跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/08/02 08:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:連姿雯
研究生(外文):TzuWen Lien
論文名稱:太平洋白蝦感染桃拉症病毒後血球之分析
論文名稱(外文):Hemocyte analysis of Pacific White shrimp (Litopenaeus vannamei) infected with Taura syndrome virus
指導教授:宋延齡宋延齡引用關係
指導教授(外文):YenLing Song
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:39
中文關鍵詞:白蝦病毒感染血球
外文關鍵詞:Litopenaeus vannameivirus infectionhemocyte
相關次數:
  • 被引用被引用:4
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以桃拉症病毒(Taura syndrome virus, TSV)人工感染白蝦(Litopenaeus vannamei)後,分析對照組與感染組的全血球計數(Total hemocyte counts, THC),各類型血球計數(Differential hemocyte counts, DHC),酚氧化酵素活性(Phenoloxidase activity, PO activity),轉醯胺酵素活性(Transglutaminase activity, TGase)及超氧化陰離子的產量(Superoxide anion production)來評估病毒性疾病對白蝦細胞性免疫系統的影響。研究結果顯示受人工感染之白蝦於感染後第二天出現體色、泳足等附肢變紅、活動力差、軟殼、部分抽出之血液呈現紅色及血液較不易凝固的現象。受桃拉症病毒人工感染之白蝦於感染後第三天死亡率已達83.3﹪,至第四天全數死亡。桃拉症病毒感染後第二天的感染組白蝦較之未處理組白蝦或假感染組白蝦其全血球計數由1.6至2.2x10E7 cells/ml下降至0.3x10E7 cells/ml,明顯的(P<0.001)減少79至84﹪;雖然桃拉症病毒感染並未改變各類型血球之比例,但若以全血球計數濃度乘以各類型血球比例而換算成各類型血球數,則透明血球由對照組的1.3至1.9x10E7 cells/ml劇降為0.3x10E7 cells/ml(減少76至84﹪),顆粒血球則由0.13至0.31x10E7 cells/ml劇降為0.022x10E7 cells/ml(減少83至93﹪),顯示桃拉症病毒急性感染會造成各類型血球的全面崩解。血球內超氧化陰離子的產生經由NBT stain定量,結果發現因病毒感染的影響,產量顯著地提升(P<0.01);而再受免疫刺激物β-1,3-1,6-glucan刺激血球免疫反應的能力卻明顯地衰退(P<0.05)。這些結果表示桃拉症病毒急性感染刺激了血球使其吞噬能力上升,但由於血球已處於高度活化的狀態,對免疫刺激物β-1,3-1,6-glucan的刺激變得較不敏感,有所謂免疫疲乏的現象。血球內轉醯胺酵素活性也受到桃拉症病毒感染的嚴重影響,其活性從未處理組及假感染組的21至32 Unit/mg降低至感染組的12 Unit/mg,顯示白蝦一旦受到桃拉症病毒急性感染後其凝血作用受到嚴重的破壞。酚氧化酵素活性由未處理組及假感染組的0.04至0.14 unit提高至感染組的0.29 unit(P<0.05),顯示酚氧化酵素系統也因病毒感染而活化,被活化之酵素可從血球中被釋放至血漿中。
經由本研究之結果我們推論病毒降低TGase之活性(質的減少),導致宿主未能有效進行凝血作用,這將有利於病毒的擴散;另一方面宿主受到病毒感染之刺激會增強其抗病活性,這可由(1)O2-產量增加(暗示吞噬活性增強);(2)酚氧化酵素活性之增強,而得以證明。在病毒-宿主攻防的過程中,各類型血球幾乎全面崩解,這可能由於(1)TSV感染造成的溶血或血球再生能力之失常;也可能是(2)宿主血球離開體腔浸潤至病毒感染的組織中,或(3)血球進行去顆粒、細胞溶解等作用來增強其抗病能力。
由於病毒感染後這些血淋巴指數會劇烈變化,如果蝦體採樣的數目夠多,或許這些血淋巴指數可以作為白蝦是否受到桃拉症病毒急性感染的指標。
To evaluate the effect of viral infection on the cellular immune responses in the Pacific white shrimp (Litopenaeus vannamei), we intramuscularly injected shrimp with Taura syndrome virus (TSV). Hemolymph obtained from TSV-infected, mock-infected and untreated shrimps were measured for the total and differential hemocyte counts (THC and DHC). The separated hemocytes were further analyzed quantitatively for the intrahemocytic superoxide anion and the enzyme activities of transglutaminase (TGase)and phenoloxidase(PO).
