跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 00:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭宏基
研究生(外文):Hung-Chi Hsiao
論文名稱:利用明膠與水溶性澱粉以低溫噴霧乾燥微膠囊化
論文名稱(外文):Encapsulation of bifidobacteria in gelatin and
指導教授:周 正 俊
指導教授(外文):Cheng-Chun Chou
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:82
中文關鍵詞:雙叉桿菌微膠囊化雙叉桿菌雙叉桿菌
外文關鍵詞:bifidobacteriaMicroencapsulationsoluble starchgelatin
相關次數:
  • 被引用被引用:7
  • 點閱點閱:984
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
雙叉桿菌(bifidobacteria)具有維持人體腸道菌叢平衡,活化免疫系統,促進食物消化吸收等功能。本研究主要乃在探討以明膠及水溶性澱粉微膠囊化雙叉桿菌,在胃酸、膽鹽中之耐受性,以及貯存安定性之影響。無論用何種被覆材質進行低溫噴霧乾燥微膠囊化菌體時,所試之五株雙叉桿菌中均以B. longum B6之存活率最高。以明膠為被覆材質者,進行微膠囊化雙叉桿菌比使用水溶性澱粉為被覆材質者有較高之存活率。噴霧乾燥微膠囊之雙叉桿菌,於出口溫度50℃下,以10%明膠或10%水溶性澱粉之被覆濃度有較高之存活率,隨著濃度之提高其粉末之產率增加。惟隨著噴霧乾燥之出口溫度及被覆材質濃度之提高,菌體之存活率亦隨之下降。以明膠或水溶性澱粉微膠囊化均具有緩和B. longum B6及B. infantis CCRC14633菌體於胃酸(pH 2.0)及膽鹽(2.0%)中存活率下降之效果,且以明膠之效果大於水溶性澱粉。於4℃下貯存者其雙叉桿菌之存活率明顯高於25℃者。置於玻璃瓶中,或同時添加脫氧劑及乾燥劑,可提高菌體之存活率。經掃描式電子顯微鏡(SEM)觀察發現,其粒徑約5-10μm,且不同之被覆材質間並無明顯之差異。
Abstract
Bifidobacteria possess the probiotic effects including maintenance of intestinal microflora in balance, activation of immune system, promotion of food digestion and absorption. In this study, bifidobacteria were microencapsulated in gelatin and soluble starch. Susceptibility of the microencapsulated bifidobacterium to stimulated gastric juice and bile solution as well as their stability during storage was examined.
Regardless of the encapsulants used in spray drying under low temperature, B. longum B6 exhibited the highest survival rate among five bifidobacterium strains tested. Besides, it was noted that the survival rate of the test organism was higher with gelatin than soluble starch as the encapsulant. A higher survival rate of the encapsulated bifidobacterium was observed with 10 % gelatin or 10 % soluble starch as the encapsulant and was spray dried at an outlet temperature of 50 ℃.
As the concentration of encapsulant increased, the production of the microscapsule powder increased, while raising the outlet temperature or increasing the concentration resulted in the reduced survival rate. Microencapsulation with gelatin or soluble starch moderated the reduction of survival rate of B. longum B6 and B. infants CCRC 14633 in gastric juice (pH 2.0) and bile solution (2.0 %); it was also found that the effect of gelatin is higher than that of soluble starch. Bifidobacteria survived better at 4°C than at 25°C. Additions of deoxidant and desiccant to the containers increased the survival of bifidobacteria during storage. Observation with scanning electronic microscope revealed that grain diameter of the microcapsule was in the range between 5 to 10 μm, regardless of the encapulants used.
