen, C. E. and Dayton, W. R. 1986. Interaction of myosin-albumin and myosin-fibrinogen to form protein gels. J. Food Sci. 51:109-112.
Foegeding, E. A., Dayton, W. R. and Allen, C. E. 1987. Evaluation of molecular interaction in myosin, fibrinogen, and myosin-fibrinogen gels. J. Agric. Food Chem. 35:559-563.
Frojmovic, M. M. and Milton, J. G. 1982. Human platelet size, shape, and related functions in health and disease. Physiol. Rev. 62:185-180.
Golubkov, I. V. 1990. Preventing microbial infection of edible blood. Verterinariya 2:69-70, Moscow, USSR .
Graham, A. 1978. The collection and processing of edible blood CSIRO Food Res. Qual. 38:16-22.
Guyton, A. C. 1989. Hemostasis and blood coagulation. Ch. 21 in Human Physiology and Mechanisms of Disease. 4th. ed. . W. B. Saunders Company, Philadelphia, Pennsylvania.
Harper, J. P., Suter, D. A., Dill, C. W. and Jones, E. R. 1978. Effects of heat treatment and protein concentration on the rheology of bovine plasma protein suspensions. J. Food Sci. 43:1204-1209.
Hayakawa, S., Suzuki, Y., Nakamura, R. and Sato,Y. 1983. Physico-chemical characterization of heat-induced soluble aggregates of bovine globin. Agric. Biol. Chem. 47:395-402.
Hermansson, A-M. 1978a. Physico-chemical aspects of soy proteins structure formation. J. Texture Studies 9:33-58.
Hermansson, A-M. 1978b. The function of blood and other proteins in meat products. European Meeting of Meat Research Workers, N0. 24, H1:1-11, Kulmbach, West Germany.
Hermansson, A-M. 1979. Aggregation and denaturation involved in gel formation. In Functionality and Protein Structure, ACS Symposium Series No. 92, El. A. Pour (Ed.), American Chemical Society.
Hermansson, A-M. 1982a. Gel characteristics-Compression and penetration of blood plasma gels. J. Food Sci. 47:1960-1964.
Hermansson, A-M. 1982b. Gel characteristics-Structure as related to texture and waterbinding of blood plasma gels. J. Food Sci. 47:1965-1971.
Hermansson, A-M. and Lucisano, M. 1982. Gel characteristics-Waterbinding properties of blood plasma gels and methodological aspects on the waterbinding of gel systems. J. Food Sci. 47:1955-1959.
Hickson, D. W., Dill, C. W., Morgan, R. G., Suter, D. A. and Carpenter, E. L. 1980. A comparison of heat-induced gel strengths of bovine plasma and egg albumen proteins. J. Anim. Sci. 51:69-73.
Hickson, D. W., Dill, C. W., Morgan, R. G., Sweat, V. E., Suter, D. A. and Carpenter, E. L. 1982. Rheological properties of two heated-induced protein gels. J. Food Sci. 47:783-785.
Hirose, M. Y., Nishizawa, Y. and Lee, Y. 1990. Gelation of bovine serum albumin by glutathione. J. Food Sci. 55:915-917.
Hourwitz, B. 1963. Albumin, globulins and other soluble proteins. In The Chemistry and Function of Proteins. B. Hourwitz(Ed.), pp. 184-207, Acadmic Press, New York.
Howell, N. K. and Lawrie, R. A. 1983. Functional aspects of blood plasma proteins. I. Separation and characterization. J. Food Technol. 18:747-762.
Howell, N. K. and Lawrie, R. A. 1984. Functional aspects of blood plasma proteins. 2. Gelation properties. J. Food Technol. 19:298-295.
Howell, N. K. and Lawrie, R. A. 1985. Functional aspects of blood plasma proteins. 4. Elucidation of mechanism of gelation of plasma and egg albumin proteins. J. Food Technol. 20:489-504.
