跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁克明
研究生(外文):Ke-Ming Liang
論文名稱:幾丁聚醣-葡萄胺糖梅納反應產物的抗氧化性
論文名稱(外文):Antioxidative Activity of Products from Chitosan-Glucosamine Maillard Reaction
指導教授:李錦楓李錦楓引用關係
指導教授(外文):Chin-Fung Li
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:91
中文關鍵詞:幾丁聚醣葡萄胺糖梅納反應抗氧化
外文關鍵詞:chitosanglucosamineMaillard reactionantioxidative activity
相關次數:
  • 被引用被引用:5
  • 點閱點閱:882
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究是以α幾丁聚醣為原料,和還原糖進行非酵素性梅納褐變反應,以改善幾丁聚醣的溶解性,並期望產物具有好的抗氧化性質,增加幾丁聚醣在機能性食品上的應用。將1%α幾丁聚醣(DD 80、90%)與0.2%還原糖(葡萄胺糖與葡萄糖)溶於0.2M之醋酸溶液,調pH值至6.0,在不同的溫度、時間反應,製備水溶性幾丁聚醣梅納反應產物,並分析產物的基本性質、抗氧化性質、及抑菌能力。
水溶性幾丁聚醣梅納產物的基本性質測定包括了產率、溶解度、梅納反應褐變程度與去乙醯度,產率依不同的梅納反應條件,分別為70∼98%左右,反應溫度高者,其產率也較高,且以葡萄糖為還原糖之梅納產物產率較高;而產物的溶解度會隨反應溫度的提升而變差,以幾丁聚醣-葡萄胺糖梅納產物溶解度為0.688∼0.969 g/dL較好;在梅納褐變程度420 nm波長吸光中,隨反應溫度與反應時間增加,吸光值會明顯增加,而去乙醯度不同的幾丁聚醣為反應物,對於梅納反應的進行沒有影響,在相同反應條件下,以葡萄胺糖為還原糖易進行梅納反應,此外,在較高溫度下反應得到梅納產物之去乙醯度值較低。
在抗氧化性質方面則包括了清除DPPH自由基、捕捉超氧陰離子、還原力與金屬離子螯合能力,因為梅納反應條件不同,使得梅納產物生成的種類、含量與分佈情形不同,造成抗氧化性質有所差異。梅納產物清除DPPH自由基能力,隨反應溫度、反應時間增加而提高,並在相同條件下,以葡萄胺糖產生的梅納產物具有50%清除自由基能力為較佳;於捕捉超氧陰離子方面,則以50℃反應溫度效果最好,由葡萄胺糖產生的梅納產物之捕捉能力,隨反應時間增加而增加,但以葡萄糖得到的梅納產物之捕捉能力卻是隨反應時間的增加而降低;在還原力部分,還原糖為葡萄胺糖之梅納產物以反應溫度高、反應時間長有較好的還原力,其吸光值為0.86∼0.95,有較好的還原力,還原糖為葡萄糖時,則是以反應溫度低、反應時間短,吸光值為1.2的產物較具有好的還原力;至於金屬離子螯合能力方面,水溶性幾丁聚醣梅納產物對於銅離子較具螯合能力,由葡萄胺糖產生的梅納產物螯合銅離子能力,隨反應時間、反應溫度增加而增加其能力,於葡萄糖產生的梅納產物則是以反應溫度低、反應時間短的產物有較佳的螯合能力,在螯合鐵離子方面,於任何梅納反應條件所得的產物,其螯合能力只有10∼15%。
水溶性幾丁聚醣-葡萄胺糖梅納產物抑菌性方面,依不同的實驗菌種,有不同的抑菌效果,以反應溫度低,短時間的反應所得產物抑菌能力較佳,梅納程度越高的產物,抑菌能力越差,此外與產物去乙醯度值結果比較,似乎顯示出產物的胺基含量多寡與抑菌能力有關。

The objective of this research was to improve the solubility of chitosan by Maillard reaction fromα-chitosan and reducing sugar, and expected them to have good antioxidative actions to increase its application as functional foods. The 1%α-chitosan and 0.2% reducing sugar (glucosamine or glucose) dissolved in 0.2M acetic acid, which adjusted to pH 6.0, were heated at different temperature and time to prepare the water soluble Maillard reaction products (MRPs) . These products were investigated for their basic properties, antioxidative activities and antibacterial abilities.
