跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 02:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭學舉
研究生(外文):Shyue-Jeu Kuo
論文名稱:複合材料曲板衝擊破壞強度之探討
論文名稱(外文):Study on Low-Velocity Impact Behavior of Laminated Composite Shells
指導教授:李雅榮李雅榮引用關係
指導教授(外文):Ya-Jung Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:造船及海洋工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:107
中文關鍵詞:複合材料衝擊層間應力
外文關鍵詞:composite materialsshellimpactinterlaminar stress
相關次數:
  • 被引用被引用:7
  • 點閱點閱:520
  • 評分評分:
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
本文主要以實驗與數值分析的方式,探討複合材料曲板的低速衝擊反應、力學特性及破壞行為。
在實驗方面,試片是Toho ETA12000碳纖維/ ACD 8810環氧樹脂預浸材料,使用壓力釜以高溫高壓的方式製成三種曲率(9.887、7.187、0)、兩種疊層方式([90/0/90/0/90/0/90/0]s、[45/-45/45/-45/45/-45/45/-45]s)共六種組合之試片。進行靜態下壓試驗和衝擊試驗。使用球形衝頭直徑為1.5公分。靜態下壓試驗記錄六組試片下壓力和位移間的關係;衝擊試驗則改變各種參數:衝頭質量、衝頭初速度、試片曲率、試片的疊層方式,記錄衝擊力履歷和應變履歷及破壞現象。實驗結果發現,有曲率之殼的衝擊力較無曲率之平板為高,而Angle ply較Cross ply能承受較大之變形,衝頭質量和初速度的增加也會造成衝擊力的增加。
在數值解析方面,以有限元素法軟體ABAQUS來分析複合材料曲板之衝擊反應。同樣地探討各種參數對衝擊反應的影響(曲率、疊層方式、衝頭質量、衝頭初速度、大變形理論)。分析得到的結果和實驗相同。
對於破壞的發生,面內應力和層間應力同等的重要。破壞的模擬選用Hashin和Ye破壞法則來判斷纖維破壞、樹脂破壞和脫層破壞。以有限差分法求取應力的微分值,由應力平衡方程式沿厚度方向的積分,可得知殼元素的層間應力。故使用殼元素可減少計算時間,又可得到六個應力以供破壞法則判斷破壞之用。配合ABAQUS提供之使用者副程式UMAT,可用以解析靜態下壓破壞之問題。
最後,由於動態分析較靜態分析不易進行,故由能量守恆的原理,推導出簡易由靜態反應推估動態反應的方法(ILF)。
The impact response, behavior and failure mechanism of low-velocity impact in laminated composite plate/shell are investigated both experimentally and numerically.
In respect of experimental investigation, Toho ETA12000 carbon/ACD 8810 epoxy prepregs were selected to fabricate specimens which have three curvatures(9.887、7.187、0) and two ply arrangements([90/0/90/0/90/0/90/0]s、[45/-45/45/-45/45/ -45/45/-45]s) under high temperature and high pressure. The force and displacement were measured in the static forced-displacement tests. The drop tests with several parameters including impactor mass, initial velocity, shell curvature and ply arrangements were performed by a spherical impactor which has a diameter of 1.5 cm. The impact force histories and strain histories were measured, and the failure phenomena of specimens were observed. From the results of the test, shells will have higher impact resistance than plates. Angle ply can sustain more deformation than cross ply. Heavier impactor mass or higher impactor initial velocity will cause higher impactor force.
In respect of numerical investigation, by using finite element software ABAQUS, the impact response of composite shell can be analyzed. Considering curvatures, ply arrangements of specimens, impactor mass, impactor initial velocity, large deflection theory, we get similar results as experimental ones.
Not only the in-plane stress but also the interlaminar stress plays a role in estimating the impact damage. The simulation of damage(fiber failure, matrix failure, and delamination failure) is carried out using Hashin and Ye failure criterion. In order to derive the interlaminar stresses from the in-plane stresses, a finite difference technique is applied to determine the derivatives of stresses. Interlaminar normal and shear stresses of shell elements are then obtained by integrating the equations of equilibrium through the thickness. Combined with the ABAQUS user subroutine UMAT, we can predict and simulate the failure of the shells.
