跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 09:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林富良
研究生(外文):Lin Fu Liang
論文名稱:東海陸棚沈積物於有機碳限制下硫酸鹽還原速率之時序變化
論文名稱(外文):Interannual Sulfate Reduction Rate Variations in the Organic Carbon Limited East China Sea Continental Shelf Sediments
指導教授:林曉武林曉武引用關係
指導教授(外文):Sauwool Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:72
中文關鍵詞:硫酸鹽還原速率東海陸棚沈積物
相關次數:
  • 被引用被引用:2
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
硫酸鹽還原作用是沉積體系內氧化有機碳之最主要之氧化作用之一,硫酸鹽還原速率在有機碳充份供應下,主要受到季節性溫度變化所控制,但一般陸棚沉積物內之有機碳含量,通常都相當低。故本研究之目的在探討台灣東北陸棚地區之沉積物硫酸鹽還原速率之季節性變化,來了解一般陸棚沉積物之硫酸鹽還原速率時序變化控制機制。
本研究分析項目包括間隙水之硫酸鹽濃度、沉積物之有機碳、碳酸鈣、自生硫化鐵硫含量,以及硫酸鹽還原速率的直接測定。
研究結果顯示時序上溫度變化並不是控制陸棚沉積物內之硫酸鹽還原速率時序變化的主要因素;而是有機碳含量變化控制著硫酸鹽還原速率。
為了解樣品本身之代表性,避免該區域之樣品並非均質化,故於99/02(冬季)與99/07(夏季)時,重覆於該測站採樣三次箱形沉積物樣品,分析此三重覆採樣之箱形沉積物樣品之硫酸鹽還原速率之差異性。分析結果顯示,總硫酸鹽還原速率相對偏差約為5.53% (冬季),5.00% (夏季),且積分後之相對偏差也僅不到6%。明顯的可看出硫酸鹽還原速率在單一個季節採樣,雖然重覆採集分析,硫酸鹽還原速率並不會在任何單一季採樣時,之空間上有很大的偏差,故空間上之差異並非造成硫酸鹽還原速率時序變化之因素。
研究區域中之沉積物內間隙水硫酸鹽濃度在沉積物表層接近海水值(約29mM),隨著沉積物深度增加而呈微小的改變;有機碳含量亦隨著沉積物深度之增加而略有減少的趨勢。沉積物內硫酸鹽還原速率的範圍介於3.76μM/day~113μM /day,大部份月份之硫酸鹽還原速率在次表層達到最高值;沉積物內Pyrite-S含量範圍介於48.29μmole/g~85.2μmole/g,大部份的月份在沉積物表層10公分內,其黃鐵礦硫含量亦隨深度增加而慢慢地增加,而10公分以下(即硫酸鹽還原速率的高值下方)硫含量隨沉積物深度而快速增加,並有繼續增加的趨勢。
總硫酸鹽還原速率介於0.430~8.36mmole/m2/day,沉積物內表層有機碳含量介於0.41~0.67%。兩測站之表層有機碳含量在三年觀察研究期間高低差最大可達約0.26%,約等於平均值之52%,差距相當大;而硫酸鹽還原速率在三年觀察研究期間變化相當快速,溫度由冬天的15℃到夏天的28℃,溫差13℃,測站一硫酸鹽還原速率高低相差約20倍;而測站二之硫酸鹽還原速率則相差約6倍。
硫酸鹽還原速率和有機碳含量成正向關係,顯示出有機碳含量是硫酸鹽還原速率之限制因素。有機碳含量不僅在季節上呈現明顯的變化,且在年與年之間亦呈現明顯的變化,硫酸鹽還原速率隨著有機碳含量之變化而改變,其中在1999年有機碳含量為三年之最高,酸鹽還原速率亦達到最高。研究結果顯示一般陸棚在有機碳含量受限之下,硫酸鹽還原速率並未受溫度所控制;而是受有機碳含量所控制。
硫酸鹽還原速率呈現時序上之大幅變動,不僅有季節性之改變,而且有年與年間之差異。有機碳沉降之時序大幅變化,是主要控制一般陸棚環境硫酸鹽還原速率時序變化之最重要因素。
目 錄
第一章 緒論
1.1海洋沉積物內硫酸鹽還原作用……………………………………….1
1.2海洋沉積物內自生硫化鐵之形成…………………………………….2
1.3硫酸鹽還原速率之季節性之變化…………………………………….6
1.4東海陸棚地區有機碳與硫酸鹽還原速率之空間分佈變化………….7
1.5研究目的與動機……………………………………………………….8
第二章 樣品採集與分析方法
2.1採集區域與方式……………………………………………………….9
2.2樣品採集與處理……………………………………………………….9
2.3分析方法………………………………………………………………14
2.4硫酸鹽還原速率樣品再現性之分析…………………………………19
第三章 東海陸棚地區硫酸鹽還原作用
3.1研究區域東海陸棚簡介………………………………………………21
3.2結果……………………………………………………………………22
3.3討論……………………………………………………………………38
第四章 結論…………………………………………………………......49
參考文獻……………………………………………………………….....51
附錄…………………………………………………………………….....57
英文:
Aller.R.C., Mackin ,J.E.,Cax Jr.,R.T.,(1986)Diagenesis of Fe and Sin Amazon inner shelf muds:apparent dominance of Fe reduction and implications of ironstone .Con. Shelf Res. 6,263-289.
