跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 17:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:姜佑霖
研究生(外文):Yu-LIn Chiang
論文名稱:具α-澱粉活性之水合鋯動態膜之製備
論文名稱(外文):Preparation and Properties of Zirconium Dynamic membrane withα-amylase activity
指導教授:蔣丙煌蔣丙煌引用關係
指導教授(外文):Been-Huang Chiang, Ph. D.
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:81
中文關鍵詞:α-澱粉水合鋯動態膜
外文關鍵詞:α-amylaseZirconium Dynamic membrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本實驗首先探討以GA、TRIAZINE、CDI三種化學共價鍵結法將α-澱粉固定於水合鋯動態膜上之效果,膠粒經三種活化劑glutaraldehyde(GA)、cyanuric(Triazine)、chloride1,1’-carbonyldiimidazole(CDI)活化後,以動態膜製備裝置將已活化之膠粒固定於陶瓷膜管上,再以動態及靜態之方式跟酵素鍵結,結果顯示以靜態式GA、Triazine、CDI法所製備之水合鋯動態膜上固定化α-澱粉含量、比活性、活性保留率分別為0.372mg protein /cm2、13.39units/mg protein 、16.63% ,0.282mg protein /cm2、22.81units/mg protein 、28.33%,0.279mg protein /cm2、25.21units/mg protein 、31.31%。以動態式GA、Triazine、CDI法所製備之水合鋯動態膜上固定化α-澱粉含量、比活性、活性保留率分別為0.53mg protein /cm2、13.16units/mg protein 、16.35% ,0.62mg protein /cm2、13.59units/mg protein 、16.88%,0.52mg protein /cm2、13.07units/mg protein 、16.23%。相較於游離態α-澱粉,以靜態式CDI法所製備之水合鋯動態膜上固定化α-澱粉於較高之pH值下有最高活性,而以動態式Triazine法所製備之水合鋯動態膜上固定化α-澱粉於較低之pH值及較高之溫度下有最高活性。在熱安定性方面,利用動態式Triazine、CDI法所製備之水合鋯動態膜上固定化α-澱粉比較以靜態式CDI法所製備之水合鋯動態膜上固定化α-澱粉安定,跟游離態α-澱粉之熱安定性接近。從動態式及靜態式固定化酵素方法的比較上,以動態式Triazine法所製備之水合鋯動態膜上固定化α-澱粉具有較好的熱安定性及固定化效果。最後分析水合鋯動態膜上固定α-澱粉及無固定α-澱粉加工濃度為2%之可溶性澱粉對於透流率的影響,在溫度為60℃下,固定化α-澱粉之水合鋯動態膜透流率遠高於無固定α-澱粉之水合鋯動態膜,顯示水合鋯動態膜上固定α-澱粉具有自我清洗之功效。
Abstract
Methods of immobilization of α-amylase on zirconium dynamic membrane have been investigated. Colloid particles, produced by mixing H2SO4 and ZrOCl2, were treated with glutaraldehyde (GA) , cyanuric chloride (Triazine) and 1,1’-carbonyldiimidazole (CDI) and deposited on a ceramic tube to form a dynamic membrane. The α-amylase was immobilized onto the membrane by either static method or dynamic method. The amount of immobilized α-amylase (specific activity and percentage retention of enzyme activity) on zirconium dynamic membrane by the static GA、Triazine or CDI method were 0.372 mg protein/cm2 (13.39 units/mg protein, 16.63%), 0.282 mg protein/cm2 (22.81 units/mg protein, 28.33%), and 0.279 mg protein/cm2 (25.21 units/mg protein, 31.31%), respectively. The amount of immobilized α-amylase (specific activity and percentage retention of enzyme activity) on zirconium dynamic membrane by the dynamic GA、Triazine or CDI method were 0.53 mg protein/cm2 (13.16 units/mg protein, 16.35%), 0.62 mg protein/cm2 (13.59 units/mg protein, 16.88%), and 0.52 mg protein/cm2 (13.07 units/mg protein, 16.23%), respectively. By
using the static Triazine method, the immobilized enzyme had the maximum activity at pH 7 and 60℃. On the other hand, the maximum enzyme activity was at pH 5 and 70℃ when the dynamic Triazine method was used. The thermal stability of immobilized enzyme prepared by the dynamic Triazine or CDI method was higher than that prepared by the static CDI method. Overall speaking, the dynamic membrane prepared by the dynamic Triazine method had a better enzyme thermal stability and immobilization efficiency. When the membrane was used to filtrate 2% soluble starch solution at 60℃, the immobilized α-amylase on the membrane was demonstrated to be able to hydrolyze starch. Hence, the flux was significant higher as compared to the membrane without immobilized enzyme.
