跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 17:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林佾德
研究生(外文):Lin, Yih-Der
論文名稱:熱震處理對單核增生李斯特菌在後續環境壓力下之存活
論文名稱(外文):Effect of Heat-shock Treatments on the Survival of Listeria monocytogenes under Subsequent Environmental Stresses
指導教授:周正俊周正俊引用關係
指導教授(外文):Cheng-Chun Chou, Ph. D.
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:99
中文關鍵詞:單核增生李斯特菌熱震熱震蛋白質熱傷害
外文關鍵詞:Listeria monocytogenesheat shockheat-shock proteinheat injury
相關次數:
  • 被引用被引用:1
  • 點閱點閱:335
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究企圖比較L. monocytogenes ScottA、V7及CCRC14930菌株在分別接受兩種條件(48℃-10min、45℃-1h)之熱震處理後,於後續一些環境壓力下之存活情形。此外並探討在不同碳源與氮源下,熱震處理對L. monocytogenes熱傷害菌體復甦之影響。
對於所試三株L. monocytogenes菌株進行熱震處理,所引發之熱震效應會因熱震條件及菌株之不同而展現不同之結果。45℃-1h之熱震處理提高了ScottA及V7菌株在後續55℃高溫下之抗熱性,反之48℃-10min之熱震處理,則是增強V7及CCRC 14930菌株之抗熱性。
45℃-1h之熱震處理能提高所試三株L. monocytogenes菌體在氯化鈉(25%)、乙醇(18%)及結晶紫(100mg/L)壓力下之忍受性,但卻降低了在過氧化氫(0.1%)下之忍受性。48℃-10min之熱震處理雖也提高L. monocytogenes對氯化鈉之忍受性,但也降低了在過氧化氫及結晶紫壓力下之忍受性。
大致而言,二種熱震處理均降低L. monocytogenes菌體對鹽酸、醋酸、檸檬酸、乳酸及酒石酸之忍受性。而對酒石酸忍受性之下降幅度最大。
相同碳源與氮源下,熱震(48℃-10min)及熱傷害(55℃-60min)均造成L. monocytogenes ScottA生長時,遲滯期之延長。以fructose為碳源,或以soytone、N-Z amine A為氮源時,受熱傷害菌體若有先經過熱震處理者,其生長之遲滯期均有縮短之現象。
Abstract
In the present study, Listeria monocytogenes ScottA, V7 and CCRC 14930 were first subjected to heat shock treatments by heating at 48℃ for ten minutes (48℃-10min) or heating at 45℃ for one hour (45℃-1h). Survival of these heat-shocked cells after exposure to subsequent environmental stress were examined. In addition, the effect of heat shock on the growth of heat-injured L. monocytogenes in presence of various carbon and nitrogen sources were also investigated.
It was found that heat shock response varied with the condition of heat shock treatment and strains of L. monocytogenes tested. The 45℃-1h heat shock increased the thermal tolerance of strain ScottA and V7 to the subsequent heating at 55℃. On the other hand, thermal tolerance of strain V7 and CCRC 14930 to 55℃ increased after subjected to 48℃-10min heat shock treatment.
The 45℃-1h heat shock increased the tolerance of listeria to sodium chloride (25%), ethanol (18%), and crystal violet solution (100mg/L), while reduced their tolerance to hydrogen peroxide solution (0.1%). The 48℃-10min heat shock although reduced the tolerance of listeria to hydrogen peroxide and crystal violet, increased their resistance to sodium chloride.
In general, the two heat shock treatments tested increased the susceptibility of L. monocytogenes to hydrochloric acid, acetic acid, and tartaric acid. This effect was most pronounced in presence of tartaric acid.
Heat shock (48℃-10min) or heat injured (55℃-60min) treatment extended the lag period of L. monocytogenes ScottA grown in medium with a carbon and nitrogen source. Cells subjected to heat shock before heat injured treatment resulted in a reduced lag period when growing the heat-injured cells in medium containing fructose as carbon source, or with either soytone or N-Z amine A as nitrogen source.
