跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊尚訓
研究生(外文):Shang-Hsun Yang
論文名稱:應用核移置技術產生基因轉殖複製牛之可行性
論文名稱(外文):Feasibility of generation the transgenic-cloned calves by nuclear transplantation techniques
指導教授:鄭登貴鄭登貴引用關係吳和光
指導教授(外文):Winston Teng-Kuei ChengHer-Kung Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:畜產學研究所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:149
中文關鍵詞:核移置基因轉殖複製
外文關鍵詞:nuclear transplantationtransgeniccloned
相關次數:
  • 被引用被引用:5
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試應用胎牛成纖維母細胞(fetal fibroblast cell)及卵丘細胞(cumulus cell)作為供核細胞,並以體外成熟且業經去核之牛卵母細胞作為受核細胞進行核移置試驗,包括比較:1.體外成熟時間對牛卵母細胞第一極體和染色體板相對位置及去核率之影響,2.不同激活處理對牛卵母細胞激活後續發育能力之影響,3.不同之供核細胞對核移置胚產製效率及後續發育能力之影響,4.不同激活時機對體細胞核移置胚後續發育能力之影響,與5.利用核移置技術進行基因轉殖複製牛之產製等五部份;冀能提高應用體細胞進行產製核移置胚之效率,從而建立經由核移置技術產生基因轉殖牛之模式。試驗結果證明:
1.牛卵之被體外成熟培養16-17 hr者,有89.1﹪之牛卵顯示其第一極體係緊鄰MII染色體板者,顯著高於牛卵之於體外成熟培養22-23 hr(69.5﹪, p<0.05)。此外,就成功去核率而言,牛卵之於體外成熟培養16-21 hr時進行去核者,其成功去核率可達81.0-89.1﹪之譜;惟去核操作延遲至體外成熟培養後22-23 hr時始進行者,則其成功去核率顯著降低至70.9 ﹪(p<0.05)。
2.牛卵母細胞之應用"電激活 + 6-DMAP"與應用"電激活 + ionomycin + 6-DMAP"進行激活處理者,其於激活處理後發育至2-細胞、8-細胞、16-細胞、桑椹期與囊胚階段之百分率,分別為49.0、21.6、15.7、9.8及3.9﹪與66.0、24.0、24.0、18.0及8.0﹪,二者間並無顯著之差異性可言(p>0.05);惟二者均顯著高於牛卵母細胞之僅被應用"電激活"進行激活處理者,其於激活處理後發育至前述各階段之百分率,分別僅為25.6、4.7、0.0、0.0及0.0﹪(p<0.05)。
3.就不同供核源細胞類別對於核移置胚產製效率之影響而言,試驗結果證明以使用牛卵丘細胞做為供核者遠較應用胎牛成纖維母細胞做為供核者,具有較高之融合效率(73.5 v.s. 38.5﹪;p<0.05)。
4.在探討不同激活處理時機對源自體細胞核移置所產生之核移置胚後續發育能力的影響試驗中發現,激活處理係在電融合處理後4 hr時進行者,其能發育至囊胚階段之百分率,極顯著高於激活處理之與電融合處理同時進行者(33.3 v.s. 0﹪;p<0.01)。
5.利用前述核移置技術進行產製基因轉殖之複製牛;試驗首先成功選殖攜帶αLA-ECSOD3融合基因之胎牛成纖維母細胞及牛卵丘細胞等兩種初代培養之供核細胞;經使用此等攜帶有αLA-ECSOD3轉殖基因之供核細胞進行核移置試驗結果,合計獲得31個核移置胚順利發育至囊胚階段;進一步將20個此等核移置胚移置於13頭受胚牛後,結果證明除其中2頭係於胚移置後之第21日再度呈現發情徵候者外,另有6頭受胚牛刻正觀察其之懷孕狀況中;在該13頭受胚牛中確有5頭於胚移置後成功建立懷孕,惟卻於懷孕之40-100日階段分別發生流產現象。
綜合上述,本研究確已成功建立初代培養之業經分化且帶有外源基因的體細胞,可提供產製核移置胚之使用,並證明此等核移置胚可於體外培養發育達囊胚階段,經胚移置至受孕母牛後,並可順利達成懷孕之目的;惟此等核移置胚常於受孕母牛懷孕中期發生流產現象之詳細原因,則有待進一步探討。
The aim of present study was to make the nuclear transplantation (NT) techniques become available for generation of cloned-transgenic calves by the use of donor nucleus from bovine fetal fibroblast and/or cumulus cells. To meet this purpose, a series of experiments were conducted and some important features were examined, including factors that may have potential effects on the production efficiencies of NT-embryos and/or cloned calves by NT. Throughout the study, all recipient oocytes had been subjected to in vitro maturation(IVM) for 16 to 23 h before enucleation and/or activation. On the other hand, all donor cells were transfected and confirmed to harbor an αLA-hECSOD3 gene before being transferred to the recipient oocytes.
In the first experiment, the opportune moment after IVM for various periods of time between 16 to 23 h for NT micromanipulation to ensure the complete enucleation of bovine oocytes appeared that much higher proportion of bovine oocytes showed their Met II chromosome plates adjacent to the first polar body when comparison was made between those oocytes matured for 16-18 h and for 22-23 h in vitro (89.1 vs 65.5%; p < 0.05). Consequently, much higher enucleated efficiencies were obtained when bovine oocytes had been enucleated by 16-21 h than those enucleated by 22-23 h post the initiation of IVM(81.0-89.1﹪vs 70.9%; p < 0.05).
Further experiments were conducted to evaluate the effect of stratagems for activation of recipient oocytes on their subsequent development in vitro. From these studies it was found that there was virtually no oocyte developed beyond the 8-cell stage after they had been activated simply by electrical pulses and subsequently cultured for 5 days in vitro. However, there were 9.8 and 3.9﹪of bovine oocytes developing to morulae and blastocyst, respectively, by end of the 5-days culture in vitro when the oocytes were activated by the electrical pulses plus the treatment with activation solution containing 2.0mM 6-dimethylaminopurine ( 6-DMAP ). Moreover, when oocytes were treated with the electrical pulses plus the other two activation solution, including 5μM ionomycin and 2.0mM 6-DMAP. Proportions of NT-embryos developing to morula and blastocyst stages were further increased to 18.0 and 9.0%, respectively, by the same length culture in vitro.