Key words:dynamic membrane, zirconium, α-amylase, immobilization.
目 錄
頁次
中文摘要 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ Ⅰ
英文摘要 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ Ⅲ
目錄 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ Ⅳ
圖次 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ Ⅵ
表次 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ Ⅸ
壹、 緒論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 1
貳、 文獻整理∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 3
一、澱粉∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 3
二、α-澱粉∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 3
三、膜過濾∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 5
四、動態膜及其製備∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 9
(一)動態膜之簡介∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 9
(1) 動態膜之緣起∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 9
(2) 動態膜之材質∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 9
(3) 動態膜之分類∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 12
(4) 動態膜之優點∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 13
(5) 影響動態膜製備的操作因子∙∙∙∙∙∙∙∙∙ 13
(二) 動態膜膠體之製備∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 15
(1) 水合氧化鋯(hydrous zirconia)膠體∙∙∙∙ 15
五、酵素之固定化 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 20
(一)固定化酵素之簡介∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 20
(二)固定化酵素之優點∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 20
(三)固定化酵素之方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 21
(1) 共價鍵結∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 21
(2) 交聯法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 23
(3) 吸附法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 24
(4) 包埋法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 24
(5) 半透膜法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 24
(四) α-澱粉之固定化∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 25
六、將酵素固定於膜上之研究∙∙∙∙∙∙∙∙∙∙∙ 25
參、 材料與方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 29
頁次
(一)化學藥品∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 29
(二)實驗裝置及設備∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 30
(1) 動態膜製備系統∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 30
(2) 膜反應器裝置∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 33
(3) 動態膜支持體∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 33
(4) 離心機∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 35
(5) 分光光度計∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 35
(三)實驗方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 35
(1) 水合鋯膠體的製備∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 35
(2) 動態膜的製備∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 37
(3) 動態膜的清洗∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 37
(4) 酵素與動態膜的結合∙∙∙∙∙∙∙∙∙∙∙∙ 37
(5) 固定化酵素性質之探討∙∙∙∙∙∙∙∙∙∙∙ 41
(6) 固定化酵素熱安定性之探討∙∙∙∙∙∙∙ 43
(7) 動態膜操作安定性之探討∙∙∙∙∙∙∙∙∙ 43
(四)分析方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 44
(1) 酵素蛋白質含量之測定∙∙∙∙∙∙∙∙∙∙∙ 44
(2) α-澱粉活性之測定∙∙∙∙∙∙∙∙∙∙∙∙ 44
肆、 結果與討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 47
一、靜態式酵素固定法∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 47
(1) 酵素動態膜之結合 47
(一)固定化酵素性質之探討∙∙∙∙∙∙∙∙∙∙∙ 52