The basic properties of water soluble chitosan products by Maillard reaction included yield, solubility, browning degree of Maillard reaction and degree of deacetylation. The yield was 70-98% at different Maillard reaction conditions. At higher reaction temperature of MRPs from glucose, the yield was highest. The solubility of MRPs decreased as rising temperature. The solubilities of MRPs from chitosan and glucosamine are 0.688-0.969 g/dL were better than the other products with glucose. For the degree of browning by Maillard reaction, which was measured by the absorbance at 420 nm, they were apparently higher for that reacted at higher temperature and longer time of period. The degree of deacetylation in chitosan seemed to have no influence for Maillard reaction. Under the same reaction conditions, the Maillard reaction with glucosamine were proceeded easily than with glucose. Moreover, the products at higher reaction temperature resulted in lower degree of deacetylation.
On the aspect of antioxidative activity, it included the scavenging of DPPH free radical and superoxide anion, reducing power and chelating ability of metal ions. Because of different Maillard reaction conditions, their products were different in kinds, quantity and distribution. It caused different antioxidative activities. In scavenging DPPH free radical, the products’ activity were higher as temperature and time increased. At the same reaction conditions, the scavenging activity of the MRPs from glucosamine was better than the products from glucose. Its best activity is 50%. In the case of scavenging superoxide anion ability, the activity of products reacting at 50℃ was the best. When reaction time was prolonged, the scavenging ability of MRPs from glucosamine was increased, but that with glucose products gave the opposite result. In the experiment of reducing power, MRPs from glucosamine have better reducing power at higher reaction temperature and longer reaction time. Its absorbance is 0.86-0.95. While the reducing power of MRPs made with glucose was better at lower reaction temperature and shorter reaction time (the absorbance is 1.2). In the experiment of metal ion chelating ability, water soluble MRPs of chitosan had better chelating ability on copper ions than ferric ions. The MRPs from glucosamine have good chelating ability with that obtained from higher temperature and longer time, then the chelating ability of MRPs made from glucose at lower temperature and shorter time were better. On the aspect of chelating ability with ferric ion, the MRPs from any kinds of Maillard reaction conditions had only 10-15% chelating ability.
In the experiment of antibacterial ability of water soluble MRP’s from chitosan-glucosamine, the antibacterial abilities depended on different bacteria strains. The MRPs from lower reaction temperature and shorter reaction time gave better antibacterial abilities. If the MRPs’ with higher extent of Maillard, the ability became inferior. In addition, comparing with the results of deacetylation of MRPs, the antibactrial ability of the products against the same strains decreased as the deacetylation of MRPs was decreased. This suggested that the amino group of the products played an improtant role in the antibacterial ability.

目 錄
頁次
中文摘要……………………………………………………………..Ⅰ
英文摘要……………………………………………………………..Ⅲ
目錄…………………………………………………………………..Ⅴ
圖目錄………………………………………………………………..Ⅹ
表目錄………………………………………………………………...XII
壹、 前言…………………………………………………………....1
貳、 文獻整理……………………………………………………....3
一、幾丁質與幾丁聚醣…………………………………………….3
1. 幾丁質之來源…………………………………………………3