Moreover comparison was also made to elucidate the effect between the use of donor cells from bovine fetal fibroblast cells and cumulus cells on the developmental potential of NT-embryos. Results appeared while there was no difference in developmental potential between NT-embryos generated by the use of donor cells from either cumulus cells or fetal fibroblast, much higher proportions of donor cells from cumulus cells than that from fetal fibroblast were successfully fused with the enucleated-recipient oocytes after NT (73.5 vs 38.5%; p<0.05). However, the developmental potential of NT-embryos was significantly affected by the opportune moment chosen for activation. Over 35% of NT-embryos developed to morula stage or beyond when the activation had been performed 4-5 h post the donor cell fused with the enucleated-recipient oocyte, whereas, there was virtually no NT-embryos developed beyond the morula stage when the oocytes were activated immediately after fusion.
The final experiment of this study was conducted to evaluate the potential of these NT-embryos developing in vivo. A total of 31 NT-embryos had developed to blastocyst stage by day 7 post the NT, and 20 of these embryos were transferred into the genital tract of 13 recipient cows. Two of these 13 recipients were returned to estrus 14 days after the embryo transfer. Though five of them were confirmed to becoming pregnancy, according to the levels of progesterone monitored weekly from their milk, their pregnancy only continued for 40 to 100 days and each was shunlessly aborted due to some reasons yet known. Pregnancy status of the remaining six recipients is now in progressing and routinely monitored, and it is anticipated that some transgenic-cloned calves will be born in the coming future.
Conclusions came to the above studies were that the biological significant of NT technique does appear specifically established and NT-embryos harboring the αLA-hECSOD3 gene could develop to blastocyst stage in vitro. In this sense, embryo preparations essentially could be implanted successfully after transfer of them to recipients. However, the reasons for causing high failure frequency in pregnancy of the NT-embryos warrant further investigations and are currently underway.
摘要……………………………………………………………. 1
緒言…………………………………………….……………… 3
文獻檢討………………………………………….…………… 5
一、核移置動物之產製及影響核移置效率之主要因子……………... 5
(一) 卵母細胞之去核操作……………………………………. 7
(二)卵母細胞之激活處理及影響因子……………… …..… 9
1.卵母細胞人為激活之機制……………………………… … 9
2.影響卵母細胞激活之年齡效應………………………..… 10
3.人為激活處理之方法……………………………………... 11
(1)Ca2+溶液及電激法……………………………….….. 11
(2)化學激活法……………………………………...…… 12
A. 酒精 (ethanol) ……………………………..…..…. 12
B. Ca2+ Ionophore A23187 及 Ionomycin………….. 13
C. 蛋白質合成抑制劑或蛋白質激抑制劑 ………………………………………………..… 13
D.兩種激活化學物質之聯合應用………………..….. 14
(三)細胞電融合…………………………………………….…15
1. 電激法引導細胞膜之小電孔………………….………… 15
2. 影響細胞電融合效率之因子……………………….…… 15
(1)擬融合細胞之排列方向和細胞間之接觸緊密性…………………………………………………..… 15
(2)電融合之電參數組合…………………………..…… 16
(3)供核細胞之細胞周期期別及受核卵母細胞之年齡……………………………………………….….….17
(四)受核細胞之細胞種類……………………………….….. 17
(五)供核細胞之種類及細胞周期………………………..… 19
(六)受核與供核之細胞周期及兩細胞間之交互作用….... 23
二、 應用核移置技術之潛力及核移置子代所面臨之問題………………………………………………………..… 27
(一)學理之研究………………………………………………27
1.供核細胞發育全能性之探討………………………….… 27
2.父源性或母源性基因組在胚發育過程中之角色…….. 28
3.細胞質與細胞核間遺傳物質之交互作用……………… 28
(二)實用上:遺傳背景相同家畜之產製………………..... 29
(三)產製基因轉殖動物………………………………………30
(四)核移置子代所面臨之問題…………………………….. 30
三、體細胞核移置之基因轉殖………………………………... 32
四、人類胞外超氧歧化………………………………………38
(一)人類胞外超氧歧化………………………………...… 38
(二)人類胞外超氧歧化之分子生物學特性……………. 39
(三)SOD在臨床上之應用………………………………….. 40
1. 老化………………………………………………………… 40
2. 動脈缺血後再灌流……………………………………….. 40
3. 糖尿病……………………………………………………... 41
4. 癌症………………………………………………………… 41
5. 炎症………………………………………………………… 41
(四)重組人類胞外超氧歧化…………………..……….. 42
試驗壹:體外成熟(IVM)時間對牛卵母細胞第一極體(PBI)和染色體板相對位置及去核率之影響
……………….…………………………………….. 43
一、前言……………………………………..…………………..43
二、材料與方法………………………………..………………...44
(一) 卵巢及卵母細胞之取得與處理………..………..……. 44
(二) 卵母細胞之體外成熟培養……………..……………… 44
(三) Hoechst 33342 螢光染劑之配製………..……………. 46
(四) 進行卵母細胞去核操作前之各項準備…..………….. 47
(五) 試驗設計……………………………………..…………. 49
(六) 統計分析………………………………………..………. 49
三、試驗結果……………………………………………..……..52
四、討論……………………………………………………..…..55
試驗貳:不同激活處理對牛卵母細胞激活後續發育能力之影響
……………………………………………………… 58
一、前言…………………………………………………………58
二、材料與方法……………………………………………..…..59
(一) 卵巢及卵母細胞之取得與處理……………………..... 59
(二) 卵母細胞之體外成熟培養………………………..…… 59
(三) 激活溶液之配製……………………………………..…. 59
(四) 卵母細胞之激活處理步驟…………………………..… 59
(五) 激活後牛卵母細胞於體外之培養……………………. 60