目 錄
頁次
中文摘要
英文摘要 I
III
壹、前言 1
貳、文獻整理 4
一、單核增生李斯特菌(Listeria monocytogenes) 4
(1)細菌特性 5
(2)環境的分佈與傳播媒介 8
(3)疾病症狀 13
(4)影響L. monocytogenes生長及存活的因子 15
1.溫度 15
2. pH值及有機酸 16
3. 抑菌性物質 18
Ⅰ. 氯化鈉 18
Ⅱ. 丙酸鹽類 18
Ⅲ. 熱傷害菌體在選擇性培養基中之復甦 19
二、熱震反應(Heat-shock response) 22
(1)與環境壓力間作用 23
(2)熱震蛋白質 28
(3)熱震反應基因層次探討 31
參、材料與方法 34
(壹)實驗材料 34
一、菌種 34
二、培養基 34
三、藥品 35
(貳)、實驗方法 36
一、菌種之保存及更新 36
二、菌株之活化與接種源之製備 36
三、熱震處理後L. monocytogenes之死亡及受傷之情形 37
四、熱震處理後L. monocytogenes 菌體暴露於55℃後受傷及死亡試驗
38
五、熱震處理後之L. monocytogenes 對氯化鈉,過氧化氫,結晶紫,乙醇之敏感性測驗
38
六、熱震處理後之L. monocytogenes在不同有機酸中之存活 39
七、熱震處理對受熱傷害之L. monocytogenes菌體在不同碳氮源下生長之影響
40
八、菌數之測定-------------------------------------------------------------- 41
九、統計分析 41
肆、結果與討論 43
一、不同L. monocytogenes菌株在48℃及45℃下不同時間熱震處理後之存活
43
二、次致死熱震處理後對熱抵抗性之菌體受傷存活實驗 47
三、熱震處理後不同L. monocytogenes菌株在氯化鈉、過氧化氫、結晶紫及乙醇等環境壓力下之存活
53
(1)熱震處理後之L. monocytogenes對氯化鈉之敏感性---------- 54
(2)熱震處理後之 L. monocytogenes 對過氧化氫之敏感性------ 58
(3)熱震處理後之L. monocytogenes對結晶紫之敏感性----------- 62
(4)熱震處理後之L. monocytogenes對乙醇之敏感性-------------- 65
四、熱震處理後之L. monocytogenes 在不同有機酸中之存活情形 69
五、熱震處理對受熱傷害之L. monocytogenes菌體在不同碳氮源下生長之影響------------------------------------------------------------
76
伍、結論 82
陸、參考文獻 84
表 次
頁數
表一、李斯特菌菌種間與相關細菌的辨別方法 7
表二、單核增生李斯特菌在動物中之分佈 10
表三、70k道耳吞之熱震蛋白質的功能與活性 33
表四、45℃-1h 之熱震處理對 L. monocytogenes 菌體暴露於55 ℃、60 分鐘後之死亡與受傷之影響
49
表五、48 ℃-10 min之熱震處理對L. monocytogenes 菌體暴露於55 ℃、60 分鐘後之死亡與受傷之影響
52
表六、不同熱震處理對Listeria monocytogenes菌株暴露於25%氯化鈉144小時後存活之影響------------------------------------------------
56
表七、不同熱震處理對Listeria monocytogenes菌株暴露於0.1%過氧化氫3小時後存活之影響------------------------------------------------
60
表八、不同熱震處理對Listeria monocytogenes菌株暴露於100 mg / L結晶紫100分鐘後存活之影響-----------------------------------------
64
表九、不同熱震處理對Listeria monocytogenes菌株暴露於18%乙醇5小時後存活之影響---------------------------------------------------------
68
表十、熱震處理對L. monocytogenes暴露於含有不同酸之生理食鹽水中120分鐘後存活之影響------------------------------------------------
75
圖 次
頁數
圖一、單核增生李斯特菌之可能感染途徑 12
圖二、細胞受次致死熱處理後之途徑 20
圖三、L. monocytogenes 在48 ℃下不同時間熱震處理後之存活 44
圖四、L. monocytogenes 在45 ℃下不同時間熱震處理後之存活 45
圖五、45℃-1h熱震處理對L. monocytogenes暴露於55℃後菌體存活之影響
48
圖六、48℃-10min熱震處理對L. monocytogenes暴露於55℃後菌體存活之影響
51
圖七、熱震處理對不同L. monocytogenes暴露於25 % 氯化鈉後存活之影響------------------------------------------------------------------------
55
圖八、熱震處理對不同L. monocytogenes暴露於0.1 % 過氧化氫後存活之影響
59
圖九、熱震處理對不同L. monocytogenes暴露於100mg/L結晶紫後存活之影響---------------------------------------------------------------------
63
圖十、熱震處理對不同L. monocytogenes暴露於18 % 乙醇後存活之影響
67
圖十一、熱震處理對L. monocytogenes ScottA 暴露於含有不同酸的生理食鹽水中存活之影響------------------------------------------
71
圖十二、熱震處理對L. monocytogenes V7 暴露於含有不同酸的生理食鹽水中存活之影響------------------------------------------------