2. 幾丁質與幾丁聚醣之結構……………………………......3
3. 幾丁質的結晶構造…………………………………………..5
4. 幾丁聚醣之溶解性……………………………………………5
5. 水溶性幾丁質與幾丁聚醣之製備………………………….7
5.1 控制幾丁質去乙醯反應之條件與去乙醯度
,以獲得分子量較高的水溶性幾丁聚醣……………...7
5.2以適當條件降低幾丁聚醣之分量…………………………8
(1)酸水解法……………………………………….......8
(2)酵素水解法…………………………………………...8
(3)物理處理法…………………………………………...9
5.3在幾丁聚醣分子中之胺基及/或羥基上
引入親水性基團……………………………………………9
6. 幾丁聚醣之抑菌機制………………………………………..11
7. 水溶性幾丁質與幾丁聚醣的應用……………………………12
二、 梅納反應………………………………………………………14
1. 梅納反應機制…………………………………………………14
2. 初期梅納反應……………………………………..........14
2.1 初期梅納反應...................................14
2.2 中期梅納反應………………………………….........16
2.3 末期梅納反應………………………………….........16
3. 影響梅納反應之因子………………………………………..17
3.1 還原糖種類…………………………………….........17
3.2 胺基酸種類…………………………………….........19
3.3 溫度…………………………………………….........19
3.4 pH值…………………………………………….........20
3.5 水活性………………………………………….........20
3.6 金屬離子……………………………………….........21
4. 梅納反應之應用……………………………………………..21
三、抗氧化的機制與原理………………………………………….22
1. 油脂氧化反應………………………………………………..22
2. 抗氧化劑的作用原理與種類………………………………..24
2.1 自由基終止劑…………………………………………….24
(1) Hindered monohydric phenol………………......24
(2) Polyhydric phenol…………………………….....25
2.2 還原劑或氧清除劑……………………………………….25
2.3 金屬螯合劑……………………………………………….25
2.4 單旋態氧抑制劑………………………………………….26
3. 梅納反應產物的抗氧化……………………………………..26
3.1 梅納反應產物結構與抗氧化關係……………………...26
3.2 梅納反應環境條件對抗氧化性的影響………………….27
(1) 胺類化合物……………………………………......27
(2) 還原糖…………………………………………......28
(3) 其他……………………………………………......28
4. 測定抗氧化方法之原理………………………………………28
4.1 清除α,α-diphenyl-β-picryl
hydrazyl(DPPH)自由基能力…………………………….28
4.2 捕捉超氧陰離子能力…………………………………….30
4.3 還原力…………………………………………………...31
4.4 金屬螯合能力…………………………………………...31
參、 材料與方法…………………………………………………....32
一、 實驗材料………………………………………………………32
二、 儀器…………………………………………………………..33
三、 實驗方法………………………………………………………33
1. 水溶性幾丁聚醣梅納反應產物之製備………………………33
2. 水溶性幾丁聚醣梅納反應產物溶解度測定………………..34
3. 水溶性幾丁聚醣梅納反應產物去乙醯度測定……………..35
4. 水溶性幾丁聚醣梅納反應產物褐變程度測定……………..35
5. 水溶性幾丁聚醣梅納反應產物之清除α,
α- diphenyl-β- picryhydrazyl (DPPH)
自由基能力測定………………………………………………35
6. 水溶性幾丁聚醣梅納反應產物之捕捉
超氧陰離子能力測定…………………………………………35
7. 水溶性幾丁聚醣梅納反應產物還原力的測定………………36
8. 水溶性幾丁聚醣梅納反應產物之金屬螯合能力測定……..36
9. 水溶性幾丁聚醣梅納反應產物之抑菌能力測定……………37
四、 實驗流程圖……………………………………………………38
肆、 結果與討論……………………………………………………..39
一、 由不同梅納反應條件製備水溶性
幾丁聚醣梅納產物之基本性質測定………………………..39
1. 水溶性幾丁聚醣梅納產物之產率與溶解度………………..39
1.1 以葡萄胺糖為還原糖…………………………………….39
1.2 以葡萄糖為還原糖……………………………………….41
2. 水溶性幾丁聚醣梅納產物之波長420 nm吸光…………....43
2.1 以葡萄胺糖為還原糖…………………………………...44
2.2 以葡萄糖為還原糖……………………………………...44
3. 水溶性幾丁聚醣梅納產物之去乙醯度測定………………..47
3.1 以葡萄胺糖為還原糖…………………………………...47
3.2 以葡萄糖為還原糖……………………………………...50
二、 由不同梅納反應條件製備水溶性
幾丁聚醣梅納產物之抗氧化性質測定……………………..50
1. 水溶性幾丁聚醣梅納產物之清除DPPH
(α,α-diphenyl-β-picryhydrazyl)自由基能力………50
1.1 以葡萄胺糖為還原糖…………………………………...51
1.2 以葡萄糖為還原糖……………………………………...53
2. 水溶性幾丁聚醣梅納產物之
捕捉超氧陰離子能力………………………………………..55
2.1 以葡萄胺糖為還原糖…………………………………...55
2.2 以葡萄糖為還原糖……………………………………...58
3. 水溶性幾丁聚醣梅納產物之還原力………………………..58
3.1 以葡萄胺糖為還原糖…………………………………...58
3.2 以葡萄糖為還原糖……………………………………...60
4. 水溶性幾丁聚醣梅納產物之
螯合金屬銅離子能力………………………………………..62
4.1 以葡萄胺糖為還原糖…………………………………….62
4.2 以葡萄糖為還原糖……………………………………….65
5. 水溶性幾丁聚醣梅納產物之
螯合金屬鐵離子能力………………………………………..65
三、 由不同梅納反應條件製備水溶性
幾丁聚醣梅納產物之抑菌能力性質測定…………………..68
1. 水溶性幾丁聚醣梅納產物
對B. cereus 生長的影響………………………………....68
2. 水溶性幾丁聚醣梅納產物
對E.coli 生長的影響……………………………………...70
3. 水溶性幾丁聚醣梅納產物
對S.aureus 生長的影響……………………………….....72
4. 水溶性幾丁聚醣梅納產物
對Sal.spp 生長的影響…………………………………....74
四、 水溶性幾丁聚醣梅納產物之可能應用……………………..75
伍、 結論…………………………………………………………...77
陸、 參考文獻……………………………………………………...80

鄭映雪,1999,水溶性幾丁聚醣梅納反應產物之生物理化特性,國立台灣大學食品科技研究所碩士論文。
陳怡傑,1998,水溶性幾丁聚醣在水產養殖廢水處理之應用,國立台灣大學食品科技研究所碩士論文。
蔡政翰,1997a,以化學修飾改善幾丁聚醣之溶解度,國立台灣大學食品科技研究所碩士論文。
蔡漢蓉,1997b,幾丁聚醣水產養殖廢水處理上之應用, 國立台灣大學食品科技研究所論文碩士。
黃俊儒、陳榮輝,1997,不同反應時間之幾丁聚醣─葡萄糖梅納反應產物之抑菌性與幾丁聚醣對魚糕之保存效果,食品科學 24:458.