(1) 最適pH值∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 52
(2) 最適溫度∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 54
(3) 固定化酵素之熱安定性∙∙∙∙∙∙∙∙∙∙∙ 54
二、動態式酵素固定法∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 59
(1) 酵素動態膜之結合 59
(一)固定化酵素性質之探討∙∙∙∙∙∙∙∙∙∙∙ 61
(1) 最適pH值∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 61
(2) 最適溫度∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 64
(3) 固定化酵素之熱安定性∙∙∙∙∙∙∙∙∙∙∙ 64
伍、 結論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 73
參考文獻∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 74
圖 次
頁次
圖一 超過濾膜之濃度極化現象∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 7
圖二 氧氯化鋯溶於水中形成的四合體結構∙∙∙∙∙∙ 16
圖三 添加鹼和迴流加熱所形成聚合物結構示圖∙∙ 18
圖四 硫酸鋯聚合示意圖∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 19
圖五 固定化酵素之方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 22
圖六 固定化酵素降低淤塞現象之流程圖∙∙∙∙∙∙∙∙ 28
圖七 動態膜製備裝置之管路示意圖∙∙∙∙∙∙∙∙∙∙∙∙ 31
圖八 動態膜的製備裝置∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 32
圖九 膜反應系統裝置∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 34
圖十 陶瓷膜T1-70及套筒1T1-70∙∙∙∙∙∙∙∙∙∙∙∙ 36
圖十一 利用GA法將α-amylase固定於水合鋯動態膜之過程∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
39
圖十二 利用Triazine法將α-amylase固定於水合鋯動態膜之過程∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
40
圖十三 利用CDI法將α-amylase固定於水合鋯動態膜之過程∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
42
圖十四 [Zr4+]/[SO4]=1:0.6所製得知膠粒經不同活化劑處理後,製備動態膜時透流率隨時間變化之情形∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
48
圖十五 在溫度為30℃下pH對於游離態及靜態式CDI固定化α-amylase活性之影響∙∙∙∙∙∙∙∙
53
圖十六 於最適pH值下溫度對於游離態及靜態式CDI固定化α-amylase活性之影響∙∙∙∙∙∙∙
55
圖十七 靜態式CDI固定化α-amylase之熱安定性 57
圖十八 游離態α-amylase之熱安定性∙∙∙∙∙∙∙∙∙∙ 58
圖十九 動態式GA、Triazine、CDI法固定α-amylase 至動態膜時透流率隨時間變化之情形∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
60
圖二十 在溫度為30℃下pH對於游離態及動態式Triazine固定化α-amylase活性之影響∙∙∙
65
圖二十一 於最適pH值下溫度對於游離態及動態式Triazine固定化α-amylase活性之影響∙∙∙
66
圖二十二 動態式Triazine固定化α-amylase之熱安定性∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
68
圖二十三 動態式CDI固定化α-amylase之熱安定性 69
圖二十四 水合鋯動態膜上固定α-amylase對於在60℃下過濾2%可溶性澱粉溶液時之透流率之影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
70
圖二十五 不同溫度對於水合鋯動態膜上固定α-amylase過濾2%可溶性澱粉溶液之透流率之影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
71
表 次
頁次
表一、 各種超過濾裝置之比較∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 10
表二、 靜態式共價鍵結GA、Triazine、CDI固定化方法對於固定化α-amylase結合力及活性影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
50
表三、 靜態式共價鍵結GA、Triazine、CDI固定化方法對於固定化α-amylase比活性及活性回收率影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
51
表四、 動態式共價鍵結GA、Triazine、CDI固定化方法對於固定化α-amylase結合力及活性影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
62
表五、 動態式共價鍵結GA、Triazine、CDI固定化方法對於固定化α-amylase比活性及活性回收率影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
63

參考文獻
田欽仁。1999。水合鋯動態膜上固定α-amylase之研究。國立台灣大學食品科技研究所博士論文。台北,台灣。
陳建中。1997。超過濾動態膜之製備及其在食品加工之應用。國立台灣大學食品科技研究所博士論文。台北,台灣。
陳自珍,1978。食品酵素學。復文書局。台南。
Abe, S. Kikucki, N. and Kawakita, T. 1988. Dynamic membrane manufacture and its use in enzyme immobilzation. Jpn. Kokai Tokkyo Koho JP 63044885.
Aksoy, S., Tumturk, H. and Hasirci, N. 1998. Stability of α-amylase immobilized on poly (methyl methacrylate-acrylic acid) microspheres. J. Biotechnol. 60:37.