Ikura, K., Kometani, T., Sasaki R. and Chiba, H.1980b. Crosslinking of soybean 7S and 11S proteins by transglutaminase. Agric. Biol. Chem. 44:2979-1984.
Ikura, K., Kometani, T., Yoshtkawa, M., Sasaki R. and Chiba, H. 1980a. Crosslinking of casein components by transglutaminase. Agric. Biol. Chem. 44:1567-1573.
Jiang S.-T. and Lee, J.-J. 1993. Purification, characterization, and utilization of pig plasma factor XIIIa. J. Agric. Food Chem. 40:1101-1107.
Johnson, L. A., Havel, E. F. and Hoseney, R. C. 1979. Bovine plasma as a replacement for egg in cakes. Cereal Chem. 56:339-345.
Kang, I. J., Matsumura, Y., Ikura, K., Motoki, M., Sakamoto, H. and Mori, T. 1994. Gelation and gel properties of soybean glycinin in a transglutaminase-catalyzed system. J. Agric. Food Chem. 42:159-165.
Kato, A., Wada, T., Kobayashi, K., Seguro K. and Motoki, M. 1991. Ovomucin-food protein conjugates prepared through the transglutaminase reaction. Agric. Biol. Chem. 55:1027-1031.
Kazal, L. A., Amsel, S., Miller, O. P. and Tocantins, L. M. 1963. The precipitation and some properties of fibrinogen precipitated from human plasma by glycine. Pro. Soc. Exp. Biol. Med. 113:989-994.
Khan, M. W., Rooney, L. W. and Dill, C. W. 1979. Baking properties of plasma protein isolate. J. Food Sci. 44:1041-1043,1048.
Kim, S.-H., Carpenter, J. A., Lanier, T. C. and Wicker, L. 1993. Polymerization of beef actomyosin induced by transglutaminase. J. Food Sci. 58:473-474, 491.
King, J., De Pablo, S. and Montes de Oca, F. 1989. Evaluation of gelation and solubility of bovine plasma protein isolates. J. Food Sci. 54:1381-1382.
Kumazawa, Y., Numazawa, T., Seguro, K.and Motoki, M. 1995. Suppression of surimi gel setting by transglutaminase inhibitors. J. Food Sci. 60:715-717, 726.
Kumazawa, Y., Seguro, K., Takamura M. and Motoki, M. 1993. Formation of -(-glutamyl) lysine cross-link in cured horse mackerel meat induced by drying. J. Food Sci. 58:1062-1064, 1083.
Kurth L. and Rogers, P. J. 1984. Transglutaminase catalyzed cross-linking of myosin to soya protein, casein and gluten. J. Food Sci. 49:573-576, 589.
Lee, Y. Z., Wang, R. M. and Nakai, S. 1990. Preparation of colorless globin from bovine hemoglobin using sodium alginate. J. food Sci. 55:577-578.
Lorand, L. 1976. Introduction to clotting and lysis in blood plasma. Meth. Enzymol. 45:31-36.
Mann, K. G. 1984. The biochemistry of coagulation. Clin. Lab. Med. 4:207-216.
Matsudomi, N., Oshita, T., Kobayashi, K. and Kinsella, J. E. 1993. -Lactalbumin enhances the gelation properties of bovine serum aibumin. J. Agric. Food Chem. 41:1053-1057.
Matsudomi, N., Rector, D. and Kinsella, J. E. 1991. Gelation of bovine serum albumin and lactoglobulin:effect of pH, salt and thiol reagents. Food Chem. 40:55-69
Meullenet, J-F., Chang, H. C., Carpenter, J. A. and Resurreccion, A. V. A. 1994. Textural properties of chicken frankfurtes with added collagen fibers. J. Food Sci. 59:729-733.
Morris, V. J. 1985. Multicomponent gels. In Gums and Stabilisers for the Food Industry, Vol. 3, G. O. Phillips, D. J. Wedlock and P. A. Williams (Ed.), pp. 87-99. Elsevier Applied Science Publishers Ltd., Barking Essex.