72
圖十三、熱震處理對L. monocytogenes CCRC 14930暴露於含有不同酸的生理食鹽水中存活之影響
73
圖十四、熱震處理對對受熱傷害L. monocytogenes ScottA菌體在不同碳源下生長之影響---------------------------------------------------
78
圖十五、熱震處理對對受熱傷害L. monocytogenes ScottA菌體在不同氮源下生長之影響---------------------------------------------------
79
陸、參考文獻
沈明來。1997。試驗設計學。九州圖書文物有限公司。台北。
周正俊、蔡舒琪。1992。李斯特單胞菌在發酵乳飲料之製備與貯藏時之存活。食品科學19(3):426。
吳素幸。1992。植物低分子量熱休克蛋白質的生理功能。國立台灣大學植物學研究所碩士論文。台北。
財團法人食品工業發展研究所。1994。菌種目錄增訂版Ⅱ,p. 8-9。新竹,台灣。
徐冠裕。1994。包裝及貯藏溫度對碎豬肉中李斯特單胞菌生長及存活之影響。私立東海大學食品科學研究所碩士論文。台中,台灣。
黃小萍。1994。熱休克蛋白70結構及功能的研究。國立清華大學生命科學研究所碩士論文。新竹,台灣。
靳宗洛。1987。熱休克蛋白質的純化及其生理功能。國立台灣大學植物學研究所碩士論文。台北。
楊淑娥。1998。溫度與接種量對蛋製品中沙門氏桿菌、金黃色葡萄球菌、大腸桿菌O157:H7及李斯特單胞菌生長之影響。國立台灣大學食品科技研究所碩士論文。台北。
蔡文瑛,周正俊。1990。以微波爐對米粥加熱及絞肉解凍時一些食品中毒細菌之存活。食品科學18(3):266-274。
鄭水旺。1994。沙門氏菌16S rRNA探針之發展及影響李斯特菌聚合鏈鎖反應檢測之食品因素。國立中興大學食品科學研究所碩士論文。台中,台灣。
鄭淑貞。1997。低溫處理時E. coli O157:H7之存活及冷凍壓力後菌體之一些特性。國立台灣大學食品科技研究所碩士論文。台北。
Abdul-Raouf, U. M., Beuchat, L. R., and Ammar, N. S. 1993. Survival and growth of Escherichia coli O157:H7 in ground, roasted beef as affected by pH, acidulants, and temperature. Appl. Environ. Microb. 59(8): 23664-2368.
Ahamad N. and Marth, E. H. 1989. Behavior of Listeria monocytogenes at 7, 13, 21, and 35℃ in tryptose broth acidified with acetic, citric, or lactic acid. J. Food Protect. 52(10): 688-695.
Ahamad, N. and Marth, E. H. 1989. Acid-injury of Listria monocyto- genes. J. Food Protect. 53(1): 26-29.
Anonymous. 1983. Listeria infections in farm animals. Veterinary Record. 112: 314.
Archer, D. L. 1996. Preservation microbiology and safety: evidence that stress enhances virulence and triggers adaptive mutations. Trends Food Sci. Technol. 7: 91-95.
Aronson, A. 1966. Adsorption of polysomes to bacterial membranes. J. Mol. Biol. 15: 505-514
Bacon, M., and Miller, N. G. 1958. Two strains of Listeria monocytogenes(pirie) isolated from feral sources in Washington. Northwest Sci. 32: 132.
Banwart, G. J. 1979. Basic Food Microbiology. AVI Publishing, Westport, Conn. USA.
Bearns, R. E., and Girard, K. F. 1958. The effect of pasteeurization on Listeria monocytogenes. Can. J. Microbiol. 4: 55-61.
Bergey, D. H., Krieg, N. R. and Holt, J. G. 1986. Bergey’s Manual of Determination Bacteriology, 9th. Williams & Wilkins Publishers, Baltimore, Maryland.
Beuchat, L. R., Brackett, R. E., Hao, D. Y. Y., and Conner, D. E. 1986. Growth and thermal inactivation of Listeria monocytogenes in cabbage and cabbage juice. Can. J. Microbiol. 32(10): 791-795.
Botzler, R. G. and Cowan, A. B. 1985. Transfer of Listeria monocytoge- nes between frogs. J. Wildlife Dis. 2: 173.
Brackett, R. E. 1988. Presence and persistence of Listeria monocytoge- nes in food and water. Food Technol. 42: 162-164.