High mortality was observed in the TSV-infected shrimps. It reached up to 83.3% on the third day and 100% on the fourth day post infection. Shrimps showed a pale reddish coloration on the out-looking, lethargic and soft shell on the second day post infection. Withdrawn hemolymph showed a red coloration and coagulated poorly in some infected shrimps.
Hematological analysis showed that the THC decreased significantly (p<0.001) from 1.6~2.2´107 cells/ml in the untreated or mock-infected shrimps to 0.3´107 cells/ml in TSV-infected shrimps. In other words a 79 to 84% decrease. Although there is no difference observed in the ratios of differential hemocytes among the untreated, mock-infected and TSV-infected shrimps, the hyalinocytes decreased from 1.3~1.9 to 0.3´107 cells/ml (a 76 to 84% decrease) and granulocytes decreased from 0.13~0.31 to 0.022´107 cells/ml (a 83 to 93% decrease). These indicates an almost completely breakdown of hemocytes in an acute phase infection. The TGase activity in hemocyte lysate was found to decrease significantly from 21~32 to 12 units/mg. It suggests that an acute infection hampered the blood coagulation dramatically.
A significant increase of intrahemocytic superoxide anion was generated in TSV-infected shrimps using a nitroblue tetrazolium staining. However, the ratio of superoxide anion generation decreased in these hemocytes further stimulated with β-glucan, which is well-known an shrimp immunostimulant . This result suggests that a viral infection did enhance the phagocytic activity of hemocytes. Nevertheless, a poor response would occur in hemocytes on a further stimulation since they had been in an exhaused state. Plasma PO activity was found to increase significantly (p<0.05) from 0.04~0.14 to 0.29 units. This suggests that intrahemocytic PO was activated by a TSV-infection and then released into plasma.
Since TSV infection hampered blood coagulation, it would benefit the virus to disseminate through the shrimp body. Invaded viral particles may induce hemolysis or decrease the proliferation activity of hematopoietic tissue.
In the other hands, the circulating hemocytes may infiltrate into and play their functions in the infected foci. Increased intrahemocytic superoxide generation and PO activity via hemocyte degranulation or cytolysis, shrimps would strengthen their disease resistant and struggle against the viral infection.
During the process of host-virus interacton some hemolymph parameters were found to vary significantly. We, therefore, suggest they might be useful in the disease diagnostics.
中文摘要-----------------------------------------------------v
英文摘要-----------------------------------------------------vii
前言---------------------------------------------------------1
文獻回顧-----------------------------------------------------3
材料與方法---------------------------------------------------10
結果---------------------------------------------------------16
討論---------------------------------------------------------19
參考文獻-----------------------------------------------------23
附圖---------------------------------------------------------29
附表---------------------------------------------------------36
附錄---------------------------------------------------------37
宋宏紅(1994)草蝦抗弧菌病的研究。國立台灣大學動物學研究所博士論文,94 pp。
余俊億(2000)太平洋白蝦感染桃拉症病毒後血漿之分析。國立台灣大學動物學研究所碩士論文,57 pp。
Anderson, D.P.(1992)Immunostimulant, adjuvants and vaccine carriers in fish: Application to aquaculture. Annu. Rew. Fish Dis. 2. 281-307.
Ashida, M. and Brey, P. T.(1998)Molecular Mechanisms of Immune responses in Insects (Brey, P.T. and Hultmark, D., eds) pp. 135-172, Chapman & Hall, London.
Ashida, M., Dohke, K. and Ohnishi, E.(1974)Activation of prophenoloxidase III. Release of a peptide from prophenoloxidase by the activating enzyme. Biochem. Biophys. Res. Commun. 57, 1089-1095.
Ashida, M., Ishizaki, Y. and Iwahana, H.(1983)Activatioin of prophenoloxidase by bacterial cell walls or β-1,3-glucan in plasma of the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun. 57, 1089-1095.
Ashida, M. and Yamazaki, H.I.(1990)Biochemistry of the phenoloxidase system in insects: with special reference to its activation. In Molting and Metamorphosis (Ohnishi, E. and Ishizaki, H., eds). Japan Sci. Soc. Press, Tokyo/Springer-Verlag, Berlin, pp239-265.