(六) 卵母細胞之固定、染色及其發育之評估………….... 60
(七) 試驗設計……………………………………………..…. 61
(八) 統計分析……………………………………………..…. 63
三、試驗結果………………………………………………..…..63
四、討論…………………………………………………..……. 65
試驗參:不同供核細胞對核移置胚產製效率及後續發育能力之影響
………………………………..……………….… 68
一、前言………………………………………..………………. 68
二、材料與方法…………………………………..……………..69
(一) 卵巢及卵母細胞之取得與處理…………..…………... 69
(二) 卵母細胞之體外成熟培養…………………..………… 69
(三) 荷蘭牛胎牛成纖維母細胞的建立…………..……….. 69
(四) 荷蘭牛卵丘細胞的建立………………………..……… 70
(五) 核移置之各項操作………………………………..…… 71
(六) 核移置胚之固定、染色及其發育評估…………..…. 73
(七) 試驗設計…………………………………………..……. 75
(八) 統計分析……………………………………………..…. 76
三、試驗結果………………………………………………...….77
四、討論……………………………………………………..…. 85
試驗肆:不同激活時機對體細胞核移置胚後續發育能力之影響
……………………………………………………… 89
一、前言……………………………………………………..…. 89
二、材料與方法………………………………………………....90
(一) 卵巢及卵母細胞之取得與處理………..……………... 90
(二) 卵母細胞之體外成熟培養………………..…………… 90
(三) 供核細胞之製備……………………………...………… 90
(四) 核移置之各項操作……………………………..……… 91
(五) 核移置胚之固定、染色及其發育評估………..…….. 91
(六) 試驗設計…………………………………………..……. 91
(七) 統計分析……………………………………………..…. 91
三、試驗結果…………………………………………………... 92
四、討論………………………..………………………………. 94
試驗伍:利用核移置技術進行基因轉殖複製牛之產製..… 96
一、前言……………………………………………………..…. 96
二、材料與方法……………………………………………..…..97
(一) 卵巢及卵母細胞之取得與處理………………..……... 97
(二) 卵母細胞之體外成熟培養………………………..…… 97
(三) 細胞外源基因的轉染……………………………..…… 97
(四) 核移置之各項操作……………………………………. 101
(五) 核移置胚之固定、染色及其發育評估…….….……. 101
(六) 牛胚之冷凍保存……………………………….……… 102
(七) 胚移置之進行…………………………………….…… 105
(八) 懷孕觀察及診斷……………………………….……… 105
三、試驗結果…………………………………………….……. 107
四、討論………………………………………………….……. 113
結論………………………………………………….…………. 116
參考文獻………………………………………………………. 117
英文摘要………………………………………………………. 138
小傳………………………………………………………….… 140
宋麗英。1999。牛胚體外生產技術之開發及其在基因轉殖研究之應用。國立台灣大學畜產學研究所碩士論文。
沈朋志。1997。影響小鼠及家兔核轉置胚產製效率之相關因子和由家兔 8- 和16- 細胞期胚單一胚葉細胞所產製移置胚於體外和體內之發育能力。國立中興大學畜產學研究所碩士論文。
張菊犁,曾青雲,陳志毅,李素珍,鄭瑞基與陳茂。1987。台灣荷蘭乳牛群性能改良計劃。畜產研究,30(1): 55-65。
許登造。1992。小鼠,豬和山羊不同時期胚分溝細胞之電融合. 畜產研究 25(1):11-24
蘇金錝。1993。小鼠胚幹細胞之基因轉殖與嵌合體小鼠之產生。國立台灣大學畜產學研究所碩士論文。
Adachi, T. and S. L. Marklund. 1989. Interactions between human extracellular superoxide dismutase C and sulfated polysaccharides. J. Biol. Chem. 264:8537-8541.
Austin, C. R.. 1982. The egg. In: C. R. Austin and R. V. Short-Frs. (Ed.) Reproduction in mammals Book I Germ cells and fertilization. pp.46-62.
Baguisi, A., E. Behboodi, D. T. Melican, J. S. Pollock, M. M. Destrempes, C. Cammuso, J. L. Williams, S. D. Nims, C. A. Porter, P. Midura, M. J. Palacios, S. L. Ayres, R. S. Denniston, M. L. Hayes, C. A. Ziomek, H. M. Meade, R. A. Godke, W. G. Gavin, E. W. Overstrom and Y. Echelard.1999. Production of goats by somatic cell nuclear transfer. Nature Biotechnol. 17:456-461.
Barnes, F. L., P. Collas, R. Powell, W. A. King , M. Westhusin and D. Shepherd. 1993. Influence of recipient oocyte cell cycle stage on DNA synthesis, nuclear envelope breakdown, chromosome constitution, and development in nuclear transplant bovine embryos. Mol. Reprod. Dev. 36:33-41.
Barnes, F., J. M. Robl and N. L. First. 1987. Nuclear transplantation in mouse embryos : assessment of nuclear function. Biol. Reprod. 36:1267-1274.
Bondioli, K. R., M. E. Westhusin and C. R. Looney. 1990. Production of identical bovine offspring by nuclear transfer. Theriogenology 33:165-174.
Boquest, A. C., B. N. Day and R. S. Prather. 1999. Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells. Biol. Reprod. 60:1013-1019.
Bordignon, V. and L. C. Smith. 1998. Telophase enucleation: an improved method to prepare recipient cytoplasts for use in bovine nuclear transfer. Mol. Reprod. Dev. 49:29-36.
Bremel, R. D. 1996. Potential role of transgenesis in dairy production and related areas. Theriogenology 45:51-56.
Briggs, R. and T. J. King. 1952. Transplantation of living nuclei from blastula cells into enucleated frog eggs. Proc. Natl. Acad. Sci. U. S. A. 38:455-467.
Brinster, R. L., E. P. Sandrogern, R. R. Behringer and R. D. Palmiter. 1989. No simple solution for making transgenic mice. Cell 59:239-241.
Bromhall, J. D.. 1975. Nuclear transplantation in the rabbit egg. Nature 258:719-722.
Brown, K. E., J. Baxter, D. Graf, M. Merkenschlager, A. G. Fisher. 1999. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol. Cell. Biol. 3:207-217.
Camous, S., V. Kopecny and J. E. Flechon. 1986. Autoradiographic detection of the earliest stage of (3H)-uridine incorporation. Biol. Cell 58:195-200.
Campbell, K. H. S. 1999. Nuclear transfer in farm animal species. Seminars in Cell & Dev. Biol. 10: 245-252.