阮進惠、林翰良、羅淑珍,1997,幾丁聚醣水解產物之連續是生產及其抑菌作用,中國農業化學會誌35(6):596.
顏國欽、劉美麟,1997,木糖-離胺酸梅納反應產物及其區分物抗氧化特性之研究,中國農業化學會誌,35(3):273.
張展榮,1996,剪力、超音波或兩者合併作用對幾丁聚醣物化性質之影響及其在水溶性幾丁聚醣製備上的應用,國立海洋大學水產食品科學研究所碩士論文。
林文源,1995,幾丁聚醣抗菌作用的研究,國立台灣大學食品科技研究所博士論文。
徐珠璽,1995,水溶性幾丁聚醣的製備與其物化特性,國立海洋大學水產食品科學研究所碩士論文。
馬場由成,1995,水溶性キトサン誘導體の合成とその抗菌性,キチン、キトサンハンドブック,キチン、キトサン 研究會編,技報堂出版。
魏宏安,1994,發酵大麥萃取物之抗氧化作用,國立台灣大學生化學研究所碩士論文。
鍾穎建,1993,幾丁聚醣在草莓保鮮之應用,國立台灣大學食品科技研究所碩士論文。
蔡政芳,1992,不同去乙醯度的幾丁聚醣對微生物之作用及澀味之影響,國立台灣大學食品科技研究所碩士論文。
陳天、張酷冰、葉秀蓮,1991,殼具糖常保鮮彌猴桃的研究,食品科學 10 :34 (大陸).
內田 泰,1988,キチン、キトサンの抗菌性、特集これからの天然抗菌、抗酸化物質,フードケミカル2月號:220.
山本正次,1991,キトサン製劑の食品への利用,New Food Industry 33 (10) : 5.
余瑞林,1984,茶葉天然抗氧化劑之抗氧化性及安全性評估,國立台灣大
學農業化學研究所碩士論文。
謝伯東,1971,還原糖與胺基酸之非酵素褐變極其所附隨之諸現象,中國農業化學會誌 9:3.
Allan, C. R. and Hadwiger, L. A. 1979. The fungicidal effects of chitosan on fungi of varying cell wall composition. Exp. Mycol. 3: 285.
Ashoor, S. H. and Zent, J. B. 1984. Maillard browning of common amino acids and sugars. J. Food Sci. 49: 1206.
Aurand, L. W., Boone, N. H., and Giddings, G. G. 1977. Superoxide and singlet oxygen in milk lipid peroxidation. J. Dairty Sci. 60(3):363.
Benzing-Puride, L., Ripmeester, J. A. and Ratcliffe, C. I. 1985. Effects of temperature on Maillard reaction products. J. Agric. Food Chem. 33: 31.
Bran, A. M. 1975. Toxicology and Biochemistry of BHA and BHT. JAOCS. 52:372.
Cammerer, B. and Kroh, L. W. 1996. Investigation of the contribution of radicals to the mechanism of the early stage of the Maillard reaction. Food Chem. 57(2):217.
Carolan, C. A., Blair, H. S., Allen, S. J. and Mckay, G. 1991. N,O-carboxymethyl chitosan, a water soluble derivative and potential green food preservative. Trans. Inst. Chem. Eng. 69: 195.
del Pilar Buera, M., Chirife, J., Resnik, S. L. and Wetzler, G. 1987b. Nonenzymatic browning in liquid model systems of high water activity: Kinetics of color changes due to reaction between glucose and glycine peptides. J. Food Sci. 52: 1068.
Delben, F., Muzzarelli, R. A. A. and Terbojevich, M. 1989. Thermodynamic study of the protonation and interaction with metal cations of three chitosan derivatives. Carbohydr. Polym. 11: 205.
Delben, F., Stefancich, S. and Muzzarelli, R. A. A. 1992. Chelating ability and enzymatic hydrolysis of water-soluble chitosans. Carbohydr. Polym. 19: 17.