Bridson, E. Y. 1998. The Oxoid Manul, 8th edition. p. 2-127, 2-126, 2-129, 4-9. Oxoid Ltd. England.
Bunning, V. K., Crawford, R. G., Tierney, J. T., and Peeler, J. T. 1990. Thermotolerance of Listeria monocytogenes and Salmonella typhi -murium after sublethal heat shock. Appl. Environ. Microb. 56(10): 3216-3219.
Chou, C. C., Cheng, S. J., Wang, Y. C. and Chung, K. T. 1999. Behavior of Escherichia coliO157: H7 and Listeria monocytogenes in tryptic soy broth subjected to various low temperature treatments. Food Res. Int. 32: 1-6.
Clark, C. W., and Ordal, Z. J. 1969. Thermal injury and recovery of Salmonella typhimurium and its effect on enumeration procedures. Apopl. Microbiol.18: 332-336.
Conner, D. E., Brackett, R. E., and Beuchat, L. R. 1986. Effect of temper -ature, sodium chloride, and pH on growth of Listeria monocytogen- es in cabbage juice. Appl. Environ. Microb. 52: 59-63.
Conner, D. E., and Hall, G. S. 1994. Efficacy of selected media for recovery of Escherichia coli O157: H7 from frozen chicken meat containing sodium chloride, sodium lactate or polyphosphate. Food Microbiol. 11: 337-344.
Cowart, R. E., and Foster, B. G. 1985. Differential effects of iron on the growth of Listeria monocytogenes: minimum requirements and mechanism of acquisition. J. Infect. Dis. 151: 721-730.
Craig, E. A. 1985. The heat shock response. Crit. Rev. Biochem. 18: 239-280.
Curtis, G. D. W., Mitchell, R. G., King, A. F., and Griffin, E. J. 1989. A selective differential medium for the isolation of Listeria monocytoge -nes. Lett. Appl. Microbiol. 8: 95-98.
Difco Laboratories, Division of Becton Dickinson and company. 1998. Difco Manual, 11th edition. p. 12, 15, 305-307, 525-531. Difco Ltd. Sparks, Maryland.
Dijkstra, R. G. 1975. Recent experiences of the survival times of Listeria bacteria in suspension of brain, tissue, silage, faeces. Leicester Univ. Press, Surrey, UK.
Doyle, M. P. 1988. Effect of environmental and processing condition on Listeria monocytogenes. Food Technol. 4: 169-171.
Doyle, M. P. 1989. Foodborne bacterial pathogens. Marcel Dekker, Inc. New York.
Doyle, M. P., Meske, L. M., and Marth, E. H. 1985. Survival of Listeria monocytogenes during the manufacture and storage of nonfat fry milk. J. Food Protect. 48: 740.
Doyle, M. P. and Schoeni, J. L. 1987. Isolation of Escherichia coli O157: H7 from retail fresh meats and poultry. Appl. Environ. Microb. 53: 2394-2396.
El-Shenawy M. A., and Marth, E. H. 1989. Sodium benzoate inhibits gr- owth of or inactivates Listeria monocytogenes. J. Food Protect. 51: 525-530.
El-Shenawy M. A., and Marth, E. H. 1992. Behavior of Listeria monocy- togenes in the presence of sodium propionate together with food acids. J. Food Protect. 55(4): 241-245.
Engel, R. E., Adams, C. E., and Crawford, L. M. 1990. Food-borne listeriosis: risk from meat and poultry. Food Control. 1: 27-31.
Farber, J. M., and Brown, B. E. 1990. Effect of prior heat shock on the heat resistance of Listeria monocytogenes in meat. Appl. Environ. Microb. 56: 1584-1587.
Farber, J. M., and Pagotto, F. 1992. The effect of acid shock on the heat resistance of Listeria monocytogenes. Lett. Appl. Microbiol. 15: 197-201.
Farber, J. M., Sanders, G. W., Dunfield, S. and Prescott . 1989. The effect of various acidulants on the growth of Listeria monocytogenes. Lett. Appl. Microbiol. 9: 191-183.
Fedio, W. M., and Jackson, H. 1989. Effect of tempering on the heat resistance of Listeria monocytogenes. Lett. Appl. Microbiol. 9: 157-160.
Fenlon, D. R. 1986. Rapid quantitative assessment of the distribution of Listeria in silage implicated in a suspected outbreak of listeriosis in calves. Vet. Rec. 118: 240.
Foster, J. W., and Hall, H. K. 1990. Adaptive acidification tolerance response of Salmonella typhimurium. J. Bacteriol. 172: 771-778.