Because the relations(Impact Load Factor) based on the principle of conservation of energy between the static and the dynamic behaviors were found, the difficulty of the dynamic analysis can be eliminated.
第一章 緒論…………………………………………………………… 1
1-1 前言………………………………………………………………… 1
1-2 文獻回顧…………………………………………………………… 3
1-3 本文架構…………………………………………………………… 4
第二章 撞擊試驗……………………………………………………… 6
2-1 試片製作與夾具設計……………………………………………… 6
2-2 材料試驗…………………………………………………………… 8
2-3 曲板靜態下壓試驗………………………………………………… 8
2-4 曲板動態衝擊試驗………………………………………………… 10
2-4-1 衝擊實驗儀器配置……………………………………………… 10
2-4-2 衝擊實驗反應分析……………………………………………… 11
第三章 數值分析……………………………………………………… 46
3-1 簡介ABAQUS………………………………………………………… 46
3-2 曲板有限元素模型的建立………………………………………… 47
3-3 模態分析…………………………………………………………… 49
3-4 靜態下壓分析……………………………………………………… 50
3-5 動態撞擊彈性反應分析…………………………………………… 50
3-6 層間應力的計算…………………………………………………… 54
3-7 破壞法則…………………………………………………………… 57
3-8 UMAT副程式………………………………………………………… 58
3-9 曲板靜態下壓破壞模擬…………………………………………… 59
第四章 撞擊反應之簡易推算………………………………………… 86
第五章 結論與建議…………………………………………………… 93
5-1 結論………………………………………………………………… 93
5-2 未來研究之建議…………………………………………………… 94
附錄A 文獻回顧:複合材料積層殼之層間應力計算………………… 95
A-1 平板層間應力公式推導…………………………………………… 95
A-2 曲殼層間應力公式推導…………………………………………… 99
附錄B 最小二乘法……………………………………………………… 102
參考文獻……………………………………………………………………104
[1] Abrate, S., "Impact on Composite Structures", Cambridege University Press, 1998
[2] Richardson, M. O. W. and Wisheart, M. J., "Review of Low-Velocity Impact Properties of Composite Materials", Composite Part A, 27A, pp.1123-1131, 1996
[3] Kapania, R. K. and Raciti, S., "Recent Advanced in Analysis of Laminated Beams and Plates, PartⅡ: Vibrations and Wave Propagation", AIAA Journal, Vol. 27, No. 7, pp.935-946, 1989
[4] 徐堯, "複合夾心材料低速衝擊行為之實驗與數值分析",國立台灣大學造船及海洋工程學研究所博士論文,1998
[5] Tan, T. M. and Sun, C. T., "Use of Statical Indentation Laws in the Impact Analysis of Laminated Composite Plates", Transactions of the ASME, Vol. 52, pp.6-12, 1985
[6] Sun, C. T. and Chattopadhyay, S., "Dynamic Response of Anisotropic Laminated Plates Under Initial Stress to Impact of a Mass", Journal of Applied Mechanics, pp.693-698, 1975
[7] Sankar, B. V. and Sun, C. T., "Indentation of a Beam by a Rigid Cylinder", International Journal of Solids and Structures, Vol. 19, No. 4, pp.293-303, 1983
[8] Chen, J. K. and Sun, C. T., "Dynamic Large Deflection Response of Composite Laminates Subjected to Impact", Composite Structures, Vol. 4, pp.59-73, 1985
[9] Reddy, J. N., "Geometrically Nonlinear Transient Analysis of Laminated Composite Plates", AIAA Journal, Vol. 21, No. 4, pp.621-629, 1983
[10] Sun, C. T. and Huang, S. N., "Transverse Impact Problems by Higher Order Beam Finite Element", Computers and Structures, Vol.5, pp.297-303, 1975
[11] Swanson, S. R., Smith, N. L. and Qian, Y., "Analytical and Experiment Strain Response in Impact of Composite Cylinders", Composite Structures, Vol. 18, pp.95-108, 1991
[12] Chao, C. C., Tung, T. P. and Lee, S. C., "Response of Orthotropic Cylindrical Shells Subjected to Impact Loading", International Conference on Advanced Composite Materials and Structures, Taipei, Taiwan, pp.705-716, 1987