目 錄
頁次
中文摘要---------------------------------------------------------------------------------- Ⅰ
英文摘要----------------------------------------------------------------------------------
一、前言---------------------------------------------------------------------------------- 1
二、文獻整理---------------------------------------------------------------------------- 3
2.1雙叉桿菌生態學------------------------------------------------------------------- 3
2.2雙叉桿菌之特性(Bifidobacterium spp.)------------------------------------ 4
2.2.1雙叉桿菌之分類、分佈及生長特性------------------------------------- 4
2.2.2雙叉桿菌之代謝特性------------------------------------------------------- 5
2.2.3雙叉桿菌促進因子---------------------------------------------------------- 7
2.3雙叉桿菌與人體健康之關係---------------------------------------------------- 8
2.3.1維持人體腸道菌叢平衡---------------------------------------------------- 8
2.3.2活化免疫系統---------------------------------------------------------------- 10
2.3.3促進蛋白質之分解---------------------------------------------------------- 11
2.3.4抗癌作用---------------------------------------------------------------------- 11
2.3.5促進乳酸之代謝------------------------------------------------------------- 12
2.3.6合成維生素B群------------------------------------------------------------- 12
2.3.7改善乳糖不耐症------------------------------------------------------------- 12
2.3.8抗氧化性---------------------------------------------------------------------- 12
2.3.9降低血液中膽固醇---------------------------------------------------------- 13
2.3.10 改善腹瀉及便秘----------------------------------------------------------- 13
2.4雙叉桿菌面臨之問題------------------------------------------------------------- 13
2.4.1 耐酸性------------------------------------------------------------------------- 14
2.4.2 耐膽鹽性---------------------------------------------------------------------- 14
2.4.3 耐氧性------------------------------------------------------------------------- 16
2.5雙叉桿菌抵抗不良環境---------------------------------------------------------- 16
2.5.1雙叉桿菌之微膠囊化------------------------------------------------------- 16
2.6影響活性菌體貯存期間安定性因素------------------------------------------- 19
2.6.1貯存時間---------------------------------------------------------------------- 19
2.6.2水分含量---------------------------------------------------------------------- 19
2.6.3菌體經乾燥後貯存之空氣組成------------------------------------------- 20
2.6.4貯存溫度---------------------------------------------------------------------- 20
2.7微膠囊化--------------------------------------------------------------------------- 20
2.7.1微膠囊化之簡介------------------------------------------------------------- 20
2.7.2 微膠囊化應用在食品工業上之優點------------------------------------- 21
2.7.3微膠囊備之方法------------------------------------------------------------- 22
2.7.4微膠囊之釋放---------------------------------------------------------------- 22
2.8噴霧乾燥---------------------------------------------------------------------------- 24
2.9包覆材質---------------------------------------------------------------------------- 25
2.9.1明膠---------------------------------------------------------------------------- 25
2.9.2 水溶性澱粉------------------------------------------------------------------- 26
2.10.雙叉桿菌應用及發展概況----------------------------------------------------- 28
三、材料與方法------------------------------------------------------------------------- 31
3.1實驗材料---------------------------------------------------------------------------- 31
3.1.1菌種 --------------------------------------------------------------------------- 31
3.1.2 實驗藥品---------------------------------------------------------------------- 31
3.1.3儀器及器材------------------------------------------------------------------- 31