Berner, R.A.(1964) Iron sulfates formed from aqueous solution at low temperatures and atomospheric pressure.J.Geol.,72, 293-306.
Berner, R.A.(1970) Sedimentary pyrite formation.Amer.J.Sci.
,268, 1-23.
Berner, R.A.(1980) A rate model for organic matter decompositment during bacterial sulfate reduction in marine sediment. In Biogeochemistry of Organic Matter at the sediment-water Interface,Colloques Internationaux Du C.N.R.S.No. 293, pp. 35-44, Center for National Science Research..
Berner,R.A.(1982) Burial of organic carbon and pyrite in the modern ocean :itsgeochemical and environmental significance . Amer.J.Sci.,282, 451-475.
Berner, R.A.(1984) Sedimentary pyrite formation: An update.Geochim.Cosmochom.Acta, 48:605-615.
Berner, R.A.and Raiswell,R.(1984) C/S method for distinguishing freshwater from marine sedimentary rocks.Geol.,12,356-368.
Berner, R.A. and Westrich J.T. (1985) Bioturbation and the early diagenesis of carbon and sulfur. Amer.J.Sci.,285,193-206.
Berner, R.A.(1987) Models for carbon and sulfur cycles and atomospheric oxygen :application to Paleozoic geologic history Amer.J.Sci., 287,177-196.
Berner, R.A.(1989) Biogeochemical cycles of carbon and sulfur and their effect on atompheic oxygen over Phanerozoic time.Palaeogeog.Palaeocol.,75,97-122.
Canfield, D.E., Raiswell, R.,Wesrtich,J.T., Reaves, C.M. and Berner,R.A.(1986)The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales.Chem.Geol.,54,149-155.
Canfield, D.E.(1989) Reactive iron in marine sediments. Geochim.Cosmochim.Acta,53,619-632.
Canfield, D.E.(1989) Sulfate reduction and oxic respiration in marine sediments:Implications for organic carbon preservation in euxinic environments.Deep Sea Res.,36,121-138.
Canfield, D.E.and Raiswell, R.(1991) Pyrite formation and fossil preservation.Taphonomy:Releasing the Data Locked in the Fossil Record, Topics in Geosiology (P.A.Allison and D.E. Briggs eds.) Plenum Press, New York,337-387.
Canfield, D.E., Raiswell, R. and Bottrell, S.(1992) The reactivity of sedimentary iron minerals toward sulfide. Amer. J. Sci., 292, 659-683.
Carsten, B. and Dieke, P. (1988) Pyrite formation in anoxic environments of the Baltic Am.J.Sci.,288, 575-603.
Crill, P.M. and Martens C.S. (1987) Biogeochemical cycling in an organic-rich coastal marine basin. 6.Temporal and spatial variations in sulfate reduction rates. Geochim.Cosmochim.Acta, 51, 1175-1186.
Davison, W, Lishman J. P. and Hilton J. (1985) Formation of pyrite in freshwater sediments: Implication for C/S ratio. Geochim. Cosmochim.Acta, 49, 1615-1620.
Garrels, R.M. and Perry E.A. (1974) Cycling of carbon, sulfur and oxygen through geologic time. In “The Sea”, Vol.5, John Wiley, 303-336.
Garrels, R.M. and Lerman A. (1981) Phanerozoic cycles of sedimentary carbon and sulfur. Natl. Acad. Sci. Proc. 78,4652-4656.
Goldhaber, M.B., and Kaplan I.R. (1974) The sulfur cycle. The Sea,V.5,(E.D.Goldberg,ed.), 569-665,John Wiley Inc.
Henrichs, S.M. and Reeburgh, W.S.(1987) Anaaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in oceanic carbon economy,Geomicrobiol. J., 5,191-237.
Howarth, R.W. and Jorgensen, B.B.(1984) Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term 35SO42- reduction measurements.Geochim.Cosmochim. Acta, 48, 1807-1818.