Motoki, M., Nio, N. and Takinami, K. 1987. Functional properties of heterologous polymer prepared by transglutaminase between milk casein and soybean globulin. Agric. Biol. Chem. 51:237-239.
Nemerson, Y. and Nossel, H. L. 1982. The biology of thrombosis. Annu. Rev. Med. 33:479-486.
Nio, N., .Motoki, M. and Takinami, K. 1986. Gelation of protein emulsion by transglutaminase. Agric. Biol. Chem. 50:1409-1412.
Nonaka, M., Sakamoto, H., Toiguchi, S., Kawajiri, H., Soeda, T. and Motoki, M. 1992. Sodium caseinate and skim milk gels formed by incubation with microbial transglutaminase. J. Food Sci. 57:1214-1218, 1241.
Nonaka, M., Tanaka, H., Okiyama, A., Motoki, M., Ando, H., Umeda, K.and Matsuura, A. 1989. Polymerization of several proteins by Ca2+-independent transglutaminase derived from microorganisms. Agric. Biol. Chem. 53:2619-2623.
Nowsad, A. A., Katoh, E., Kanoh, S. and Niwa, E. 1996. Contribution of transglutaminase to the setting of fish pastes at various temperatures. Fisheries Sci. 62:94-97.
Ockerman, H. W. and Hansen, C. L. 1988. Animal by-product processing. pp. 232-255. Ellis Horwood Ltd., Chichester, England.
O’Riordan, D., Mulvihill, D. M. and Kinsella, J. E. 1989. Study of the molecular forces involved in the gelation of plasma proteins at alkaline pH. J. Food Sci. 54:1201-1205.
O’Riordan, D., Kinsella, J. E., Mulvihill, D. M. and Morrissey, P. A. 1989b. Gelation of plasma proteins. Food Chemistry 33:203-214.
O’Riordan, D., Morrissey, P. A., Kinsella, J. E. and Mulvihill, D. M. 1989c. The effects of salts on the rheological properties of plasma protein gels. Food Chemistry 34:249-259.
Penteado, M. D. V. C., Lajolo, F. M. and Santos, N. P. D. 1979. Functional and nutritional properties of isolated bovine proteins. J. Sci. Food Agric. 30:809-815.
Peters, T. J. 1985. Serum albumin. Adv. Protein Chem. 37:161-245.
Pour, El. A. 1976. Measurement of functional properties of soy protein products. In Word Soybean Research. L. D. Hill (Ed.), pp. 918-948. Intersate Danville, Ill.
Raker M. Ö. and Johnson, L. A. 1995. Thermal and functional properties of bovine plasma and egg white proteins. J. Food Sci. 60:685-690,706.
Ratnoff, O. D. 1984. Thrombosis and the hypercoagulable state. Circulation 70:1172-1178.
Saito, M. and Taira, H. 1987. Heat denaturation and emulsifying properties of plasma protein. J. Agric. Biol. Chem. 51:2787-2792.
Sakamoto, H., Kumazawa, Y. and Motoki, M. 1994. Strength of protein gels prepared with microbial transglutaminase as related to reaction conditions. J. Food Sci. 59:866-871.
Sakamoto, H., Kumazawa, Y., Toiguchi, S., Seguro, K., Soeda, T. and Motoki, M. 1995a. Gel strength enhancement by addition of microbial transglutaminase during onshore surimi manufacture. J. Food Sci. 60:300-304.
Sakamoto, H., Kumazawa, Y., Kawajiri, H. and Motoki, M. 1995b. -(-Glutamyl)lysine crosslink distribution in foods as determined by improved method. J. Food Sci. 60:416-419.
Sato, Y., Hayakawa, S. and Hayakawa, M. 1981. Preparation of blood globin through carboxymethyl cellulose chromatography. J. Food Technol. 16:81.