3.2實驗方法---------------------------------------------------------------------------- 32
3.2.1雙叉桿菌之保存及更新----------------------------------------------------- 32
3.2.2菌體之培養與菌泥收集----------------------------------------------------- 32
3.2.3低溫噴霧乾燥微膠囊化雙叉桿菌前菌懸濁液之製備----------------- 33
3.2.4 低溫噴霧乾燥微膠囊化雙叉桿菌---------------------------------------- 33
3.2.5 微膠囊化粉末收集及粉末產率之計算---------------------------------- 35
3.2.6 雙叉桿菌微膠囊粉末水分測定------------------------------------------- 35
3.2.7 雙叉桿菌菌數之測定及存活率計算------------------------------------- 36
3.2.8 雙叉桿菌在模擬胃酸及膽鹽下之耐受性試驗------------------------- 36
3.2.9 貯存試驗---------------------------------------------------------------------- 38
3.2.10 掃描式電子顯微鏡 (SEM) 分析--------------------------------------- 38
3.2.11 統計分析-------------------------------------------------------------------- 38
四、結果及討論------------------------------------------------------------------------- 39
4.1試驗菌株之選擇---------------------------------------------------------------- 39
4.2明膠及水溶性澱粉濃度對雙叉桿菌存活率之影響---------------------- 43
4.3 進行噴霧乾燥時出口溫度對雙叉桿菌存活率之影響------------------ 45
4.4明膠與水溶澱粉微膠囊化雙叉桿菌在模擬胃酸中之忍受性---------- 46
4.5 明膠與水溶性澱粉微膠囊化雙叉桿菌在膽鹽(Oxgall)中之忍受
性----------------------------------------------------------------------------------
51
4.6微膠囊化雙叉桿菌在不同包裝與貯存條件之存活率影響------------- 54
4.7 掃描式電子顯微鏡 (SEM) 觀察微膠囊表面構造及形狀------------- 58
五、結論---------------------------------------------------------------------------------- 62
六、參考文獻---------------------------------------------------------------------------- 63
表 次
頁次
表一、微膠囊之方法Type A和Type B-------------------------------------------- 23
表二、明膠之特性------------------------------------------------------------------- 27
表三、台灣市面上出現之雙叉桿菌相關產品------------------------------------- 29
表三、台灣市面上出現之雙叉桿菌相關產品------------------------------------- 30
表四、利用不同被覆材質噴霧乾燥微膠囊化雙叉桿菌之存活率------------- 40
表五、利用不同被覆材質進行噴霧乾燥微膠囊化雙叉桿菌菌數變化------- 42
表六、雙叉桿菌不同明膠或水溶性澱粉濃度進行噴霧乾燥之存活率------- 44
表七、不同出口溫度及不同被覆材質進行噴霧乾燥時對雙叉桿菌存活之
影響-----------------------------------------------------------------------------
47
圖 次
頁次
圖一、雙叉桿菌與異型或同型發酵細菌對葡萄糖代謝途徑之差異---------- 6
圖二、本實驗所使用之噴霧乾燥機------------------------------------------------- 34
圖三、B. longum B6與B. infantis CCRC 14633在模擬胃酸耐受性下之存
活情形 --------------------------------------------------------------------------
49
圖四、B. longum B6與B. infantis CCRC 14633其膽鹽耐受性情形--------- 52
圖五、微膠囊化B. infantis B6菌體在不同包裝貯存條件下之存活------ 55
圖六、微膠囊化B. longum CCRC 14633菌體在不同包裝貯存條件下之存
活----------------------------------------------------------------------------------
56
圖七、明膠經低溫(50℃)噴霧乾燥微膠囊化後之微膠囊顆粒表面掃瞄式電子顯微鏡圖片----------------------------------------------------------------
59
圖八、水溶性澱粉經低溫(50℃)噴霧乾燥微膠囊化後之微膠囊顆粒表面掃瞄式電子顯微鏡圖片----------------------------------------------------
60
六、參考文獻
金安兒、蘇照堂、黃守潔。1993。香蕉泥的添對嗜桿菌乳中Lactobacillus acidophilus噴霧乾燥存活率之影響。中國農業化學會誌。31: 68-77.
李國鏞。1992。普通微生物學。九州圖書文物有限公司。台北。
江捷峰。1999。製備Bifidobacterium longum 保健性菌種之噴霧乾燥方法開發。私立大葉大學食品工程研究所碩士論文。
沈立言。1990。羅勒、蒜、薑精油為膠囊之研究。國立中興大學食品科學研究所博士論文。
沈宗禮。1980。制放技術與微粒包覆。高立圖書有限公司。台北。
沈明來。1993。試驗設計學。九州圖書公司。台北市,台灣。
侯仁琬。1997。雙叉桿菌發酵豆奶之研究國立台灣大學食品科技研究所碩士論文。
陳俊曄。1991。薑精油樹脂為膠囊之研究。國立中興大學食品科學研究所博士論文。
黃加成。1987。豬皮明膠之化學及酵素修飾對其機能性質研究。國立台灣大學畜牧學研究所碩士論文。
黃瓊萱。1992。雙叉桿菌特性及其利用。食品工業。24:35-40.
楊基矹和劉佳。1996。雙叉桿菌固定化的研究。微生物學通報。23:35-36.
楊雅清。1992。難消化性醣類對消化道與脂質代謝之影響。輔仁大學食品營養學研究所碩士論文。
楊媛絢。1998a。原生保健性菌種 (probiotics) 與益菌助生質 (prebiotics) 之應用。食品工業。30:11-22。
楊媛絢。1998b。雙岐桿菌環境耐性株之相關研究及專利。食品工業。30:33-47。
張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城、林慶文。1995。食品化學。華香園出版社。台北。
廖啟成。1998。乳酸菌之分類及應用。食品工業。30:1-10。
蔡錦文。1994。雙叉桿菌分離與鑑定及特性研究。國立中興大學食品科學研究所碩士論文。
賴怡君,1999。乳酸菌之抗氧化性及抗致突變性對細胞株Intestin 407之影響。國立中與大學食品科技研究所碩士論文。
賴滋漢,金安兒,柯文慶。1993。食品加工學 (方法篇)。精華出版社。台中市。
富田房男。1998。Lactococcus lactis 膜結合型H+-ATPase之變異及其應用。生物產業Bioindustry 9: 105-111.