Huang, K.M. and Lin, S. (1995) The carbon-sulfide-iron relationship and sulfate reduction rate in the East China Sea continental shelf sediments.Geochem
J.,29, 301-315.
Iversen, N. and B.B. Jorgensen(1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak(Denmark). Limnol.Oceanogr.,30:944-955
Jorgensen, B.B.(1977) The sulfur cycle of a coastal marine sediment(Limfjorden,Denmark).Limnol. Oceanogr.,22,814-832.
Jorgensen, B.B.(1982a) Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments.Phil. Trans.Ray. Soc.,London,298B,543-561.
Jorgensen, B.B.(1982b) Mineralization of organic matter in the sea bed-the role of sulfate reduction. Nature, 296,643-645.
Jorgensen, B.B.(1983) Processes at the sediment-water interface.In,The major biogeochemical cycles and interactions, (Bolin B. and Cook R.B.eds.)SCOPE,21,John Wiley,N.Y.,477-509
Lasaga, A.C., Berner, R,A. and Garrels, R.M. (1985) An improved geochemical model of atmospheric CO2 fluctuation over the past 100 million years. In“The Carbon Cycle and Atmospheric CO2:Natural Variations Archean to Present”,E.T.Sundquist and W.S.Broecker(eds.), Amer.Geophy. Union,Geophy.Monogr.32:397-411.
Lee, H.J. and Chough, S.K.(1989) Sediment dispersion, dispersal
and budget in the Yellow Sea. Mar. Geol. 286, 81-94.
Lin, S. and Morse, J.W. (1991) Sulfate reduction and iron sulfide mineralformation in Gulf of Mexico anoxic sediments. Amer. J. Sci. 291, 55-89.
Lin, S., Liu, K.K.Chen, M.P. and Cheng, F.Y. (1992) Distribution of organic carbon in the KEEP area continental margin sediments. TAO, 3, 365-378
Lin,S., Huang K.M..and.Chen S.K(2000) Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments.Continental Shelf Research
.
Luther,G.(1990) the frontier-molecular-orbital theory approach in geochemical processes. In Aquatic chemical kinetics,Stumm,W.(ed.)J.Wiley,N.Y.,199-234.
Middleburg, J.J. (1991) Organic carbon, sulphur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia. Geochim.Cosmochim. Acta, 55,815-828.
Middleburg, J.J. (1992) Organic matter decomposition in the marine environment. In Nierenberg, W.A. (ed.), Encyclopedia of earth system science., Academic Press, N.Y.,3,493-499.
Milliman, J.D. and James, P.M. (1992) Geomorphic/Tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers.J.Geol., 100, 525-544.
Morse, J.W. and Cornwell,J.C. (1987) Analysis and distribution of iron sulfide minerals in recent anoxic marine sediment.Mar. Chem,. 22,55-69.
Niino, H. and Emery, K.O. (1961) Sediments of shallow portions of East China Sea and South China Sea. Geol. Soc. Amer. Bull. 72, 731-762.
Raiswell, R. and Berner, R.A. (1985) Pyrite formation in euxinic and semieuxinic sediments. Amer.J.Sci.,285,710-724.
Rickard, D.T. (1970) The origin of framboids. Lithos,.3,269-293.
Roberts, W.M.B., Waller, A.L., Buchanan, A.S. (1969) The chemistry of pyrite formation in aqueous solution and its relation to the depositional environment. Mineral. Deposita, 4,18-29.
Skyring, G.W. (1987) Sulfate reduction in coastal ecosystems. Geomicrobiol.J.,5,295-374.
Volkov,I.I. and Rosanov, A.G.(1985) The sulfur cycle in, Oceans.Part 1 Reservoirs and fluxes, In Ivanov,M.V.and Freney,(eds.), the global biogeochemical sulfur cycle . SCOPE, 19,John Wiley, N.Y.,357-423.
Westrich, J.T. (1983) The consequences and controls of bacterial
sulfate reduction in marine sediment.Ph.D. Dissertation ,Yale University, 530 pp.
中文:
陳俊銘,1993,東海陸棚表層沉積物重金屬分佈及控制機制,
國立台灣大學海洋研究所碩士論文,94pp。
黃國銘,1994,東北海域陸棚與陸坡地區沉積物之硫酸鹽還原
作用,國立台灣大學海洋研究所碩士論文,87pp。
陳星光,1995,東海陸棚與陸坡之沉積速率與有機碳的埋藏
,國立台灣大學海洋研究所碩士論文,80pp。
陳金良,1996,台灣西岸陸棚陸坡沉積物硫酸鹽還原作用與有
機碳之沉降通量,69pp。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top