Friedman, M. E., and Roessler, W. G. 1961. Growth of Listeria monocy- togenes in defined media. J. Bacteriol. 82: 528-537.
Garayzabal, J. F. F., Rodriguez, L. D., Boland, J. A. Z., Cancelo, J. L. B., and Fernandez, S. G. 1986. Listeria monocytogenes in pasteurized milk. Can. J. Microb. 32(2): 149-150.
George, S. M., Lund, B. M., and Brocklehurst, T. F. 1988. The effect of pH and temperature on initation of growth of Listria monocytogenes. Lett. Appl. Microbiol. 6: 153-156.
Gitter, M. 1985. Listeriosis in farm animals in great Britain. In “Isolation and Identification of Microorganisms of Medical and Veterinary Importance,” Soc. for Appl. Bacteriol. Tech. Series No. 21, ed. C. H. Collins and J. M. Grange, p. 191. Academic Press, London.
Glass, K. A., Loeffelholz, J. M., Ford, J. P., and Doly, M. P. 1992. Fate of Escherichia coli O157:H7 as affected by pH or sodium chloride and in fermented , dry sausage. Appl. Environ. Microb. 58: 2513-2516.
Golden, D. A., Beauchat, L. R., and Brackett, R. E. 1988a. Inactivation and injury of Listeria monocytogenes as affected by heating and freezing. Food Microbiol. 5: 17-23.
Golden, D. A., Beauchat, L. R., and Brackett, R. E. 1988b. Evaluation of selective direct plating media for their suitability to recover uninjured , heat-injured and freeze-injured Listeria monocytogenes from foods. Appl. Environ. Microb. 54: 1451-1456.
Goodson, M., and Rowbury, R. J. 1989. Habituation to normally lethal acidity by prior growth of Escherichia coli at a sub-lethal acid pH value. Lett. Appl. Microbiol. 8: 77-79.
Goodson, M., and Rowbury, R. J. 1989. Resistance of acid-habituated Escherichia coli to organic acids and its medical and applied significance. Lett. Appl. Microbiol. 8: 211-214.
Gottesman, S. 1984. Bacterial regulation: global regulatory networks. Annu. Rev. Genet. 18: 415-441.
Gray, M. L. 1963. Epidemiological aspects of listeriosis. Am. J. Pub. Health 53: 445.
Gray, M. L., and Killinger, A. H. 1966. Listeria monocytogenes and listeric infections. Bacteriol. Rev. 30:309.
Griffths, M. W. 1989. Listeria monocytogenes: Its importance in the Dairy Industry. J. Sci. Food Agric. 47(2): 133-158.
Grossman, A. D., Erickson, J. W., and Gross, C. A. 1984. The hptR gene product of E. coli is a sigma factor for the heat shock promoters. Cell 38: 383-390.
Hahn, G. M., and Li, G. C. 1990. Thermotolerance, thmoresistance, and thermosensitization. In stress Proteins in Biology and Medicine ed. Morimoto, R. I., Tissieres, A. and Georgopoulos, C. pp. 79-100. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. USA.
Hartl, F. U., Hlodan, R., and Langer, T. 1994. Trends Biochem. Sci. 19: 20-25.
Hayes, P. S., Feeley, J. C., Graves, L. M., Ajello, G. W., and Fleming, D. W. 1986. Isolation of Listeria monocytogenes from raw milk. Appl. Environ. Microb. 51: 438.
Hurst, A., Hughes, A., Collins-Thompson, D. L., and Shah, B. G. 1974. Relationship between loss of magnesium and loss of salt tolerance after sublethal heating of Staphylococcus aureus. Can. J. Microbiol. 20: 1153-1158.
Ingram, L. O. 1984. Effects of alcohols on microorganisms.Adv. Microbial. Physiol. 25: 254-300.
Ita, P. S. and Hutkins, R. W. 1990. Intracellular pH and survival of Listeria monocytogenes. Scott A in tryptic soy broth containing acetic, lactic, citric, and hydrochloric acids. J. Food Protect. 54(1): 15-19.
Ita, P. S. and Hutkinss, R. W. 1991. Intracellular pH and survival of Listeria monocytogenes Scott A in tryptic soy broth containing acetic, lactic, citric and hydrochloric acids. J. Food Protect. 54: 15-19.
Jackson, T. C., Hardin, M. S. and Acuff, G. R. 1995. Heat resistance of Escherichia coli O157:H7 in a nutrient medium and in ground beef patties as influenced by storage and holding temperatures. J. Food Protect. 59(3): 230-237.