Satterlee, L. D., Free B. and Levin, E. 1973. Utilization of high protein tissue powders as a binder/extender in meat emulsions. J. Food Sci. 38:306-309.
Seguro, K., Kumazawa, Y., Ohtsuka, T., Toiguchi S. and Motoki M. 1995. Microbial transglutaminase and -(-glutamyl)lysine crosslink effects on elastic properties of kamaboko gels. J. Food Sci. 60:305-311.
Shimada, K. and Matushita, S. 1980. Thermal coagulation of egg albumin. J. Agric. Food Chem. 28:409-412.
Sogami, M., Peterson, H. and Foster, J. 1969. The microheterogeneity of plasma albumins. V. Permutations in disulfide paring as probable source of microheterogeneity in bovine albumin. Biochem. 8:49-58.
Spector, A. A. 1975. Fatty acid binding to plasma albumin. J. Lipid Res., 16:165-179.
Spaethe, R., Naumann, M. and Strauß, J. 1982. Determination of heparin by a fluorogenic synthetic substrate. In Heparin — New Biochemical and Medical Aspects, pp. 104-115. Walter de Gruyter & Co., Berlin.
Szczesniak, A. S. 1963. Classification of texture characteristics. J. Food Sci. 28:385-389.
Terrell, R. N., Weinblatt, P. J., Smith, G. C., Carpenter, Z. L., Dill, C. W. and Morgan, R. G. 1979. Plasma protein isolate effects on physical characteristics of all-meat and extended Frankfurters. J. Food Sci. 44:1041-1043,1048.
Trius, A., Sebranek, J-G., Rust, R. E. and Carr, J. M. 1995. Carrageenans in beaker sausage as affected by pH and sodium tripolyphosphate. J. Food Sci. 59:946-951.
Trumic, Z. V., Matekalo-Sverak and Panin, J. 1989. Effect of blood collection procedures and storage conditions on blood quality and plasma yield. Technologija-Mesa 30:127-129.
Tsukamasa, Y., Sato, K., Shimizu, Y., Imai, C., Sugiyama, M., Minegishi Y. and Kawabata, M. 1993. -(-Glutamyl)lysine crosslink formation in sardine myofibril sol during setting at 25oC. J. Food Sci. 58:785-787..
Tybor, P. T., Dill, C. W. and Landmann, W. A. 1973. Effect of decolorization and lactose incorporation on the emulsification capacity of spray-dried isolated bovine protein concentrates. J. Food Sci. 38:4-6.
Tybor, P. T., Dill, C. W. and Landmann, W. A. 1975. Functional properties of proteins isolated from bovine blood by a continuous pilot process. J. Food Sci. 40:155-159.
Vandegrift, V. and Evans, R. R. 1981. Polyphosphate binding interactions with bovine serum albumin in protein-polyphosphate precipitates. J. Agric. Food Chem. 29:536-539.
Wall, R. T. and Harker, L. A. 1980. The endothelium and thrombosis. Annu. Rev. Med. 31:361-366.
Whitaker, J. R. 1977. Enzymatic modification of proteins applicable to foods. In Food Proteins, ACS Symposium Series No. 160, R. E. Feeney and J. R. Whitaker (Ed.), pp. 95-155. American Chemical Society, Washington, DC.
Wijngaards, G. and Paardekooper, E. J. C. 1988. Preparation of a composite meat product by means of an enzymatically formed protein gel. In Trends in modern meat technology. II. Proceedings of the international symposium, Den Dolder, Netherlands, 23-25 November 1987. pp. 125-129. PUDOC. Wageningen, Netherlands.
Wismer-Pedersen, J. 1979. Utilization of animal blood in meat products. Food Technol. 33:76-80.
Wunderwald, P. and Schrenk, J. 1984. Method with fibrin as substrate. In Methods of Enzymatic Analysis, Vol. V, 3rd. ed., H. Fritz(Ed.), pp. 285-289. Weinheim. Florida
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top