Arasaratnam, V. and Balasubramaniam, K. 1993. Thermal stabilization of immobilized α-amylase by coupling with proline. Process Biochem. 30(4):299.
Arica, M. Y., Hasirci, V. and Alaeddinoglu, N. G. 1995. Covalent immobilization of α-amylase onto PHEMA microspheres: preparation and application to fixed bed reactor. Biomaterials. 16:761.
Barker, S. A. and Somers, P. J. 1968. Preparation and properties of amylase chemically coupled to microcrystalline cellulose. Carhohy. Res. 8:491.
Bayramoglu, Z., Akbulut, U. and Suugur, S. 1992. Immobilization of α-amylase into photographic gelation by chemical crosslinking. Biomuterials. 13:704.
Bernfeld, P. 1955. Methods in Enzymology, Vol. I. Academic Press, New York. p.149.
Bethell, G. S., Ayers, J. S., Hancock, W. S. and Hearn, T. W. 1979. A novel method of activation of cross-linked Agaroses with 1,1''-carbonyldii midazole which gives a matrix for affinity chromatography devoid of additional charged group. J. Biol. Chem. 254(8):2572.
Butterworth, T. A., Wang, D. I. C. and Sinskey, A. J. 1970. Application of ultrafiltration for enzyme retention during continuous enzymatic reaction. Biotechnol. Bioeng. 12:615.
Chase, H. A. and Y. Y. 1998. Immobilization of enzymes on poly(vinyl alcohol)-coated perfluorocarbon supports: comparision of techniques for the immobilization of trypsin and α-amylase on poly(vinyl alcohol)-coated solid and liquid perfluorocarbons. Biotechnol. Appl. Biochem. 27:205.
Chellapandian, M. 1998. Preparation and characterization of alkaline protease immobilized on vermiculite. Proc. Biochem. 33:169.
Chen, J. P., Sun, Y. M. and Chu, D. H. 1998. Immobilizatoin of α-amylase to a composite temperature-sensitive membrane for starch hydrolysis. Biotechnol. Prog. 14:473.
Closset, G. P., Cobb, J. T. and Shah, Y. T. 1974. Study of performance of a tubular membrane reactor for an enzyme catalyzed reaction. Biotechnol. Bioeng. 16:345.
Crowley, S. C., Chan, K. C. and Walters, R. R. 1986. Optimization of protein immobilization on 1,1''-carbonyldiimidazole-activated diol-bonded silica. J. Chromatogr. 359:359.
Foda, M. I. And Leiva, M. L., 2000. Continous productino of oligosaccharides from whey using a membrane reactor. Process Biochemistry. 35:351.
Gregor, H. P. and Rauf, P. W. 1975. Enzyme-coupled ultrafiltration membranes. Biotechnol. Bioeng. 17:445.
Handa, T., Hirose, A, Akino, T., Watanabe, K. and Tsuchiya, H. 1983. Preparation of immobilized α-amylase covalently attached to granular polyacrylonitrile. Biotechnol. Bioeng. 25:2957.
Hicke, H. G., Bohme, P., Becker, M., Schulze, H. and Ulbricht, M. 1996. Immobilization of enzymes onto modified polyacrylonitrile membranes: Application of the acy/azide method. J. Appl. Polym. Sci. 60:1147.
Iranova, V. and Dobreva, E. 1994. Catalytic properlies of immobilized purified thermostable α-amylase from Bacillus licheniformis 44 MB82-A. Proc. Biochem. 29:607.
Jeanjean, D. P., Belleville, M. P., Rios, G. M. and Zakhia N. 2000. The effect of enzyme concentration and space time on the performance of a continuous recycle membrane reactor for one-step starch hydrolysis. 5:17.
Jenq, C. Y., Wang, S. S. and Davidson, B.1980 Ultratiltration of raw sewage using an immobilized enzyme membrane. Enzyme Microb. Technol. 2:145.