Campbell, K. H. S., P. Loi, P. Cappai and I. Wilmut. 1994. Improved development to blastocyst of ovine nuclear transfer embryos reconstructed during the presumptive S-phase of enucleated activated oocytes. Biol. Reprod. 280:1256-1258.
Campbell, K. H., J. McWhir, W. A. Ritchie and I. Wilmut. 1996. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64-66
Campbell, K. H., P. Loi, P. J. Otaegui and I. Wilmut. 1996. Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev. Reprod. 1:40-46.
Campbell, K. H., W. A. Ritchie and I. Wilmut. 1993. Nuclear-cytoplasmic interactions during the first cell cycle of nuclear transfer reconstructed bovine embryos: implications for deoxyribonucleic acid replication and development. Biol. Reprod. 49:933-942.
Carlsson, L. M., J. Jonsson, T. Edlund and S. L. Marklund. 1995. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc. Natl. Acad. Sci. U.S.A. 92:6264-6268.
Carson, S., E. E. Vogin, W. Huber and T. L. Schulte. 1973. Safety tests of orgotein, an antiinflammatory protein. Toxicol. Appl. Pharmacol. 26:184-202.
Chan, A. W. S., T. Dominko, C. M. Luetjens, E. Neuber, C. Martinovich, L. Hewitson, C. R. Simerly and G. P. Schatten. 2000. Clonal propagation of primate offspring by embryo Splitting. Science 287:317-319.
Chan, A. W., E. J. Homan, L. U. Ballou, J. C. Burns and R. D. Bremel. 1998. Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. Proc. Natl. Acad. Sci. U.S.A. 95:14028-14033.
Chen, L. R. and M. C. Wu. 1993. Breed comparison onear characteristics of pig. J. Taiwan Livestock Res. 26:271-283.
Cheng, W. T. K. 1985. In vitro fertilization of farm animal oocytes. PhD. Thesis. Cambridge University.
Cheong, H. T., Y. Takahashi and H. Kanagawa. 1993. Birth of mice after transplantation of early cell cycle stage embryonic nuclei into enucleated oocytes. Biol. Reprod. 48:958-963.
Chian, R. C., S. L. Tan and M. A. Sirard. 1999. Protein phosphorylation is essential for formation of male pronucleus in bovine oocytes. Mol. Reprod. Dev. 52:43-49.
Cibelli, J. B., S. L. Stice, P. J. Golueke, J. J. Kane, J. Jerry, C. Blackwell, F. A. P. D. Leon and J. M. Robl. 1998a. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nature Biotechnol. 16:642-646.
Cibelli, J. B., S. L. Stice, P. J. Golueke, J. J. Kane, J. Jerry, C. Blackwell, F. A. P. De Leon and J. M. Robl. 1998b. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256-1258.
Clarke, H. J., J. Rossant and Y. Masui. 1988. Suppression of chromosome condesation during meiotic maturation induces parthenogenetic development of mouse oocytes. Development 104:97-103.
Clement-Sengewald, A. and G. Brem. 1988. Electrofusion parameters for mouse two-cell embryos. Theriogenology 32:159-169
Collas, P. and F. L. Barnes. 1994. Nuclear transplantation by microinjection of inner cell mass and granulosa cell nuclei. Mol. Reprod. Dev. 38:264-267.
Collas, P. and J. M. Robl. 1990. Factors affecting the efficiency of nuclear transplantation in the rabbit embryo. Biol. Reprod. 43:877-884.
Collas, P. and J. M. Robl. 1991a. Relationship between nuclear remodeling and development in nuclear transplant rabbit embryos. Biol. Reprod. 45:455-465.
Collas, P. and J. M. Robl. 1991b. Development of rabbit nuclear transplant embryos from morula and blastocyst stage donor nuclei. Theriogenology 35:190(abstract).
Collas, P., C. Pinto-Correia, F. A. Ponce de Leon and J. M. Robl. 1992. Effect of donor cell cycle stage on chromatin and spindle morphology in nuclear transplant rabbit embryos. Biol. Reprod. 46:501-511.
Collas, P., J. J. Balise and J. M. Robl. 1992a. Influence of cell cycle stage of the donor nucleus on development of nuclear transplant rabbit embryos. Biol. Reprod. 46:492-500.
Collas, P., J. J. Balise, G. A. Hofman and J. M. Robl. 1989. Electrical activation of mouse oocytes. Theriogenology 32:835-844.
Collas, P., T. Chang, C. Long and J. M. Robl. 1995. Inactivation of histone H1 kinase by Ca2+ in rabbit oocytes. Mol. Reprod. Dev. 40:253-258.
Colman, A.. 1996. Production of proteins in the milk of transgenic livestock: problems, solutions, and successes. Am. J. Clin. Nutr. 63:639-645.
Cran, D. G., R. M. Moor and R. F. Irvine. 1988. Initiation of the cortical reaction in hamster and sheep oocytes in response to inositol trisphosphate. J. Cell Sci. 91:139-144.
Crosby, I. M., F. Gandolfi and R. M. Moore. 1988. Control of protein synthesis during early cleavage of sheep embryos. J. Reprod. Fert. 82:769-775.
Cross, C. E., B. Halliwell, E. T. Borish, W. A. Pryor, B. N. Ames, R. L. Saul, J. M. McCord and D. Harman. 1987. Oxygen radicals and human diseases. Ann. Intern. Med. 107:526-545.
Cuthbertson, K. S. and P. H. Cobbold. 1985. Phorbel ester and sperm activate mouse oocytes by inducing sustained oscillations in cell Ca2+. Nature 316:541-542.
Cuthbertson, K. S., D. G. Whittingham and P. H. Cobbold. 1981. Free Ca2+ increases in exponential phases during mouse oocyte activation. Nature 294:754-757.
Cuthbertson, K. S.. 1983. Parthenogenetic activation of mouse oocytes in vitro with ethanol and benzyl alcohol. J. Exp. Zool. 226:311-314.
Czolowska, R., J .A. Modlinski and A. K. Tarkowski. 1984. Behaviour of thymocyte nuclei in nonactivated and avtivated mouse oocytes. J. Cell Sci. 69:19-34.