Dung, P. I., Mials, M., Rinaudo, M. and Desbrieres, J. 1994. Water soluble derivatives obtained by controlled chemical modifications of chitosan. Carbohydr. Polym. 24: 209.
Dziezak, J. D. 1986. Preservatives : antioxidant. Food Technol. 40:94.
Ellis, G. P. 1959. The Maillard reaction In “Advances in Carbohydrate Chemistry” ed. by Wolfrom, M. L. Academic Press, New York, p.63.
Filar, L. J. and Wirick, M. G. 1978. Bulk and solution properties of chitosan In “Chitin and Chitosan.” ed. by Muzzarelli, R. A. A. and Pariser, E. R. MIT Sea Grant Program, Cambridge, Mass. p.169.
Ghaouth, A. E., Aral, J., Ponnampuoam, R. and Boulet, M. 1991. Chitosan coating effect on storagibility and quality of fresh strawberries. J. Food Sci. 56: 1618.
Hackman, R. H. 1960. Studies on chitin. IV. The occurrence of complexes in which chitin and protein are covalently linked. Aust. J. Biol. Sci. 13: 568.
Hackman, R. H. 1965. Studies on chitin. Ⅵ. The nature of α- and β- chitin. Aust. J. Biol. Sci. 18: 935.
Hadwiger, L. A., Kendra, D. F., Fristensky, B. W. and Wagoner, W. 1986. Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In “Chitin in Nature and Technology.” ed. by Muzzarelli, R. A. A. and Plenum, C. Press, New York. p.215.
Harris, L. A. and Olcott, H. S. 1966. Reaction of aliphatic tertiary amines with hydroperoxides. J. Am. Oil Chem. Soc. 43:11.
Hattori, M,. Ogino, A., Nakai, H. and Takahashi, K. 1997. Functional improvement of beta-lactoglobulin by conjugation with alginate lyase-lysate. J. Agric. Food Chem. 45: 703.
Hayase, F., and Hato, H. 1986. Low molecular Maillard reaction products and their formation mechanism. Dev. Food Sci. 13:39.
Hirano, S., Konda, Y. and Fuji, K. 1985. Preparation of acetylated derivatives of modifed chito-oligosaccharides by the depolymerization of partially N-acetylated chitosan with nitrous acid. Carbohydr. Res. 144: 338.
Hodge, J. E. 1967. Origin of flavor in food. Nonenzymatic browning reaction. In Chemistry and Physiology of Flavor. ed. by Schulz, H. W., Day, E. A., and Libbey, L. M. AVI Publ., Westport, Connecticut. p.456.
Ikeda, I., Sugano, M., Yoshida, K., Sasaki, E., Iwamoto, Y. and Hatano, K. 1993. Effects of chitosan hydrolysates on lipid absorption and on serum and liver lipid concentration in rats. J. Agric. Food Chem. 41: 431.
Karel, M., Tannenbaum, S. R., Wallancee, D. H., and Maloney, H. 1966. Antioxidation of methyl linoleate in freeze-dried model systems Ⅲ. Effect of added amino acid. J. Food Sci. 31:892.
Kato, A., Minaki, K. and Kobayashi, K. 1993. Improvement of emulsifying properties of egg white proteins by the attachment of polysaccharide through Maillard reaction in a dry state. J. Agric. Food. Chem. 41: 540.
Kato, A., Shimokawa, K. and Kobayashi, K. 1991. Improvement of emulsifying properties of insoluble gluten by pronase digestion followed by dextran conjugation. J. Agric. Food. Chem. 39: 1053.
Kato, Y., Matsuda, T., Kato, N. and Nakamura, R. 1988. Browning and protein polymerization induced by amino-carbonyl reaction of ovalbumin with glucose and lactose. J. Agric. Food Chem. 36: 806.
Kato, Y., Matsuda, T., Kato, N. and Nakamura, R. 1989. Maillard reaction of disaccharides with protein: suppressive effect of nonreducing end pyranoside group on browning and protein polymerization. J. Agric. Food Chem. 37: 1077.
Kato, Y., Matsuda, T., Kato, N., Watanabe, K. and Nakamura, R. 1986. Browning and insolubilization of ovalbumin by the Maillard reaction with some aldohexoses. J. Agric. Food Chem. 34: 351.
Kawabara, S., Simizu, U. and Yahma, M. 1972. Antimicrobial nature of the products of sugar-amino acid reaction. Part Ⅰ. Factors affecting the antimicrobial activity. Nippon Nogeikagakukaishi. 46: 89.
Kawashima, K., Itoh, H., and Chibata, I. 1977. Antioxidant activity of browning products prepared from low molecular carbonyl compounds and amino acid. J. Agric. Food Chem. 25:202.