Jay, J. M. 1997. Modern food microbiology, 5th edition. International Thomson Publish. New York.
Jenkins, D. E., Schultz, J. E., and Matin, A. 1988. Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J. Bacteriol. 170(9): 3910-3914.
Jenkins, D. E., Schultz, J. E., and Matin, A. 1988. Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J. Bacteriol. 170: 3910-3914.
Jones, C. E., Shama, G., Andrew, P. W., Roberts, I. S., and Jones, S. 1994. Comparative study of the growth of Listeria monocytogenes in defined media and demonstration of growth in continuous culture. J. Appl. Bacteriol. 78: 66-70.
Johnson, J. L., Doyle, M. P., Cassens, R. G., and Schoeni, J. L. 1988. Fate of Listeria monocytogenes in tissues of experimentally infected cattle and in hard salami. Appl. Environ. Microb. 54: 497-501.
Jorgensen, F., Hansen, T. B., and Knochel, S. 1998. Heat shock-induced thermotolerance in Listeria monocytogenes 13249 is dependent on growth phase, pH and lactic acid. Food Microbiol. 16: 185-194.
Kahn, M. A., Newton, I. A., Seaman, A., and Woodbine, M. 1975. The survival of Listeria monocytogenes inside and outside its host. In “Problems of Listeriosis.” ed. M. Woodbine, p. 75. Leicester Univ. Press, Surry, UK.
Kaufmann, O. W., Harmon, L. G., Pailthorp, O. C., and Pflug, I. J. 1959. Effect of heat treatment on the growth of surviving cells. J. Bacteriol. 78: 834-838.
Khan, M. R., Saha, M. L., and Kibria, A. H. M. G. 1979. A bacterialog- ical profile of salad vegetables in bangladesh with special reference to coliforms. Lett. Appl. Microbiol. 14: 88-90.
Knabel. S. J., Walker, H. W., and Hartman, P. A., and Mendonca, A. F. 1990. Effects of growth temperature and strictly anaerobic recovery on the survival of Listeria monocytogenes during pasteurization. Appl. Environ. Microb. 56: 370-376.
Koneman, E. W., Roberts, G. D., and Wright, S. F. 1979. Practical laboratory mycology. Elmer W. koneman, Glenn D. roberts, Sara Fann Wright. 2nd edition. Baltimore, Maryland.
Landick, R., Vaughn, V., Lau, E. T., Van Bogelen, R. A., Erickson, J. W., and Neidhardt, F. C. 1984. Nucleotide sequence of the heat shok regulatory gene of E. coli suggests its protein product may be a transcription factor. Cell 38: 175-182.
Lee, I. S., Lin, J., Hall, H. K., Bearson, B., and Foster, F. W. 1995. The stationary-phase sigma factor σS (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Mol. Microbiol. 17: 155-167.
Lee, S. K., Calcott, P. H., and Macleod, R. A. 1977. Relationship of cytochrom content to the sensitivity of bacteria to NaCl on freezing and thawing. Can. J. Microbiol. 23: 413-419.
Lee, W. H., and McClain, S. 1986. Improved Listeria monocytogenes selective agar. Appl. Environ. Microb. 22: 1215-1217.
Lehninger, A. L., Nelson, D. L., and Cox, M. M. 1993. Principles of biochemistry, 2th edition. p. 184, 863, 944, 956, 990. Worth Publishers. New York.
Lennon, D., Lewia, B., Mantell, C., Becroft, D., Dove, B., Farmer, K., Tonkin, S., Yeates, N., Stamp, R., and Mickleson, K. 1984. Epidemic perinatal listeriosis. Pediat. Infect. Dis. 3: 30-34.
Leyer, G. J., and Johnson, E. A. 1992. Acid adapation promotes survival of Salmonella spp. in cheese. Appl. Environ. Microb. 58: 2075-2080.
Leyer, G. J., and Johnson, E. A. 1993. Acid adaptation induces cross-prot -ection against environmental stresses in Salmonella typhimurium. Appl. Environ. Microb. 59(6): 1845-1847.
Linton, R. H., Pierson, M. D., and Bishop, J. R. 1990. Increase in heat resistance of Listeria monocytogenes ScottA by sublethal heat shock. J. Food Protect. 53: 924-927.
Linton, R. H., Webster, J. B., Pierson, M. D. and Hackney, C. R. 1992. The effect of sublethal heat shock and growth atmosphere on the heat resistance of Listeria monocytogenes ScottA. J. Food Protect. 55: 84-87.
Lou, Y. and Yousef, A. E. 1996. Resistance of Listeria monocytogenes to heat after adaptation to environmental stresses. J. Food Protect. 59: 465-471.