[13] Lin, H. J. and Lee, Y. J., "The Impact Characteristics of Fiber-Reinforced Composite Laminated Plates and Shells", Ph. D Thesis, NTU, 1989
[14] Cantwell, W. J. and Morton, J., "Comparison of the Low and High Velocity Impact Response of CFRP", Composites, Vol. 20, N0. 6, pp.545-551, 1989
[15] Bogdanovich, A. E. and Iarve, E. V., "Numerical Analysis of Impact Deformation and Failure in Composite Plates", Journal of Composite Materials, Vol. 26, No.4, pp.520-545, 1992
[16] Fim, S. R., and Springer, G. S., "Composite Plates Impact Damage", Technomic Publishing Company, Inc., 1991
[17] Joshi, S. P. and Sun, C. T., "Impact Induced Fracture in a Laminated Composite", Journal of Composite Materials, Vol. 19, pp.51-66, 1985
[18] Chang, F. K., Choi, H. Y. and Jeng, S. T., "Study on Impact Damage in Laminated Composites", Mechanics of Materials, Vol. 10, pp.83-95, 1990
[19] Siow, Y. P. and Shim, V. P. W., "An Experimental Study of Low Velocity Impact Damage in Woven Fiber Composites", Journal of Composite Materials, Vol. 32, No. 12, pp.1178-1201, 1998
[20] Qian, Y. and Swanson, S. R., "Experimental Measurement of Impact Response in Carbon/Epoxy Plates", AIAA Journal, Vol. 28, No, 6, pp.1069-1074, 1990
[21] Ambur, D. R., Prasad, C. B. and Waters, W. A., "A Dropped Weight Apparatus for Low Speed Impact Testing of Composite Structures", Experimental Mechanics, Vol. 35, pp.77-82, 1995
[22] Lajcok, M. R., "New Approach in the Determination of Interlaminar Shear Stress from the Results of MSC/NASTRAN", Computers and Structures, Vol. 24, No. 4, pp.651-656, 1986
[23] Chaudhuri, R. A., "An Equilibrium Method for Prediction of Transverse Shear Stresses in a Thick Laminated Plate", Computers and Structures, Vol. 23, No. 2, pp.139-146, 1986
[24] Chaudhuri, R. A. and Seide, P., "An Approximate Semi-Analytical Method for Prediction of Interlaminar Shear Stresses in an Arbitrarily Laminated Thick Plate", Computers and Structures, Vol. 25, No. 4, pp.627-636, 1987
[25] Engblom, J. J. and Ochoa, O. O., "Finite Element Formulation Including Interlaminar Stress Calculation", Computers and Structures, Vol. 23, No. 2, pp.241-249, 1986
[26] Byun, C. and Kapania, R. K., "Prediction of Interlaminar Stresses in Laminated Plates Using Global Orthogonal Interpolation Polynomials", AIAA Journal, Vol. 30, No. 11, pp.2740-2749, 1992
[27] Ganapathy, S. and Rao, K. P., "Interlaminar Stresses in Laminated Composite Plate, Cylindrical/Spherical Shell Panels Damaged by Low-Velocity Impact", Composite Structures, Vol. 38, No. 1-4, pp.157-168, 1997
[28] Hashin, Z., "Failure Criteria for Unidirectional Fiber Composites", Journal of Applied Mechanics, Vol. 47, pp.329-334, 1980
[29] Nosier, A., Kapania R. K. and Reddy, J. N., "Low-Velocity Impact of Laminated Composite Using a Layerwise Theory", Computational Mechanics, Vol. 13, pp.360-379, 1994
[30] Robeson, M. E., "Study of Impact Damage of Composite Laminates Using Five-Point Bending", Journal of Reinforced Plastics and Composites, Vol. 17, No. 2, pp.109-122, 1998
[31] ABAQUS Theory Manual Version 5.8, Hibbitt, Karlsson & Sorensen, Inc., 1998
[32] 林聰悟、林佳慧, "數值方法與程式",1997
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top