跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/27 00:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張惠婷
研究生(外文):Hui-Ting Chang
論文名稱:化學改質對木材耐久性之影響
論文名稱(外文):Effects of Chemical Modification on the Durability of Wood
指導教授:張上鎮張上鎮引用關係
指導教授(外文):Shang-Tzen Chang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:森林學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:206
中文關鍵詞:木材化學改質耐久性抗吸濕性尺寸安定性熱穩定性耐腐朽性耐光性
外文關鍵詞:WoodChemical ModificationDurabilityMoisture Excluding EfficiencyDimensional StabilityTherrnostabilityDecay ResistanceLightfastness
相關次數:
  • 被引用被引用:8
  • 點閱點閱:600
  • 評分評分:
  • 下載下載:115
  • 收藏至我的研究室書目清單書目收藏:2
本論文係探討化學改質對於木材耐久性的影響,試驗結
果顯示木材以醋酸酐、丁酸酐與己酸酐處理後,木材中吸水
性的羥基數量明顯減少,可以大幅提高木材的抗吸濕性,而
在被取代羥基含量相同的情形下,取代基的分子較大,則抗
吸濕性較高。由於容積膨潤的效果,化學改質木材具有良好
的尺寸安定性,其中,以乙二醛、異丙基環氧丙基醚、丁酸
酐以及己酸酐等處理的效果較好。木材經過乙二醛、環氧丁
烷、丁二酸酐、順丁烯二酸酐與鄰苯二甲酸酐處理後,反應
所形成之醚鍵或酯鍵在 150-300 ℃ 會產生降解,即熱穩定
性較差;而異丙基環氧丙基醚、甲基丙烯酸環氧丙酯、醋酸
酐、丁酸酐、己酸酐等處理,並不會影響杉木的熱穩定性,
即杉木處理材的熱穩定性與未處理材相同;而硬槭木經過這
些處理後,特別是以異丙基環氧丙基醚處理,可以提高硬槭
木半纖維素與木質素的熱穩定性。木材經過真菌腐朽後,纖
維素受到破壞,使木材的最大分解速率溫度降低,在醚化處
理中的甲基丙烯酸環氧丙酯、環氧丁烷以及異丙基環氧丙基
醚處理,均可以改善木材對褐腐菌與白腐菌的耐腐朽性;而
在酯化處理中,以鄰苯二甲酸酐、醋酸酐、丁酸酐與己酸酐
處理均能提升杉木的耐腐朽性,減少木材腐朽後的重量損失
率。由熱重分析亦進一步得知,異丙基環氧丙基醚、醋酸酐、
丁酸酐與己酸酐等處理材經過腐朽試驗後,處理材的最大分
解速率溫度並未產生變化,即處理材纖維素的聚合度並未受
到降解。又木材經紫外光照射後,光氧化作用促使木質素的
結構受到破壞,纖維素的降解,且使木材結晶度降低。一般
透明塗料仍無法改善木材的耐光性,為了瞭解位於塗膜下木
材的光變色與化學結構變化,將照光後的游離塗膜與下方木
材分別加以解析,得知仍有部分紫外光可穿透塗膜,而於塗
膜中添加光安定劑可以減少紫外光的穿透,故減緩塗膜下方
木材的光劣化。比較各種化學改質木材的耐光性,以丁酸酐
處理材照光後的顏色變化最少,可以有效抑制木材的光黃化
。由紅外線光譜、電子自旋共振光譜與散反射光譜分析結果
顯示,丁酸酐處理杉木照光後所產生的酚氧自由基較未處理
材為少,不但減少酉昆類等有色劣解物的形成,且抑制丁醯
化木質素照光後的化學結構變化,故能有效地改善木材的耐
光性。綜合上述的結果顯示,木製品可依用途不同,以適當
的化學改質處理提高耐久性。
The effects of chemical modifications on the durability
of wood were evaluated in this study. After acetylation,
butyrylation or hexanoylation, the amounts of the hydroxyl
groups reduced and then the hygroscopicity of treated wood decreased. Acylation of wood components increased the moisture excluding efficiency of wood and retarded the absorption of water. With the same amount of hydroxyl group substitution, among three acylation treatments the higher moisture excluding efficiency of hexanoylated wood was achieved because its substituted functional group had the greater molecular weight. The improvement in dimensional stability of modified wood was due to the bulking effect of wood after chemical modification. Among the chemical modification treatments, the glyoxal treatment, the isopropyl glycidyl ether treatment, butyric anhydride treatment, and hexanoic anhydride treatment exhibited the superior dimensional stability. The thermostabilities of chemical modified wood were examined by thermogravimetry. The
cleavage of grafted ether bonds or ester bonds of China fir
treated with glyoxal, butylene oxide, succinic anhydride,
maleic anhydride, and phthalic anhydride, respectively, ccurred at between 150 ℃ to 300 ℃. On the other hand, the thermostability of China fir treated with isopropyl glycidyl
ether, glycidyl methacrylate, acetic anhydride, butyric anhydride, and hexanoic anhydride, respectively, was the
same as that of the untreated specimen. The thermostability