淺野行藏、修司吉川、吉史田村。1998。乳酸菌流動層乾燥技術及其應用。生物產業 Bioindustry 9: 234-238。
Andres, C. 1977. Encapsulated ingred ingredients. Food Processing. 11:44-45
Arunachalam, K. D. 1999. Role of Bifidobacteria in nutrition, medicine and technology. Nutr. Res. 19: 1559-1597.
Arai, O., Sasaki, M. and Sugimoto, T. 1996. Effectiveness of yoghurt incorporated with enteric bifidobacteria capsules. Food ind. 39: 53-58.
Bakan, J. A. 1973. Microencapsulation of foods and related products. Food Technol. 27: 34-44.
Baker, D.1984. Cereal foods. In ”Official Methods of Analysis of the Association of Official Analytical Chemists”. 14th ed: 249.
Bangs, W. E. and Reineccius, G. A. 1982. Influence of dryer in feed matrices on the retation of volatile flavor compounds during spray drying. J. Food Sci. 47:254-259.
Barbero, G. J., Runge, G., Fischer, D., Crawford, M. N., Torres, F. E. and Gyorgy, P. 1952. Investigation the bacterial flora pH and sugar contentin the intestinal tract of infants. J. Pediat. 40: 152-163.
Bauer, H., Sigarlakie, E. and Faure, J. C. 1975. Scanning and transmission electron microscopy of three strains of Bifidobacterium. Can. J. Microbiol. 21: 1305-1307.
Benita, S., 1996. Microencapsulation. Marcel Dekker, Ine. New York (11).
Benno, Y., Sawada, K. and Mitsuoka, T. 1984. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol. Immunol. 28: 975-986.
Berrada, N., Lemeland, J. F., Laroche, G., Thovenot, P. and Piaia, M. 1991. Bifidobacterium from fermented milks: survival during gastric transit. J. Dairy Sci. 74: 409-413.
Blanchette, L. and Roy, D. 1995. Production of cultured cottage cheese dressing by Bifidobacteria. J. Dairy Sci. 78: 1421-1424.
Champagne, C. P., Mondou, F., Raymond, Y. and Roy, D. 1996. Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Res. Int. 29: 555-562.
Charpentier, C. A., Gadille, P., Digat, B. and Benoit, J. P. 1998. Microncapsulation of rhizobacteria by spray-drying: formulation and survival studies. J. Microbio. 15:639-659.
Charteris, W. P., Kelly, P. M. Morelli, L. and Collins, J. K. 1998. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J. Appl. Micro. 84:759-768.
Chateau, N., Deschamps, A. M., and HadjSassi, A. 1994. Heterogeneity of bile salts resistance in the Lactobacillus isolates of a probiotic consortium. Lett. Appl. Microbiol. 18: 42-44.
Clark, P. A., and Martin, J. H. 1994. Selection of Bifidobacteria for use as dietary adjuncts in cultured dairy foods: Ⅲ-Tolerance to simulated bile concentrations of human small intestines. Cult. Dairy Prod. J. 29: 18-21.
Clark, P. A., Cotton, L. N. and Martin, J. H. 1993. Selection of Bifidobacteria for use as dietary adjuncts in cultured dairy foods: Ⅱ-Tolerance to simulated pH of human stomachs. Cult. Dairy Prod. J. 28: 11-14.
Collins, E. B. and Hall, B. 1984. Growth of Bifidobacteria in milk and preparation of Bifidobacterium infantis for a dietary adjuncts. J. Dairy Sci. 67: 1376-1380.
Conway, P. L., Gorbach, S. L., and Godin, B. R. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70: 1-12.
Corre, C., Madec, M. N. and Boyaval, P. 1992. Production of Concentrated Bifidobacterium bifidum. J. Chem. Tech. Biotechnol. 53: 189-194.
Davenport, H. W. 1977. Physiology of the Digestive Tract. 4th ed. Year Book Medical Publishers Incorporated, Chicago, IL. p. 232.
Delzenne, N. M. and Roberfrood, M. R. 1994. Physiological effects of non-digestible oligsaccharides. Lebensm-Wiss. Technol. 27: 1-6.
De Vries, W. and Stouthamer, A. H. 1967. Fermentation of glucose, lactose, galactose, mannitol and xylose by bifidobacteria. J. Bacteriol. 96: 472-478.
Dziezak, J. D. 1988. Microencapsulation and encapsulated ingredients. Food Technol. 136-151.
Elizondo, H. and Labuza, T. P. 1974. Death kinetics of yeast in spray drying. Biotechnol. Bioeng. 16: 1245-1259.
Espin, F. and Packard, V. S. 1979. Survival of Lactobacillus acidophilus in a spray-drying process. J. Food Prot. 42: 149-152.