Jeon, Y. J. and Kim, S. K. 2000. Continuous production of chitooligosaccharides using a dual reactor system. Process Biochemistry. 35:623.
Ju, Y. H., Chen, W. J. and Lee, C. K. 1995. Starch slurry hydrolysis using α-amylase immobilized on a hollow-fiber reactor. Enzyme. Microb. Technol. 17:685.
Kotzelski, J., Staude, E. and Ulbricht, M. 1991. Transport and reaction behavior of invertase ultrafiltration membranes made from substituted polysulfone. J. membrane Sci. 64:173.
Kurokawa, Y., Suzuki, K. and Tamai, Y. 1998. Adsorption and enzyme ( β-galactosiduse andα-chymotrypsin): Immobilization properties of gel fiber prepared by the gel formation of cellulose acetate and titanium iso-propoxide. Biotechnol. Bioeng. 59:651.
Linko, Y. Y., Saarinen P. and Linko, M. 1975. Starch conversion by soluble and imobilized α-amylase. 17:153.
Lozano, P., Manjon, A., Iborra, J. L., Canovas, M. and Romojaro, F. 1990. Kinetic and operational study of a cross-flow reactor with immobilized pectolytiz enzymes. Enzyme Microb. Technol. 12:499.
Leukes, W. 1998. Defouling on demand a new strategy for potable water production. Membrane Technology. 102:11.
Lowery, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265.
Miyata, T., Jikihara, A. and Nakamae, K. 1997. Permeation decimposition of urea through asymmetrically urease-immobilized ethylene-vinyl alcohol copolymer membranes. J. Appl. Polym. Sci. 63:1579.
Nakajima, M., Watanabe, A., Nabetani, H., Horikita, H. and Nakao, S. 1988. New enzyme reactor with fored flow of the substrate through an enzyme immobilized ceramic membrane. Agri. Biol. Chem., 52:357.
Nakajma, M. and Watunabe, A. 1989. Forced-flow bioreactor for sucrose inversion using ceramic membrane activated by silanization. Biotechnol. Bioeng. 33:856.
Okada, T., Ito, M. and Hibino, K. 1994. Immobilization of cyclodextrin glucanotransferase on capillary membrane. J. Ferment. Bioeng. 3:259.
Ram, K. and Venkatasubramanian. Enhancement of starch conversion efficiency with free and immobilized pullulanase andα-1,4-glucosidase. 24:355.
Starthmann, H. 1981. Membrane separation process. J. Membrane Sci.9:121.
Szaniawski, A. R. and Spencer, H. G. 1997. Effect of immobilized pectinase on the microfiltration of dilute pectin solutions by macroporous titania membranes: resistance model interpretation. J. Membrane Sci. 127:69.
Tien, C. J. and Chiang, B. H. 1999. Immobilization of α-amylase on a zirconium dynamic membrane. Proc. Biochem. 33:377.
Velicangil, O. and Howell, J. A. 1981. Self-cleaning membranes for ultrafiltration. Biotechnol. Bioeng., 31:843.
Wang, H. J., Thomas, R. L., Szaniawski, A. R. and Spencer, H. G. 1994. Membranes for food processing procedures and properties. J. Food Proc. Engr. 17:365.
Wang, H. Y., Kobayashi, T., Saitoh, H. and Fujii, N. 1996. Porous polydimethylsiloxane membrane for enzyme immobilization. 60:2339.
Wang, S. S., Davidson, B., Gillespie, C., Harris, L. R. and Lent, D. S. 1980. Dynamics of enhanced protein ultrafiltration using an immobilized protease. J. Food Sci. 45:700.
Yang, Y. and Chase, H. A. 1998. Immobilization of α-amylase on poly(vinyl alcohol)-coated perfluoropolymer supports for use in enzyme reactors. Biotechnol. Appl. Biochem. 28:145.
Zhuang, P. and Butterfield, D. A. 1992. Structural and enzymatic characterizatious of papain immobilized onto vinyl alcohol/vinyl butyral copolymer membrane. J. Membrane Sci. 66:247.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top