Lou, Y. and Yousef, A. E. 1997. Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl. Environ. Microb. 63: 1252-1255.
Lovett, J., Francis, D. W., and Hunt, H. M. 1987. Isolation and identific- ation of Listeria monocytogenes in raw milk: detection, incidence, and pathogenicity. J. Food Protect. 50: 188-192.
Mackey, B. M., and Derrick, C. M. 1987. The effect of prior heat shock on the thermoresistance of Salmonella thompson in foods. Let. Appl. Microbiol. 5: 115-118.
Marth, E. H. 1988. Disease characteristics of Listeria monocytogenes. Food Technol. 42(4): 165-174.
Mekalanos, J. J. 1992. Environmental signals controlling expression of virulence determinants in bacteria. J. Bacteriol. 174: 1-7.
Meyer, D. H., and Donnelly, C. W. 1992. Effect of incubation temperature on repair of heat-injured Listeria in milk. J. Food Protect. 8: 579-582.
Minton, K W., Karmin, P., Hahn, G., and Minton, A. P. 1982. Nonspecific stabilization of stress-susceptible protein by stress-resistant proteins: a model for the biological role of heat shock proteins. Proc. Natl. Acad. Sci. 79: 7107-7111.
Moustafa, A., El-Shenawy M. A., and Marth, E. H. 1988. Behavior of Listeria monocytogenes in the presence of sodium propionate. Int. J. Food Microbiol. 8: 85-94.
Murano, E. A., and Pierson, M. D. 1992. Effect of heat shock and growth atmosphere on the heat resistnce of Escherichia coli O157: H7. J. Food Protect. 55: 171-175.
Murano, E. A., and Pierson, M. D. 1993. Effect of heat shock and incubation atmosphere on injury and recovery of Escherichia coliO157: H7. J. Food Protect. 56: 568-572.
Neidhardt, F. C., Bogelen, V., and Vaughn, V. 1985. The genetics and regulation of the heat-shock proteins. Annu. Rev. Genet. 18: 295-329.
Nelson, F. E. 1943. Factors which influence the growth of heat-treated bacteria. I. A comparison of four agar media. J. Bacteriol. 45: 395-403.
Nunheimer, T. D., and Fabian, F. W. 1940. Influence of organic acids, sugars, and sodium chloride upon strains of food poisoning staphylococci. Am. J. Public. Health 30: 1040-1045.
O’Driscoll, B., Gahan, C. G. M., and Hill, C. 1996. Adaptive acid tolerance response in Listeria monocytogenes: Isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl. Environ. Microb. 62(5): 1693-1698.
O’Hara, G. W., and A. R. Glenn. 1994. The adaptive acid tolerance response in root nodule bacteria and Escherichia coli. Arch. Microbiol. 161: 286-292.
Pearson, L. J., and Marth, E. H. 1990. Listeria monocytogenes threat to a safe food supply: a review. J. Dairy Sci. 73: 912-928.
Pine, L., Weaver, B. G., Malcolm, J. B., Brooks, J. B., and Daneshvar, M. I. 1989. Phsyiological studies on the growth and utilization of sugars by Listeria species. Can. J. Microbiol. 35: 245-254.
Postgate, R. J., and Hunter, J. R. 1963. Metabolic injury in frozen bacteria. J. Appl. Bacteriol. 26: 405-414.
Prescott, L. M., Harley, J. P., and Klein, D. A. 1993. Microbiology, 2th edition. pp. 463, 600, 708, 871. Wm. C. Brown Publishers Inc. Dubuque, Iowa.
Premaratne, R. J., Lin, W. J., and Johnson, E. A. 1991. Development of an improved chemically defined minimal medium for Listeria mono -cytogenes. Appl. Environ. Microb. 57: 3046-3048.
Ralovich, B. 1984. “Listeriosis Research-Present Situation and Perspect- ive.” Akademiai Kiado , Budapest, Hungary.
Ray, B. 1978. Methods to detect stressed microorganisms. J. Food Prote- ct. 42(4): 346-355.
Ray, B. 1979. Current methods to detect stressed microorganisms. J. Food Protect. 42: 864-867.
Ray, B. 1985. Impact of bacterial injury and repair in food microbiology: its past, present and future. J. Food Protect. 49(8): 651-655.
Ray, B., and Johnson, M. L. 1973. Freeze-injury in bacteria. CRC Rev. Clin. Lab. Sci. 4: 161-213.