Fernandes, C. F. and Shahani, K. M. 1988. Effect of nutrient media and bile salts on growth and antimicrobial activity of Lactobacillus acdiophilus. J. Dairy Sci. 71: 3222-3229.
Fisher, K., Johnson, M. C. and Ray, B. 1985. Lactose hydrolyzing enzymes in Lactobacillus acdiophilus strains. Food Microbiol. 2: 23.
Floch, M. H., Binder, H. J., Filburn, B. and Gershengoren, W. 1972. The effect of bile acids on intestinal microflora. Am. J. Clin. Nutr. 25: 1418-1426.
Fukushima, Y., Kawata, Y., Hara, H., Terada, A. and Mitsuoka, T. 1998. Effect of a probiotic formule on intestinal immunoglobulin a production in healthy children. Int. J. Food Microbiol. 41: 39-44.
Fu, W. Y. and Etzel, M. R. 1995. Spray Drying of Lactococcus lactis ssp. lactis C2 and cellular injury. J. Food Sci. 60: 195-200.
Gilliland, S. E., Staley, T. E. and Bush, L. J. 1984. Importance of bile tolerance of Lactobacillus acdiophilus used as dietary adjunct. J. Dairy Sci. 67: 3045-3051.
Gilliland, S. E. 1989. Acidophilus milk products: A review of potential benefits to consumers. J. Dairy Sci. 72: 2483-2494.
Gilliland, S. E. and Kim, H. S. 1984. Effect of viable starter culture bacteria in yoghurt on lactose utilization in humans. J. Dairy Sci. 67: 1-6.
Gilliland, S. E. and Walker, D. K. 1990. Factors to consider when selecting a culture of Lactobacillus acdiophilus as a hypocholesterolemic effect in humans. J. Dairy Sci. 73: 905-911.
Gilliland, S. E., Nelson, C. R. and Maxwell, C. 1985. Assimilation of cholesterol by Lactobacillus acdiophilus. Appl. Environ. Microbiol. 49: 377-381.
Gilliland, S. E. and Rich, C. N. 1990. Stability during frozen and subsequent refrigerated storage of Lactobacillus acidophilus grown at different pH. J. Dairy Sci. 73: 1187-1192.
Gomes, A. M. P. and Malcata, F. X. 1999. Bifidobacterium spp. and Lactobacillus acidophilus : biological、biochemical、technological and therapeutical properties relevant for use as probiotics. Trends in Food Sci.Technol. 10: 139-157.
Goodenough, E. R. and Kleyn, D. H. 1976. Influence of viable yogurt microflora on digestion of lactose by rat. J. Dairy Sci. 59: 601-606.
Griffiths, R. P. and Haigh, R. D. 1973. Reversible heat injury in the marine psychrophilic bacterium Vibrio marinus. Can. J. Microbiol. 19: 557-561.
Haenel, H. 1970. Human normal and abnormal gastrointestinalnflora. Am. J. Clin. Nutri. 23: 1433-1439.
Higuchi, T. 1963 Mechanism of sustained-action medication: theoretical analysis of release of solid durgs dispersed in solid matrices. J. Pharm. Sci. 52: 1145.
Hirota, T. 1990. The anticipating bioactivity functions of Lactobacillus in dairy products. New Food Industry. 32(10): 9-17.
Holcomb, J. E., Frank, J. F. and Mc Gregor, J. U. 1991. Viability of Lactobacillus acidophilus and Bifidobacterium bifidum in soft-serve frozen yogurt. Cult. Dairy Prod. J. 26: 4-5.
Homma, N. 1988. Bifidobacteria as a resistance factor in human beings. Bifidobact. Microflora. 7: 3-5.
Hoover, D. G. 1993. Bifidobacteria: Activity and Potential Benefits. Food Technol. June, 120-124.
Hori, S. 1983. The properties of Bifidus Yoguhrt E. New Food Industry. 23(3): 25-32.
Hose, H. and Sozzi, T. 1991. Biotechnology Group Meeting Probiotics Fact or Fiction. J. Chem. Technol. Biotech. 51: 540-544.
Hotta, M., Sato, Y., Iwata, S., Yamashita, N., Sunakawa, K., Oikawa, T., Tanaka, R., Watanabe, K. and Mutai, M. 1987. Clinical effect of Bifidobacterium preparations on pediatric intractable diarrhea. Keio J. Med. 36:298.