DiBerardino, M. A., N. J. Hoffner and L. D. Etkin. 1984. Activation of dormant genes in specialized cells. Science 224:946-952.
DiBerardino, M. A., O. N. Hoffner. and R. G. McKinnell. 1986. Feeding tadpoles cloned from Rana erythrocyte nuclei. Proc. Natl. Acad. Sci. U.S.A. 83:8231-8234.
Didion, B. A., M. J. Martin and C. L. Market. 1990. Parthenogenetic activation of mouse and pig oocytes matured in vitro. Theriogenology 33:1165-1175.
Diederich, D., J. Skopec, A. Diederich and F. X. Dai. 1994. Endothelial dysfunction in mesenteric resistance arteries of diabetic rats: role of free radicals. Am. J. Physiol. 266:1153-1161.
Dominko, T, M. Mitalipova, B. Haley, Z. Beyhan, E. Memili, B. McKusick and N. L. First. 1999. Bovine oocyte cytoplasm supports development of embryos produced by nuclear transfer of somatic cell nuclei from various mammalian species. Biol. Reprod. 60:1496-1502.
Doree, M., J. C. Labbe and A. Picard. 1989. M phase promoting factor:Its identification as the M phase specific histone H1 kinase and its activation by phosphorylation. J. Cell Sci. (Suppl) 12:39-51.
Du, F., J. R. Giles, R. H. Foote, K. H. Graves, X. Yang and R. W. Moreadith. 1995. Nuclear transfer of putarive rabbit embryonic stem cells leads to normal blastocyst development. J. Reprod. Fert. 104:219-223.
Eichenlaub-Ritter, U., A. C. Chandley and R. G. Gordon. 1987. Alferation of the microtubular cytokeleton and increased disorder of chromosome alignment in spontaneously ovulated mouse oocyte in vivo: an immunofluorescence study. Chromosome 94:337-345.
Folz, R. J., J. Guan, M. F. Seldin, T. D. Oury, J. J. Enghild and J. D. Crapo. 1997. Mouse extracellular superoxide dismutase: primary structure, tissue-specific gene expression, chromosomal localization, and lung in situ hybridization. Am. J. Respir. Cell Mol. Biol. 17:393-403.
Freshney, R. I.. 1983. Culture of animal cells: A manual of basic technique. pp.99-118. University of Glasgow.
Fulka, J. Jr., J. Motlik, J. Fulka and F. Jilek. 1986. Effect of cycloheximide on nuclear maturation of pig and mouse oocytes. J. Reprod. Fertil.77:281-285.
Fulton, B. P. and D. G. Whittingham. 1978. Activation of mammalian oocytes by intracellular injection of calcium. Nature 273:149-151.
Garry, F. B., R. Adams, J. P. McCann and K. G. Odde. 1996. Postnatal characteristics of calaves produced by nuclear cloning. Theriogenology 45:141-152.
Goode, H. F., N. R. Webster, P. D. Howdle and B. E. Walker. 1994. Nitric oxide production by human peripheral blood polymorphonuclear leucocytes. Clin. Sci. 86:411-415.
Gordon, J. W., G. A. Scangos, D. J. Plotkin, J. A. Barbosa and F. H. Ruddle. 1980. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. U.S.A. 77:7380-7384.
Grandolfi, F., M. Lavitrano, A. Camaioni, C. Spadafora, G. Siracusa and A. Lauria. 1989. The use of sperm-mediated gene transfer for the generation of transgenic pigs. J. Reprod. Fert. Abst. Ser. 4 : 10.
Gurdon, J. B., J. Pept. SciR. A. Laskey and O. R. Reeves. 1975. The developmental capacity of nuclei transplanted from keratinized skin cells of adult frogs. J. Embryol. Exp. Morphol. 34:93-112.
Gurdon, J. B.. 1962. Adult frogs derived from the nuclei of single somatic cells. Dev. Biol. 4:256-273.
Guyton, K. Z. and T. W. Kensler. 1993. Oxidative mechanisms in carcinogenesis. Br. Med. Bull. 49:523-544.
Hansson, L., M. Edlund, A. Edlund, T. Johansson, S. L. Marklund, S. Fromm, M. Stromqvist and J. Tornell. 1994. Expression and characterization of biologically active human extracellular superoxide dismutase in milk of transgenic mice. J. Biol. Chem. 269:5358-5363.
Harley, C. B., A. B. Futcher and C. W. Greider. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345:458-460.
Heikkila, R. E., B. Winston and G. Cohen. 1976. Alloxan-induced diabetes-evidence for hydroxyl radical as a cytotoxic intermediate. Biochem. Pharmacol. 25:1085-1092.
Heyman, Y., P. Chesne, D. Lebourhis, N. Peynot and J. P. Renard. 1994. Developmental ability of bovine embryos after nuclear transfer based on the nuclear source : in vivo versus in vitro. Theriogenology 42:695-702.
Hjalmarsson, K., S. L. Marklund, A. Engstrom and T. Edlund. 1987. Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase. Proc. Natl. Acad. Sci. USA. 84:6340-6344.
Hoppe, P. C. and K. Illmensee. 1982. Full-term development after transplantation of prathenogenetic embryonic nuclei into fertilized mouse eggs. Proc. Natl Aacd. Sci. U.S.A. 79:1912-1916.
Howlett, S. K., S. C. Barton and M. A. Surani. 1987. Nuclear cytoplasmic interactions following nuclear transplantation in mouse embryos. Development 101:915-923.
Hughes, S. H., E. Kosik, A. M. Fadly, D. W. Salter and L. B. Crittenden. 1986. Design of retroviral vectors for the insertion of foreign deoxyribonucleic acid sequences into the avian germ line. Poult. Sci. 65:1459-1467.
Igusa, Y. and S. Miyazaki. 1983. Effects of altered extracellular and intracellular calcium concentration on hyperpolarizing responses of the hamster egg. J. Physiol. 340:611-632.
Illmensee, K. and P. C. Hoppe. 1981. Nuclear transplantation in mus musculus Developmental potential of nuclei from preimplantation embryos. Cell 23:9-18.
Ilyin, V. and I. Parker. 1992. Effects of alcohols on responses evoked by inositol trisphosphate in Xenopus oocytes. J. Physiol. 448:339-354.