Ashida, M. and Yoshida, H.(1988)Limited proteolysis of prophenoloxidase during activation by microbial products in insect plasma and effect of phenoloxidase on electrophoretic mobilities of plasma proetins. Insect Biochem. 18, 11-19.Aspán, A. and Söderhäll, K.(1991)Purification of prophenoloxidase from crayfish blood cells and its activation by an endogenous serine proteinase. Insect Biochem. 21,363-373.
Bradford, M. M.(1976)A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
Chang, C.F., Su, M.S. and Chen, H.Y.(1999)A rapid method to Quantify total Haemocyte count of Penaeus monodon using ATP analysis. Fish Pathol. 34, 211-212.
Fenimore, J.A. and Cox-Foster, D.(1998)Third International Symposium on Molecular Insect Science, Snowbird Utah, Tune 5-10, 1998, Abstract 33, The center of Insect Science, University of Arizona, Tucson, AZ.
Folk, J.E.(1983)Mechanism and basis for specificity of transglutaminase-catalyzed epsilon-(gamma-glutamyl)lysine bond formation. Adv. Enzymol. 54, 1-56.
Fuller, G.M. and Doolittle, R.F.(1971)Studies of invertebrate fibrinogen. Ⅱ. Transformation of lobster fibrinogen into fibrin. Biochemistry 10, 1311-1315.
Ghidalia, W., Vengrely, R., Montmonry, C., Coirault, Y. and Brouard, M.O.(1981)Coagulation in decapod crustacea. Comparative studies of the clotting process in species from group A, B and C. J. Comp. Physiol. 142, 473-478.
Gollas-Galván, T., Hernández-López, J. and Vargas-Albores, F.(1997)Effect of calcium on the prophenoloxidase system activation of the brown shrimp(Penaeus californiensis, Holmes)Comp. Biochem. Physiol. 107A, 419-425.
Guzmán-Murillo, A., Ochoa, J.L. and Vargas-Albores, F.(1993)The hemolytic activity in the hemolymph from brown shrimp(Penaeus californiensis Holmes)Comp. Biochem. Physiol. 106A, 271-275.
Hennig, O., Itami, T., Maeda, M., Kondo, M., Natsukari, Y. and Takahashi, Y.(1998)Analyses of hemolymph Immunoparameters in kuruma shrimp infected with Penaeid rod-shaped DNA virus. Fish Pathol. 33, 389-393.
Hernández-López, J., Gollas-Galván, T. and Vargas-Albores, F.(1996)Activation of the prophenoloxidase system of the brown shrimp(Penaeus californiensis Holmes)Comp. Biochem. Physiol. 113C, 61-66.
Hose, J.E., Martin, G.G., Tiu, S. and McKrell, N.(1992)Pattern of hemocyte production and release throughout the moult cycle in the penaeid shrimp Sicyonia ingentis. Biol. Bull. 183, 185-199.
Hose, J.E., Martin, G.G., Nguyen, V.A., Lueus, J. and Rosenstein, T.(1987)Cytochemical features of shrimp hemocytes. Biol. Bull. 173, 176-185.
Le Moullac, G., Le Groumellec, M., Ansquer, D., Froissard, S., Levy, P. and Aquacop.(1997)Haematological and phenoloxidase activity changes in the shrimp Penaeus stylirostris in relation with the moult cycle:protection against vibriosis. Fish and shellfish immunol. 7, 227-234.
Lorand, L. and Conrad, S.M.(1984)Transglutaminase. Molec. Cell. Biochem. 58, 9-35.
Lotz, J.M.(1997)Effect of host size on virulence of Taura virus to the marine shrimp Penaeus vannamei(Crustacea:Penaeidae). Disease of Aquatic Organism 30, 45-51.
Madaras, F., Chew, M.Y. and Parkin, J.D.(1981)Purification and characterization of the sand crab(Ovalipes bipustulatus)coagulogen(fibrinogen).Thromb. Haemost. 45, 77-81.
Martin, G.G., Hose, J.E., Omori, S., Chong, C., Hoodbhoy, T. and Mckrell, N.(1991)Localization and roles of coagulogen and transglutaminase in hemolymph coagulation in decapod crustaceans. Comp. Biochem. Physiol. 100B, 517-522.
Mason, H.S.(1965)Oxidase. Annu. Rev. Biochem. 34, 595-634.