Ritossa, F. 1962. A new puffing pattern induced by temperature shock and DEP in Drosophila. Experientia 18: 571-573.
Rosenow, E. M., and Marth, E. H. 1987. Growth of Listeria monocytoge- nes in Skim, whole and chocolate milk and in whipping cream during incubation at 4, 8, 13, 21 and 35℃. J. Food Protect. 50: 452.
Ryser, E. T., and Marth, E. H. 1987a. Behavior of Listeria monocyto- genes during the manufacture and ripening of cheddar cheeese. J. Food Protect. 50: 7.
Ryser, E. T., and Marth, E. H. 1987b. Fate of Listeria monocytogenes during the manufature and ripening of camembert cheese. J. Food Protect. 50: 372.
Ryser, E. T., and Marth, E. H. 1988. Survival of Listeria monocytogenes in cold-pack cheese food during refrigerated storage. J. Food Protect. 51: 615-621.
Schlech, W. F., Lavigne, P. M., Bortolussi, R. A., Allen, A. C., Haldane, E. V., Hightower, A. W., Johnson, S. E., King, S. H., Nicholls, E. S., and Broome, C. V. 1983. Epidemic listeriosis-Evidence for transmission by food. New Eng. J. Med. 308: 203.
Schmid, U., and Kaya, M. 1990. Verhalten von Listeria monocytogenes in vakuumverpaktem Bruhwurstaufschnitt. Fleischwirtsch 70(236): 1313.
Schoeni, J. L., Brunner, K. and Doyle, M. P. 1991. Rates of thermal inactivation of Listeria moncytogenes in beef and fermented beaker sausage. J. Food Protect. 54(5): 334-337.
Seeliger, H. P. R. 1961. Literiosis. Hafner Publishing Co. New York.
Seeliger, H. P. R., and Finger, H. 1976. Listeriosis. P. 333. In J. S. Remington and J. O. Klein(eds.), Infectious diseases of the fetus and newborn infant. W. B. Saunders Co. Philadelphia.
Shahamat, M., Seaman, A., and Woodbine, M. 1980. Influence of sodium chloride, pH and temperature on the inhibitory of sodium nitrite on Listeria moncytogenes. Appl. Bacteriol. p. 227-237. Academic Press, London, UK.
Sinskey, T. J., and Silverman, G. J. 1970. Characterization of injury incurred by Escherichia coli upon freeze-drying. J. Bacteriol. 101(2): 429-437.
Smulders, F. J. M., Barendsen, P., Van Logtestun, J. G., Mossel, D. A. A., and Van Der Marel, G. M. 1986. Lactic acid: considerations in favour of its acceptance as a meat decontaminant. J. Food Technol. 21: 419-436.
Sorrells, K. M., Enigl, D. C., and Hatfield, J. R. 1989. Effect of pH, acidulant, time and temperature on the growth and survival of Listeria monocytogenes. J. Food Protect. 52(8): 571-5573.
Stjner, B., Zakula, S., Kovincic, I., and Galic, M. 1979. Heat resistance of Listeria monocytogenes and its survival in raw milk products. Vet Glas. 33: 109-112.
Tran, T. T., and Hitchins, A. D. 1993. Recovery Limits of heatuinjured Listeria monocytogenes from enrichment broth and enriched culutures of inoculated foods. J. Food Safety, 13: 185-193.
VanBogelen, R. A., Acton, M. A., and Neidhardt, F. C. 1987. Induction of the heat shock regulon does not produce termotolerance in Escherichia coli. Gene. Dev. 1: 525-531.
Welshimer, H. J., and Donker-Voet, J. 1971. Listeria monocytogenes in nature. Appl. Microbiol. 21: 516.
Weis, J., and Seeliger, H. P. R. 1975. Incidence of Listeria monocytoge- nes in nature. Appl. Microbiol. 30: 29.
Wolford, E. R., and Anderson, A. A. 1945. Propionates control microbial growth in fruits, vegetables. Food Ind. 17: 622-624.
Yomamori, T., Yura, Y. 1982. Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K12. Proc. Natl. Acad. Sci. USA. 79: 860-864.
Yousef, A. E., El-shenawy, M. A., and Marth, E. H. 1989. Inactivation and injury of Listeria monocytogenes in a minimal Medium as affected by benzoic acid and incubation temperature. J. Food Sci. 54(3): 650-652.
Yu, C. F., and Chou, C. C. 1997. Fate of Escherichia coli O157: H7 in chinese-style sausage during the drying step of the manufacturing process as affected by the drying condition and curing agent. J. Sci. Food Agric. 74: 551-556.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top