Jones, H.W. Jr., R.G. Edwards and G. E. Jr. Seidel. 1994. On attempts at cloning in the human. Fertil. Steril. 61:423-426.
Kalous, J., M. Kubelka, Z. Rimkevicova, P. Guerrier and J. Motlik. 1993. Okadaic acid accelerates germinal vesicle breakdown and overcomes cycloheximide and 6-dimethylaminopurine block in cattle and pig oocytes. Dev. Biol.157:448-454.
Kanka, J., J. Jr. Fulka, J. Fulka and J. Petr. 1991. Nuclear transplantation in bovine embryo: fine structural and autoradiographic studies. Mol. Reprod. Dev. 29:110-116.
Karlsson, K., A. Edlund, J. Sandstrom and S. L. Marklund. 1993a. Proteolytic modification of the heparin-binding affinity of extracellular superoxide dismutase. Biochem. J. 290:623-626.
Karlsson, K., J. Sandstrom, A. Edlund, T. Edlund and S. L. Marklund. 1993b. Pharmacokinetics of extracellular- superoxide dismutase in the vascular system. Free Radic. Biol. 14:185-190.
Kato, Y., T. Tani, Y. Sotomaru, K. Kurokawa, J. Kato, H. Doguchi, H. Yasue and Y. Tsunoda. 1998. Eight calves cloned from somatic cells of a single adult. Science 282:2095-2098.
Keefer, C. L., S. L. Stice and D. L. Matthews. 1994. Bovine inner cell mass cells as donor nuclei in the production of nuclear transfer embryos and calves. Biol. Reprod. 50:935-939. Keefer, C. L., S. L. Stice and D. L. Matthews. 1994. Bovine inner cell mass cells as donor nuclei in the production of nuclear transfer embryos and calves. Biol. Reprod. 50:935-939.
Kill, I. R., J. M. Bridger, K. H. S. Campbell, G. Maldonado-Codina and C. J. Hutchison. 1991. The timing of the formation and usage of replicase clusters in S-phase nuclei of human diploid fibroblasts. J. Cell. Sci. 100:869-876.
Kiningham, K. K. and D. K. St. Clair. 1997. Overexpression of manganese superoxide dismutase selectively modulates the activity of Jun-associated transcription factors in fibrosarcoma cells. Cancer Res. 57:5265-5271.
Kline, D. and J. T. Kline. 1992. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev. Biol. 149:80-89.
Kono, T., M. Ogawa and T. Nakahara. 1993a. Thymocyte transfer to enucleated oocytes in the mouse. J. Reprod. Dev. 39:301-307.
Kono, T., O. Y. Kwon and T. Nakahara. 1991. Development of enucleated mouse oocytes reconstituted with embryonic nuclei. J. Reprod. Fert. 93:165-172.
Kono, T., Y. Shioda and Y. Tsunoda. 1988. Nuclear transplantation of rat embryos. J. Exp. Zool. 248:303-305.
Kono, T., Y. Sotomaru, F. Aono, T. Takahasi, I. Ogimara, F. Sekizawa, T. Arai and T. Nakahara. 1994. Effect of ooplast activation on the development of oocytes following nucleus transfer in cattle. Theriogenology 41:1463-1471.
Kono, T., Y. Sotomaru, Y. Sato and T. Nakahara. 1993b. Development of androgenetic mouse embryos produced by in vitro fertilization of enucleated oocytes. Mol. Reprod. Dev. 34:43-46.
Kosaka, H., Y. Sawai, H. Sakaguchi, E. Kumura, N. Harada, M. Watanabe and T. Shiga. 1994. ESR spectral transition by arteriovenous cycle in nitric oxide hemoglobin of cytokine-treated rats. Am. J. Physiol. 266:1400-1405.
Kruip, Th. A. M. and J. H. C. den Daas. 1997. In vitro produced and cloned embryos: effects on pregnancy, parturition and offspring. Theriogenology 47:43-52.
Kubiak, J. Z., M. Weber, H. de-Pennart, N. J. Winston and B. Maro. 1993. The metaphase Ⅱ arrest in mouse oocytes is contralled through microtubule-dependent destrution of cyclin in the presence of CSF. EMBOJ. 12:3773-3778.
Kubiak, J.. 1989. Mouse oocytes gradually develop the capacity for activation during the metaphase II arrest. Development 136:537-545.
Kubota, C., and H. Yamakuchi, J. Todoroki, K. Mizoshita, N. Tabara, M. Barber and X. Yang. 2000. Six cloned calves produced from adult fibroblast cells after long-term culture. Proc. Natl. Acad. Sci. U.S.A. 97:990-995.
Kwon, O. Y. and T. Kono. 1996. Production of identical sextuplet mice by transferring metaphase nuclei from four-cell embryos. Proc. Natl. Acad. Sci. U.S.A. 93:13010-13013.
Lamberson, W. R.. 1994. Production of genetically identical swine : Uses for families with reduces phenotypic variation. Theriogenology 41:453-460.
Lavitrano, M., A. Camaioni, V. M. Fazio, S. Dolci, M. G. Farace and C. Spadafora. 1989. Sperm cells as vectors for introducting foreign DNA into eggs: Genetic transformation of mice. Cell 57:717-723.
Lavitrano, M., M. Forni, V. Varzi, L. Pucci, M. L. Bacci, C. D. Stefano, D. Fioretti, G. Zoraqi, B. Moioli, M. Rossi, D. Lazzereschi, E. Seren, D. Alfani, R. Cortesini and L. Frati. 1997. Sperm-mediated gene transfer : production of pig transgenic for a human regulator of complement activation. Transplant. Proc. 29:3508-3509.
Lavoir, M. C., D. Kelk, N. Rumph,F. Barnes, K. J. Betteridge and W. A. King. 1997. Transcription and translation in bovine nuclear transfer embryos. Biol. Reprod. 57:204-213.
Lehninger, A. L., D. L. Nelson and M. M. Cox. 1994. In priniciples of biochemistry. 2nd Eds. Worth Publishers, N. Y. pp 927.
Lewin, B.. 1990. Driving the cell cycle: M phase kinase, it''s partners and substrates. Cell 61:743-752.