Montaño-Pérez, K., Yepiz-Plascencia, G., Higuera-Ciapara, I. and Vargas-Albores, F.(1999)Purification and characterization of the clotting protein from the white shrimp Penaeus vannamei. Comp. Biochem. Physiol. 122B, 381-387.
Moullac, G.L., Soyez, C., Saulnier, D., Ansquer, D., Avarre, J.C. and Levy, P.(1998)Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish and shellfish Immunol. 8, 621-629.
Muta, T. and Iwanaga, S.(1996)The role of hemolymph coagulation in innate immunity. Curr. Opin. Immunol. 8, 41-47.
Nappi, A.J. and Vass, E.(1993)Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. Pigment Cell Res. 6, 117-126.
Ochiai, M. and Ashida, M.(1988)Purification of a β-1,3-glucan recognition protein in the prophenoloxidase activating system from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 263, 12056-12062.
Omori, S.A., Martin, G.G. and Hose J.E.(1989)Morphology of hemocyte lysis and clotting in the ridge-back prawn, Sicyonia ingentis. Cell Tiss. Res. 255,117-123.
Owens, L. and O’Neill, A.(1997)Use of a clinical cell flow cytometer for differential counts of prawn Panaeus monodon haemocytes. Dis. Aquat. Org. 31, 147-153.
Ratcliffe, N.A., Rowley, A.F., Fitzgerald, S.W. and Rhodes, C.P.(1985)Invertebrate immunity:basic concepts and recent advances. Int. Rev. Cytol. 97,183-350.
Satoh, D., Horii, A., Ochiai, M. and Ashida, M.(1999)Prophenoloxidase-activating enzyme of the silkworm, Bombyx mori. Purification, characterization and cDNA cloning. J. Biol. Chem. 274(11):7441-7453.
Seiving, B., Stenberg, P. and Nilsson, B.(1991)A new assay for transglutaminase. Scand. J. Clin. Lab. Invest. 51, 119-124.
Söderhäll, K., Cerenius, L. and Johansson, M.W.(1994)The prophenoloxidase activating system and its role in invertebrate defence. Ann. N.Y.Acad. Sci. 712, 155-161.
Song, Y.L. and Hsieh, Y.T.(1994)Immunostimulation of tiger shrimp(Penaeus monodon)hemocytes for generation of microbicidal substances:analysis of reactive oxygen species. Develop. Comp. Immunol. 18(3), 201-209.
Sung, H.H., Chang, H.J., Her, C.H., Chang, J.C. and Song, Y.L.(1998)Phenoloxidase activity of hemocytes derived from Penaeus monodon and Macrobrachium rosenbergii. J. Invert. Pathol. 71(1). Jan., 26-33.
Sung, H.H., Yang, Y.L. and Song, Y.L.(1996)Enhancement of microbicidal activity in the tiger shrimp Penaeus monodon via immunostimulation. J. Crustacean Biol. 16(2), 278-284.
Tait, J.(1911)Types of crustacean blood coagulation. J. Mar. Biol. Assoc. UK 9, 191-198.
Tsing, A., Arcier, J. M. and Bréhélin, M.(1989)Haemocytes of penaeids and palaemonid shrimps:morphology, cytochemistry and hemograms. J. Invert. Path. 53, 64-77.
Vargas-Albores, F.(1995)The defense system of brown shrimp(Penaeus californiensis):humoral recognition and cellular responses. J. Mar. Biotechnol. 3,153-156.
Vargas-Albores, F., Guzmán-Murillo, A. and Ochoa, J.L.(1993)A lipopolysaccharide-binding agglutinin isolated from brown shrimp(Penaeus californiensis Holmes)haemolymph. Comp. Biochem. Physiol. 104A, 407-413.
Yeh, M.S., Huang, C.J., Leu, J.H., Lee, Y.C. and Tsai, I.H.(1999)Molecular cloning and characterization of a hemolymph clottable protein from tiger shrimp(Penaeus monodon). Eur. J. Biochem. 266, 624-633.
Yoshida, H., Ochiai, M and Ashida, M.(1986)β-1,3-Glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system. Biochem. Biophys. Res. Commun. 16, 539-545.
Yoshida, H., Kinoshita, K. and Ashida, M.(1996)Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 271, 13854-13860.
Yu, C.I. and Song, Y.L.(2000)Outbreaks of Taura syndrome in Pacific white shrimp Penaeus vannamei cultured in Taiwan. Fish Pathol. 35(1):21-24.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