Kendra, D. F. and Hadwiger, L. A. 1984. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp. Mycol. 8: 276.
Kienzle-Sterzer, C. A. and Rha, C. K. 1985. Flow behavior of a cationic biopolymer: chitosan. Polym. Bull. 13: 1.
Kienzle-Sterzer, C. A., Bakis, G., Rodriquez-Sanchez, D. and Rha, C. K. 1984. Counter-ion activity in a cationic polyelectrolyte solution. Polymer bull. 11 : 185.
Kienzle-Sterzer, C. A., Rodriguez-Sanchez, D., Karalekas, D. and Rha, C. K. 1982. Stress relaxation of a polyelectrolyte network as affected by ionic strength. Macromolecules 15: 631.
Kim, S. B., Hayase, F., and Kato,H. 1985. Decolorization and degradation products of melanoidins on ozonolysis. Agric. Biol. Chem. 49:785.
Kirigaya, N., Kato, H., and Fujimaki, M. 1969. Studies on antioxidant activity of nonenzymatic browning reaction products. Part II. Antioxidant activity of nondialylyzable browning reaction products. Nippon Nogei Kaishi. 43:484.
Kirigaya, N., Kato, H., and Fujimaki, M. 1968. Studies on antioxidant activity of nonenzymatic browning reaction products. Part I. Relations of color intensity and reductones with antioxidant activity of browning reaction products. Agric. Biol. Chem.32:287-290.
Knorr, D. 1984. Use of chitinous polymers in food─A challenge for food research and development. Food Technol. 38: 85.
Knorr, D., Beaumont, M. D. and Pandya, Y. 1988. Potential of acid soluble and water aoluble chitosans in biotechnology. In”Chitin and Chitosan” ed. by Skjak-Braek, G., Anthonsen, T. and Sandford, P. p.101.
Kurita, K., Kamiya, M. and Nishimura, S. 1991. Solubilization of a rigid polysaccharide : controlled partial N-acetylation of chitosan to develop solubility. Carbohydr. Polym. 16: 83.
Kurita, K., Nishimura, S. I., Ishii, S., Tomita, K., Tada, T. and Shimada, K. 1992. Characteristic properties of squid chitin. In “Advance in chitin and chitosan.” ed. by Brine, C. J., Sandford, P. A. and Zikakis, J. P. Elsevier Science Publisher. N. Y. p.188.
Kurita, K., Yoshino, H., Nishimura, S. I. and Ishii, S. 1993. Preparation and biodegradability of chitin derivatives having mercapto groups. Carbohydr. Polym. 20: 239.
Lanury, B., Doublier, J. L. and Cuvelier, G. 1986. Flow properties if aqueous solutions and dispersions of polysaccharides. In “Functional properties of Food Macromolecules.” ed. by Mitchell, J. R. and Ledward, D. A. Elsevier Applied Science Publishers. London. p.1.
Ledl, F., Eritsch, G., Hiebl, J., Pachmaryr, O., and Severin, T. 1986. Degradation of Maillard products. Dev. Food Sci. 13:353.
Lee, C. M., Sherr, B. and Koh, Y. N. 1984. Evaluation of kinetic parameters for a glucose-lysine Maillard reaction. J. Agric. Food Chem. 32: 379.
Leuba, J. L., and Stossel P. 1986. Chitosan and other polyamines: antifungal activity and interaction with biology membranes. In “Chitin in Nature and Technology.” ed. by
Muzzarellli, R. A. A., Jeuniaux, C. and Gooday, G. W. Plenum Press, New York. p: 215.
Lingnert, H., and Eriksson, C. E. 1981. Antioxidative effect of Maillard reaction products. Prog. Food Nutri. SCI. 5:453.
Maezaki, Y., Tsuji, K., Nakagawa, Y.,Akimoto, M., Tsugita, T., Takekawa, W.,Terada, A., Hara, H., and Mitsuoka, T. 1993. Hypocholesterolemic effect of chitosan in adult males. Boiosci. Biotech. Biochem. 57:1439.
Matsudomi, N., Inoue, Y., Nakashima, H., Kato, A. and Kobayashi, K. 1995. Emulsion stabilization by Maillard-type covalent complex of plasma protein with galactomannan. J. Food Sci. 60: 265.
Matsugo, S., Mizuie, M., Matsugo, M., Ohwa, R., Kitano, H., and Konish, T. 1998. Synthesis and antioxidant activity of water-soluble chitosan derivatives. Biochem. Mol. Biol. Int. 44(5):939.