Li, X. F., L. L. Tan, D. S. Shi and S. J. Tan. 1996. The bovine nuclear transfer in the completely in vitro procedure. 2nd Asine Symposium on Animal Biotechnology Proceedings. pp 151-155. Nanjing China.
Liochev, S. I. and I. Fridovich. 1997. How does superoxide dismutase protect against tumor necrosis factor: a hypothesis informed by effect of superoxide on "free" iron. Free Radic. Biol. Med. 23:668-671.
Liu, L., J. C. Ju and X. Yang. 1998. Parthenogenetic development and protein patterns of newly matured bovine oocytes after chemical activation. Mol. Reprod. Dev.49:298-307.
Loi, P., S. Ledda, J. Fulka Jr., P. Cappai and R. M. Moor. 1998. Development of parthenogenetic and cloned ovine embryos: effect of activation protocols. Biol. Reprod. 58:1177-1187.
Longo, F. J.. 1987. Resumption of meiotic maturation. In: Fertilization. pp.78-99. NY, U.S.A.
MacDonald, C.. 1991. Genetic engineering of animal cells. In mammalian cell biotechnology: a practical approach. pp57-83. M. Butler(ed.), ILR Press Oxford, N. Y.
Machaty, Z., H. Funahashi, M. A. Mayes, B. N. Day and R. S. Prather. 1996. Effects of injecting calcium chloride into in vitro-matured porcine oocytes. Biol. Reprod. 54:316-322.
Machaty, Z., M. A. Mayes and R. S. Prather. 1995. Parthenogenetic activation of porcine oocytes with guanosine-5''-O-(3''-thiotriphosphate). Biol. Reprod. 52:753-758.
Manes, C.. 1977. Nucleic acid synthesis in preimplantation rabbit embryo.Ⅲ. A "dark period" immediately following fertilization and the early predominance of low molecular weight RNA synthesis. J. Exp. Zool. 201:247-258.
Marklund, S. L.. 1982. Human copper-containing superoxide dismutase of high molecular weight. Proc. Natl. Acad. Sci. U.S.A. 79:7634-7638.
Marklund, S. L.. 1984. Extracellular superoxide dismutase in human tissues and human cell lines. J. Clin. Invest. 74:1398-1403.
MartAnez-Balbbs, M. A., A. Dey, S. K. Rabindran, K. Ozato and C. Wu. 1995. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83:29-38.
Masui, Y. and C. L. Markert. 1971. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 117:129-146.
McCord, J. M. 1974. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science 185:529-531.
McGrath, J. and D. Solter. 1983. Nuclear transplantation in mouse embryo by microsurgery and cell fusion. Science 220:1300-1302.
McGrath, J. and D. Solter. 1984. Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science 226:1317-1319.
Meijer, L and P. Pondaven. 1988. Cyclic activation of histone H1 kinase during sea urchin egg mitotic divisions. Exp. Cell. Res. 174:116-129.
Meng L., J. J. Ely, R. L. Stouffer and D. P. Wolf. 1997. Rhesus monkeys produced by nuclear transfer. Biol. Reprod. 57:454-459.
Miyazaki, S.. 1988. Inositol 1,4,5-trisphosphate-induced calcium release and guanine nucleotide-binding protein-mediated periodic calcium rises in golden hamster eggs. J. Cell. Biol. 106:345-353.
Modlinski, J. A. and Z. Smorag. 1991. Preimplantation development of rabbit embryos after transfer of embryonic nuclei into different cytoplasmic environment. Mol. Reprod. Dev. 28:361-372.
Modlinski, J. A.. 1981. The fate of inner cell mass and trophectoderm nuclei transplanted to fertilized mouse eggs. Nature 292:342-343.
Mohamed Nour, M. S. and Y. Takahashi. 1999. Preparation of young preactivated oocytes with high enucleation efficiency for bovine nuclear transfer. Theriogenology 51 : 661-666.
Moragham, L., X. Yang and S. Jiang. 1992. Ethanol and electric pulse induced activation of bovine oocytes mature 23-24 hours in vitro. Theriogenology 37:262.
Morgan, A. J. and R. Jacob. 1994. Ionomycin enhances Ca2+ influx by stimulating store-regulated cation entry and not by a direct action at the plasma membrane. Biochem. J. 300:665-672.
Moses, R. M. and D. Kline. 1995. Release of mouse eggs from metaphase arrest by protein synthesis inhibition in the absence of a calcium signal or microtubule assembly. Mol. Reprod. Dev. 41:264-273.
Murray, A.W. and M.W. Kirschner. 1989. Cyclin synthesis drives the early embryonic cell cycle. Nature 339:275-280.
Nagai, T.. 1987. Prathenogenetic activation of cattle follicular oocytes in vitro with ethanol. Gamete Res. 16:243-249.
Neant, I. and P. Guerrier. 1988. 6-Dimethylaminopurine blocks starfish oocyte maturation by inhibiting a relevant protein kinase activity. Exp. Cell. Res.176:68-79.
Newport, J. W. and M. W. Kirschner. 1984. Regulation of the cell cycle during early Xenopus development. Cell 37:731-742.
Niwa, Y., K. Ishimoto and T. Kanoh. 1990. Induction of superoxide dismutase in leukocytes by paraquat: Correlation with age and possible predictor of longevity. Blood 76:835-841.
Norberg, H. S.. 1973. Ultrastructural aspects of the preattached pig embryo: cleavage and early blastocyst stages. A. Anat. Enstgesch 143:45-114.
Nussbaum, D. J. and R. S. Prather. 1995. Differential effects of protein synthesis inhibitors on porcine oocyte activation. Mol. Reprod. Dev. 41:70-75.
Oury, T. D., B. J. Day and J. D. Crapo. 1996a. Extracellular superoxide dismutase in vessels and airways of humans and baboons. Free Radic. Biol. Med. 20:957-965.
Oury, T. D., J. D. Crapo, Z. Valnickova and J. J. Enghild. 1996b. Human extracellular superoxide dismutase is a tetramer composed of two disulphide-linked dimers: a simplified, high-yield purification of extracellular superoxide dismutase. Biochem. J. 317:51-57.