Hughes, D. B. and Dallas, G. H. 1991. Bifidobacteria: Their potential for use in American dairy products. Food Technol. 4: 74-80.
Hurst, A., Huges, A. and Collins-Thompson, D. L. 1974. The effect of sublethal heating on Stapholococcus aureus at different physiological ages. Can. J. Microbiol. 20: 765-768.
Ibrahim, S. A. and Bezkorovainy, A. 1993. Inhibition of Escherichia coli by Bifidobacteria. J. Food Prot. 56: 713-715.
Ibrahim, S. A. and Bezkorovainy, A. 1993. Survival of bifidobacteria in the presence of bile salt. J. Sci. Food Agric. 62: 351-354.
Ishibashi, N. and Shimamura, S. 1993. Bifidobacteria: Research and Development in Japan. Food Technol. 6: 126-136.
Jiang, T., Mustapha, A. and Savaiano, D. A. 1996. Improvement of lactose digestion in humans by injection of unfermented milk containing Bifidobacterium longum. J. Dairy Sci. 79:750-757.
Johnson, J. A. C. and Etzel, M. R. 1995. Properties of Lactobacillus helveticus CNRZ-32 attenuated by Spray-Drying, Freeze- Drying, or Freezing. J. Dairy Sci. 78: 761-768.
Kanawjia, S. K., Pathania, V. and Singh, S. 1992. Microencapsulation of enzymes, microorganism and flavours and their applications in foods. Indian Dairyman. 44: 280-287.
Kawashima, Y., Lin, S. Y. and Takenaka, H. 1983. Polymorphism and drug release behavior of spray-dried microcapsule of sulfamethoxazole with polysaccharide gum and colloidal silica. Drug Dev. Ind. Pharm. 9: 1445-1463.
Khalil, A. H. and Mansour, E. H. 1998. Alginate encapsulated Bifidobacteria survival in Mayonnaise. J. Food Sci. 63: 702-705.
Khattab, A. A. and Abou-Donia, S. A. 1987. The effect of bile on the growth of some lactic acid cultures. J. Dairy Sci. 70: 51-56.
Kim, H. S., Kamara, B. J., Good, I. C., and Enders, G. L. Jr. 1988. Method for the preparation of stabile microencapsulated lactic acid bacteria. J. Indust. Microbiol. 3: 253-257.
Kim, S. S. and Bhowmilk, S. R. 1990. Survival of lactic acid bacteria during spray drying of plain yogurt. J. Food Sci. 55: 1008-1010, 1048.
King, W. 1969. Gelatin in “Gum Technology in the food industry” Glickman, M. (Ed.) Academic press Inc. New York.
Klaenhammer, T. R. and Kullen, M. J. 1999. Selection and design of probiotics. Int. J. Food. Micro. 50: 45-47.
Klaver, F. A. M. and Van der Meer, R. 1993. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol. 59: 1120-1124.
Kohwi, Y., Imai, K., Tamura, Z. and Hashimato, Y. 1978. Antitumor effect of Bifidobacterium infantis in mice. Gann. 69: 613-618.
Labuza, T. P., Jones, K. A., Sinskey, A. J., Gomez, R., Wilson, S. and Miller, B. 1972. Effects of drying conditions on cell viability and functional properties of single cell protein. J. Food Sci. 37: 103-107.
Labuza, T. P., LeRoux, J. P., Fan, S. T. and Tannenbaum, S. R. 1970. Engineering factors in single-cell protein production.Ⅱ. Spray drying and cell viability. Biotechnol. Bioeng. 12: 135-140.
Lankaputhra, W. E. V. and Check, N. P. 1998. Antimutagenic properties of probiotic bacteria and organic acids. Mutat. Res. 397: 169-182.
Laroia, S. and Martin, J. H. 1990. Bifidobacteria as possible dietary adjuncts in cultured products-A review. Cultured Dairy Prod. J. 25: 18-22.
Lee. Y. K. and Salminen, S. 1995. The coming of age of probiotics. Trends in Food Sci. Technol. 6: 241-245.
Lichari, J. J. and Potter, N. N. 1970. Salmonella survival during spray drying and subsequent handling of skim milk powder.Ⅱ. Effect of drying conditions. J. Dairy Sci. 53: 871-876.
Marshall, W. R. and Seltzer, E. 1950. Principle of spray drying . Ⅱ. Elements of spray-dryer design. Chem. Eng. Prog. 46: 575.