Matsumoto, T., Ono, Y., Watanabe, T., Mikami, T., Suzuki, S., Suzuki, M., Matajira, Y., and Sakai, K. 1996. Effect of long term oral administration of chtin, partially degraded chitin and N-acetyl chtiooligosacchride on immunological and blood enzyme levels in aged mice. Chitin Chitosan Research, Proceedings of the 10th Symposium, Japanese Society for Chitin and Chitosan (abstract A3) 2:94.
Mauron, J. 1981. The Maillard reaction in food ; a critical review from the nutritional standpoint. Prog. Food. Nutr. Sci. 5: 5.
Muzzarelli, R. A. A. 1977. Chitin. Pergamon Press, Oxford. p.5
Muzzarelli, R. A. A. 1992. Modified chitosan carrying sulfonic acid groups. Carbohydr. Polym. 19: 231.
Muzzarelli, R. A. A. and Rocchetti, R. 1985. Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydr. Polym. 5: 461.
Muzzarelli, R. A. A., Barontini, G., and Rocchetti, R. 1978. Isolation of lysozyme on chitosan. Biotech. and Bioeng. 20: 87.
Muzzarelli, R. A. A., Pierluca, I. and Tomasetti, M. 1993. Preparation and characteristic properties of 5-methyl pyrrolidinone chitosan. Carbohydr. Polym. 20: 99.
Nakamura, S., Kato, A. and Kobayashi. 1992a. Bifunctional lysozyme-galactomannan conjugate having excellent emulsifying properties and bactericidal effect. J. Agric. Food Chem. 40: 735.
Nakamura, S., Kato, A. and Kobayashi. 1992b. Enhanced antioxidative effect of ovalbumin due to covalent binding of polysaccharides. J. Agric. Food Chem. 40: 2033.
Nakamura, S., Kobayashi, K. and Kato, A. 1994. Role of positive charge of lysozyme-polysaccharide conjugate. J. Agric. Food Chem. 42: 2688.
Namiki, M. 1990. Antioxidants/antimutagens in food. Crit. Rev. Food Sci. Nutr. 29(4):273.
Namiki, M., and Hayashi, T. 1975. Development of novel free radicals during the amino-carbonyl reaction of sugars with amino acids. J. Agric. Food Chem. 23:487.
Nordtveit, R. J., Varum, K. M. and Smidstrod, O. 1996. Degradation of partially N-acetylated chitosans with hen egg white and human lysozyme. Carbohydr. Polym. 29: 163.
Otakara, A. 1987. In “The development and application of chitin and chitosan.” Industrial Technology Association, Tokyo. p.161.
Oyaizu, M. 1988. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 35:771.
Petriella, C., Resnik, S. L., Lozano, R. D. and Chirife, J. 1985. Kinetics of deteriorative reactions in model food systems of high water activity : Color changes due to nonenzymatic browning. J. Food Sci. 50: 622.
Rendleman, J. A. 1987. Complexation of calcium by melanoidin and its role in determining bioavailability. J. Food Sci. 52:1699.
Rinaudo, M., Dung, P. L. and Milas, M. 1992. A new and simple method of synthesis of carboxymethylchitosans. In “Advance in Chitin and Chitosan.” ed. by Brine, C. J., Sandford, P. A. and Zikakis, J. P. Elsevier Sci. Publishers Ltd., New York. p.516.
Robak, J., and Gryglewski, R. J. 1988. Flavonoids are scavengers of superoxide anions. Bioch. Pharm. 37:837.
Roberts, G. A. F. 1995. Structure property relationships in chitin and chitosan In” Chitin and Chitosan-The versatile environmental friendly modern materials.” ed. by Zakaria, M. B., Muda, W. M. W. and Abdullah, M. P. Penerbit University Kebangasaan. Malaysia Bangi. p.95.
Saeki, H. 1997. Prepertion of neoglycoprotein from carp myofibrillar protein by Maillard reaction with glucose: biochemical properties and emulsifying properties. J. Agric. Food Chem. 45: 680.
Sandford, P. A. 1989. Chitosan: Commercial uses and potential applications. In “ Chitin and Chitosan.” ed. by Skjak-Braek, G., Anthonsen, T. and Sandford, P. Elsevier Applied Sci. Publishers, Lodon. p.52.
Sannan, T., Kurita, K. and Iwakura, Y. 1975. Studies on chitin. 1: solubility change by alkaline treatment and film casting. Makromol. Chem. 176: 1191.
Sannan, T., Kurita, K. and Iwakura, Y. 1976. Effect of deacetylation on solubility. Makromol. Chem. 177: 3589.
Sashiwa, H., Saimoto, H., Shigemasa, Y. and Tokura, S. 1993. N-acetyl group distribution in partially deacetylated chitins prepared under homogeneous conditions. Carbohydr. Res. 242: 167.