Oury, T. D., L. Y. Chang, S. L. Marklund, B. J. Day and J. D. Crapo. 1994. Immunocytochemical localization of extracellular superoxide dismutase in human lung. Lab. Invest. 70:889-898.
Ozil, J. P. and J. A. Modlinski. 1986. Effects of electric field on fusion rate and survival of 2-cell rabbit embryos. J. Embryol. Exp. Morph. 96:211-228.
Ozil, J. P.. 1990. The parthenogenertic development of rabbit oocytes after repetitive pulsatile electrical stimulation. Development 109:117-127.
Pather, R. S., T. Tao and Z. Machaty. 1999. Development of the techniques for nuclear transfer in pigs. Theriogenology 51:478-498.
Perry, A. C., T. Wakayama, H. Kishikawa, T. Kasai, M. Okabe, Y. Toyoda and R. Yanagimachi. 1999.Mammalian transgenesis by intracytoplasmic sperm injection. Science 284:1180-1183.
Prather, R. S., F. L. Barnes, M. M. Simms, J. M. Robl, W. H. Eyestone and N. L. First. 1987. Nuclear transplantation in the bovine embryo:assessment of donor nuclei and recipient oocyte. Biol. Reprod. 37:859-866.
Prather, R. S., M. M. Simms and N. L. First. 1989. Nuclear transplantation in early pig embryo. Biol. Reprod. 41:414-418.
Prather, R. S., M. M. Sims and N. L. First. 1990. Nuclear transplantation in pig embryo : nuclear swelling. J. Exp. Zool. 255:355-358.
Presicce, G. A. and X. Yang. 1994. Nuclear dynamies of parthenogenesis of bovine oocytes matured in vitro for 20 and 40 hours and activated with combined ethanol and cycloheximide treatment. Mol. Reprod. Dev. 37:61-68.
Punch, J., R. Rees, B. Cashmer, E. Wilkins, D. J. Smith and G. O. Till. 1992. Xanthine oxidase: its role in the no-reflow phenomenon. Surgery 111:169-176.
Ratych, R. E., R. S. Chuknyiska and G. B. Bulkley. 1987. The primary localization of free radical generation after anoxia/reoxygenation in isolated endothelial cells. Surgery 102:122-131.
Reiner, S. L., S. Zheng, D. B. Corry and R. M. Locksley. 1993. Constructing polycompetitor cDNAs for quantitative PCR. J. Immunol. Methods 165: 37-46.
Rime, H., I. Neant, P. Guerrier and R. Ozon. 1989. 6-dimethylaminopurine (6-DMAP), a reversible inhibitor of the transition to metaphase during the first meiotic cell division of the mouse oocyte. Dev. Biol. 133: 169-179.
Robl, J. M. and S. L. Stice. 1989. Prospects for the commercial cloning of animal by nuclear transplantation. Theriogenology 31:75-84.
Robl, J. M., B. Gilligan, E. S. Critser and N. L. First. 1986. Nuclear transplantation in mouse embryos: Assessment of recipient cell stage. Biol. Reprod. 34:733-739.
Robl, J. M., P. Collas, R. Fissor and J. Dobrinsky. 1992. Electrically induced fusion and activation in nuclear transplant embryos. Guide to electroporation and electrofusion pp535-551.
Robl, J. M., R. S. Prather, F. Barnes, W. Eyestone, D. Northey, B. Gilligan and N. L. First. 1987. Nuclear transplantation in bovine embryos. J. Anim. Sci. 64:642-647.
Sandstrom, J., L. Carlsson, S. L. Marklund and T. Edlund. 1992. The heparin-binding domain of extracellular superoxide dismutase C and formation of variants with reduced heparin affinity. J. Biol. Chem. 267: 18205-18209.
Schedl, A., L. Montoliu, G. Kelsey and G. Schutz. 1993. A yeast artificial chromosome convering the tyrosinase gene confers copy number-independent expression in transgenic mice. Nature 362:258-261.
Schnieke, A. E., A. J. Kind, W. A. Ritchie, K. Mycock, A. R. Scott, M. Ritchie, I. Wilmut, A. Colman and K. H. S. Campbell. 1997. Human factor Ⅸ transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130-2133.
Sciamanna, I., S. Piccoli, L. Barberi, G. Zaccagnini, A. R. Magnano, R. Giordano, P. Campedelli, C. Hodgson, R. Lorenzini and C. Spadafora. DNA dose and sequence dependence in sperm-mediated gene transfer. Mol. Reprod. Dev. 56:301-305.
Shemesh, M., M. Gurevich, E. Harel-Markowitz, L. Benvenisti, L. S. Shore and Y. Stram. 2000. Gene integration into bovine sperm genome and its expression in transgenic offspring. Mol. Reprod. Dev. 56:306-308.
Shiels, P. G., A. J. Kind, K. H. Campbell, D. Waddington, I. Wilmut, A. Colman and A. E. Schnieke. 1999. Analysis of telomere lengths in cloned sheep. Nature 399:316-317.
Shiga, K., T. Fujita, K. Hirose, Y. Sasae and T. Nagai. 1999. Production of calves by transfer of nuclei from cultured somatic cells obtained from Japanese black bulls. Theriogenology 52:527-535.
Shigenaga, M. K., T. M. Hagen and B. N. Ames. 1994. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. U.S.A. 91:10771-10778.
Shiina, Y., M. Kaneda, K. Matsuyama, K. Tanaka, M. Hiroi and K. Doi. 1993. Role of extracellular Ca2+ on the intracellular Ca2+ changes in fertilized and activated mouse oocytes. J. Reprod. Fertil. 97:143-150.
Sims, M. W. and N. L. First. 1994. Production of cultured inner cell mass cells. Proc. Natl Acad. Sci. U.S.A. 90:6143-6147.
Siracusa, G., D. G. Whittingham, M. Molinaro and E. Vivarelli. 1978. Parthenogenetic activation of mouse oocytes induced by inhibitors of protein synthesis. J. Embryol. Exp. Morph. 43:157-166.
Sirard, M. A., H. M. Florman, M. L. Leibfried-Rutledge, F. L. Barnes, M. L. Sims and N. L. First. 1989. Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol. Reprod. 40:1257-1263.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top