Marteau, P., Pochart, P., Flourie, P., Pellier, P., Santos, L. and Desjeaux, J. F. 1990. Effect of chronic ingestion of a fermented dairy product containing Lactobacillus acidophilus and Bifidobacterium bifidum on metabolic activities of the colonic flora in humans. Am. J. Clin. Nutr. 52: 685-688.
Mayia-Makinen, A., Manninen, M. and Gyllenberg, H. 1983. The adherence of lactic acid bacteria to the columnar epithelial cell of pigs and calves. J. Appl. Bacteriol. 55: 241-245.
Misara, A. K. and Kuila, R. K. 1990. Cultural and biochemical activities of Bifidobacterium bifidum. Milchwissenschaft 45: 155-158.
Misara, A. K. and Kuila, R. K. 1991. Intensified growth of Bifidobacterium and preparation of Bifidobacterium bifidum for a dietary adjunct. Cult. Dairy Prod. J. 10: 4-6.
Mitsuoka, T. 1984. Intestinal flora and human health. New Food Indus. 32(10): 1-8.
Mitsuoka, T. 1990. Bifidobacteria and their role in human health. J. Indust. Microbiol. 6: 263-267.
Mitsuhashi, S. and Murata, N. 1991. Inhibitory activity of Bifidobacterium on the growth of gram-negative and gram-positive bacteria. J. Jpn. Soc. Food Nutri. 44: 365-372.
Modler, H. W., McKellar, R. C., Goff, H. D. and Mackie, D. A. 1990. Using ice cream as a mechanism to incorporate Bifidobacteria and fructo-oligosaccharides into human diet. Cult. Dairy prod. J. 25: 4-8.
Modler, H. W., McKellar, R. C. and Yaguchi, M. 1990. Bifidobacteria and bifidogenic factors. Inst. Food Sci. Technol. J. 23: 29-41.
Nagawa, M., Nakabayash, A. and Fujino, S. 1988. Preparation of the bifidus milk powder. J. Dairy Sci. 71: 1777-1782.
Nil. 1994. Establishing a scientific basis for probiotic R&D. Trends in Biotechnol. 12(1): 6-8.
Noh, D. O. and Gilliland, S. E. 1993. Influence of bile on cellular integrity and β-galactosidase activity of Lactobacillus acdiophilus. J. Dairy Sci. 76: 1253-1259.
Obara, S. and McGinity, J. W. 1995. Influence of processing variables on the properties of free films prepared from aqueous polymeric dispersions by a spray technique. Int. J. Pharm. 126: 1-10.
O’sullivan, M. G., Thornton, G. Osullivan, G. C., and Collins, J. K. 1992. Probiotic bacteria: myth or reality ? Trends in Food Sci. Technol. 3: 309-314.
Ozaki, Y. 1991. The promotion of growth of bifidobacteria with various kinds of sugars. New Food Indust. 32: 12-15.
Park, S. Y., Ji, G. E., Ko, Y. T., Jung, H. K., Ustunol, Z. and Pestke, J. J., 1999. Potentiation of hydrogen peroxide, nitric oxide, and cytokine production in RAW 264.7 macrophage cells exposed to human and commercial isolates do Bifidobacterium .Int. J. Food Microbiol. 46: 231-241.
Phillips, M. C. 1981. Protein conformation at liquid interfaces and its role in stabilizing emulsion and foams. Food Technol. 35(1): 50.
Pochart, P., Marteau, P., Bouhnik, Y., Goderel, I., Bourlioux, P. and Rambaud, J. C. 1992. Survival of bifidobacteria ingested via fermented milk during their passage through the human small intestine : an in vivo study using intestinal perfusion. Am. J. Clin. Nutr. 55: 78-80.
Prasad, J., Gill, H., Smart, J. and Gopal, P. K. 1999. Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. Int. Dairy J. 8: 993-1002.
Rao, A., V. Shiwnarain, N. and Maharaj, I. 1989. Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices. Can. Inst. Food Technol. J. 22: 345-349.
Reilly, S. S. and Gilliland, S. E. 1999. Bifidobacterium longum Survival during frozen and refrigerated storage as related to pH during growth. J. Food Sci. 64: 714-718.
Rasic, J. L. and Kurmann, J. A. 1983. Bifidobacteria and their role. Birkhauser Verlag, Basel.
Reineccius, G. A. and Coulter, S. T. 1969. Flavor retention during drying. J. Dairy Sci. 52: 1219-1221.
Reineccius, G. A. and Rich, S. J. 1986. Encapsulation of artificial flavors by beta-cyclodextrin. Perfum. & Flavor. 11(4): 1-6.