Sashiwa, H., Saimoto, H., Shigemasa, Y., Ogawa, R. and Tokura, S. 1991. Distribution of the acetamide group in partially deacetylated chitins. Carbohydr. Ploym. 16: 291.
Schallenberger, R. S. 1974. Nonezymic browning reaction. In “ Encyclopedia of Food Technology.” ed. by Peterson, M. S. and Johnson, A. H. The AVI Publishing Co., Inc., Westport, Conn. p.136.
Shahidi, F., Janitha, P. K., and Wanasundara, P. D. 1992. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 32(1):67.
Shimada, K., Fujikawa, K., Yahara, K., and Nakamura, T. 1992. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40:945.
Shu, Y. W., Sahara, S., Nakamura, S. and Kato, A. 1996. Effects of the length of polysaccharide chains on the functional properties of the Maillard type lysozyme-polysaccharide conjugate. J. Agric. Food Chem. 44: 2544.
Sormorin, O. and Nishi, N. 1979. Studies on chitin II. Preparation of benzyl and benzoyl chitins. Polym. J. 2: 391.
Struszczyk, H. and Kivekas, O. 1992. Recent developments in microcrystalline chitosan application. In “Advance in Chitin and Chitosan.” ed. by Brine, C. J., Sandford, P. A. and Zikakis, J. P. Elsevier Science Publishers Ltd., New York. p.549.
Tanaka, M., Huang, J. R., Chiu, W. K., Ishizaki, S. and
Taguchi, T. 1993. Effect of the Maillard reaction on functional properties of chitosan. Nippon Suisan Gakkaishi 59: 1915.
Tannenbaum, S. R., Young, V. R. and Archer, M. C. 1985. Vitamins and minerals. In “Food Chemistry”, 2nd ed. ed. by Fennema, O. R. Marcel Dekker, Inc., N. Y., NY, U. S. A. p.477.
Terasawa, N., Murata, M., and Homma. S. 1991. Separation of model melanoidin into components with copper chelating sepharose 6B column chromatography and comparison of chelating activity. Agric. Biol. Chem. 55:1507.
Terbojevich, M., Cosani, A. and Muzzarelli, R. A. A. 1996. Molecular parameters of chitosans depolymerized with the aid of papain. Carbohydr. Polym. 29: 63.
Toei, K. and Koharw, T. 1976. A conductometric method for colloid titrations. Analytica Chemica Acta. 83 : 59.
Tokura, S., Nishi, N. and Tsutsumi, A. 1983. Studies on chitin Ⅷ: Some properties of water soluble chitin derivatives. Polym. J. 15: 485.
Tomita, Y. 1971. Studies on antioxidant activity of amino-carbonyl reaction products II. Effects of reaction condition of trypophan and glucose on the antioxidant activity of the reaction system. Kagoshima Daigaku Nogakubu Hokoku. 21:161.
Uraki, Y., Fujii, T., Matsuoka, T., Matsuoka, T., Miura, Y. and Tokura, S. 1993. Site specific binding of calcium ions anionic chitin derivatives. Carbohydr. Polym. 20: 139.
Wang, G. H. 1992. Inhibition and inactivation of five species of foodborne pathogenes by chitosan. J. Food Prot. 55: 916.
Watanabe, K., Saiki, I., Matsumoto, Y. and Azuma, I. 1992. Antimetastatic activity of neocarzinostatin incorporated into controlled release gels of CM-chitin. Carbohydr. Polym. 17: 29.
Whistler, R. L. and Daniel, J. R. 1985. Carbohydrates. In “Food Chemistry”, 2nd ed. ed. by Fennema, O. R. Marcel Dekker, Inc., N. Y., NY, U. S. A. p.96.
Whysner, J., Wang, C.X., Zang, E., Iatropoulos, M.J., and Williams,M. 1994. Dose response of promotion by butylated hydroxyanisole in chemically initiated tumours of the rat forestomach. Food Chem.Toxic. 32:215.
Wijewickreme, A. N., Kitts, D. D. and Durance, T. D. 1997. Reaction conditions influence the elementary composition and metal chelating fo nondialyzable model Maillard reaction products. J. Agric. Food Chem. 45: 4577.
Yalpani, M. and Hall, L. D. 1984. Some chemical and analytical aspects of polysaccharide modification. Macromolecules 17: 272.
Yamaguchi, N. 1969. Antioxidative activities of browning reaction products and several reductones. Nippon Shokuhin Kogyo Gakkaishi. 16:140.
Yamaguchi, N. 1986. Antioxidative activities of oxidation products prepared from melanoidins. Dev. Food Sci. 13:291.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top