Sanders, M. E. 1998. Overview of functional foods: Emphasis on probiotic bacteria. Int. Dairy. J. 8: 341-347.
Scardovi, V. 1986. The genus Bifidobacterium. In“Bergey’s Manual of Systematic Bacteriology.” ed. J. G. Holt. Williams and Wilkins, Co., Baltimore, Md. 2: 1951-1961.
Sheu, T. Y. and Marshall, R. T. 1993. Microenentrapment of lactobacilli in calcium alginate gels. J. Food Sci. 54: 557-561.
Shimamura, S., Abe, F., Ishibashi, N., Miyakawa, H., Yaeshima, T., and Tomita, M. 1990. Endogenous oxygen uptake and polysaccharide accumulation in Bifidobacterium. Agric. Biol. Chem. 54: 2869-2874.
Shimamura, S., Abe, F., Ishibashi, N., Miyakawa, H., Yaeshima, T. and Tomita, M. 1992. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J. Dairy Sci. 75: 3296-3306.
Tahri, K., Crociani, J., Ballongue, J. and Schneider, F. 1995. Effects of three strains of Bifidobacteria on cholesterol. Letters in Microbiol. 21: 149-151.
Tallym, F. P., Goldin, B. R. and Gorbach, S. L. 1977. Superoxide dismutase in anaeroic bacteria of clinical significance. Infect. Immun. 16: 20.
Takahashi, T. and Morotmi, M. 1994. Absence of cholic acid 7 α-dehydroxylase activity in strains of Lactobacillus and Bifidobacterium. J. Dairy. Sci. 77: 3275-3286.
Tamura, Z. 1983. Nutriology of Bifidobacteria. Bifidobact. Microflora. 2:3-5.
Tanaka, R. and Shimosaka, K. 1982. Investigation of the stool frequency in elderly who are bedridden and its improvement by ingesting Bifidus yogurt. Jpn. J. Geriatrics. 19: 577.
Teixeira, P., Castro, H. and Kirby, R. 1994. Inducible thermotolerance in Lactobacillus bulgaricus. Lett. Appl. Microbiol. 18: 218-221.
Teixeira, P., Castro, H. and Kirby, R. 1995. Spray Drying as a method for preparing concentrated cultures of Lactobacillus bulgaricus. J. Appl. Bacteriol. 78: 456-462.
Thoman, E. L. and Pera, K. A. 1983. Oxygen metabolism of Streptococcus mutans: uptake of oxygen and release of superoxide and hydrogen peroxide. J. Bacteriol. 154(3): 1236-1244.
To, B. C. S. and Etzel, M. R. 1997. Spray Drying, Freeze Drying, or Freezing of three different lactic acid bacteria species. J. Food Sci.62:576-578.
To, B. C. S. and Etzel, M. R. 1997. Survial of Brevibacterium linens (ATCC 9174) after Spray Drying, Freeze Drying, or Freezing. J. Food Sci. 62:167-170.
Todd, R. D. 1970. Microencapsulation and the flavor industry. The Flavor industry. 1:768.
Tzan, Y. L., Lin, S. Y., Weng, C. N. and Lee, C. J. 1991. Preparation of enteric-coated microspheres of Mycoplasma hyopneumoniae vaccine with cellulose acetate phthalate: The effect of swine serum on micromeritic properties. Biotechnol. Tech. 5: 139-144.
Veer Kamp, J. H. 1996. Uptake and metabolism of derivatives of 2-doxy-2-amino-D-glucose in Bifidobacterium bifidum var. pensylvanccus. Arch. Biochem. Biophy. 129: 248-250.
Walker, D. K. and Gilliland, S. E. 1993. Relationships among bile tolerance, bile salt deconjugation and assimilation of cholesterol by Lactobacillus acdiophilus. J. Dairy Sci. 76: 956-961.
Whistler, R. L., Bemiller, J. N. and Paschall, E. F. 1984.Starch Chemistry and Technology. Academic press Inc. New York.
Wolf, B. 1997. Bead cellulose products with film formers and solubilizerrs for controlled drug release. Int. J. Pharm.156: 97-107.
Wolf, B., Schmitz, W. and Schneider, H. 1996. Composites of bead cellulose and hydrophilic solubilizers. Int. J. Pharm. 139: 87-94.
Yoshioka, H., Fujita, K., Sakata, H., Murono, K. and Iseki, K. 1991. Development of the normal intestinal flora and its clinical significance in infantis and children. Bifidobact. Microflora 10: 11-14.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top