of maple treated with the same chemical reagents, especially with isopropyl glycidyl ether, was ameliorated by improving the thermostability of hemicelluloses and lignin after treatment. The structure of the cellulose was deteriorated after the decay test with rot fungi, which resulted in the decrease of the maximum decomposition temperature of wood. Among the etherification treatments, the glycidyl methacrylate treatment, the butylene oxide treatment, or the isopropyl glycidyl ether treatment can meliorate the decay resistance of wood. Among the esterification treatments, the weight loss percentages of wood treated with phthalic anhydride, acetic anhydride, butyric anhydride, and hexanoic anhydride, respectively, were greatly reduced after decay test. Based on the thermogravimetry analysis, the maximum decomposition temperatures of wood treated with isopropyl glycidyl ether, acetic anhydride, butyric anhydride, and hexanoic anhydride, respectively, were
unchanged after decay test. It demonstrated that the degree of polymerization of cellulose of these treated woods didn''t decrease after decay test. Due to the photochemical oxidation, the structure of lignin was decomposed after exposure to the ultraviolet light. The destruction of cellulose resulted in the decrement of crystallinity with the irradiation time. It couldn’t effectively inhibit the photoyellowing of the wood by coating with clear coatings. To illustrate the photoyellowing and the chemical structure alterations of wood beneath the clear coatings, the irradiated free films and irradiated wood specimens underneath the free films were examined. The results revealed that some ultraviolet light penetrated the free films reached the interface between wood and coating film. The addition of light stabilizers into coating could slow down the
photodegradation of wood underneath by reducing more amount of the penetrating ultraviolet light. After the lightfastness testing, the color difference and yellowness index of butyrylated wood were significantly reduced, indicating that butyrylation inhibited the photoyellowing of wood. Results of the IR analysis, ESR analysis, and the diffuse reflectance spectrum demonstrated that the inhibition of photodiscoloration of butyrylated wood was caused by reducing the formation of the phenoxyl radicals after irradiation, and then significantly decreased the colored chromophoric derivatives such as quinoid compounds formed on the wood surface. It was also proven that the change in the chemical structure of butyrylated milled wood
lignin after irradiation was less than that of untreated milled
wood lignin. Hence, the lightfastness of wood can be improved
by butyrylation. According to the above results, it is feasible
that, in order to satisfy the specific requirements for wood
utilization, the durability of wood products can be prolonged
by treating wood with proper chemical modification.
封面
目錄
表目次
圖目次
摘要
Summary
壹、緒言
貳、文獻回顧
一、木材的缺點
(一)尺寸的不安定性
(二)生物劣化
(三)木材的光劣化
(四)木材的天候劣化
二、木材的化學改質-醚化處理
(一)醚化的反應類型及機制
(二)醚化處理的化學反應分析
(三)醚化處理對木材性質的影響
三、木材的化學改質-酯化處理
(一)酯化的反應類型及機制
(二)酯化處理的化學反應分析
(三)酯化處理對木材性質的影響
參、材料與方法
一、試驗材料
二、試驗方法
三、性質分析
肆、結果與討論
一、化學改質木材的化學結構變化
(一)醚化木材的化學結構變化
(二)酯化木材的化學結構變化
二、化學改質木材的吸濕性
(一)醚化木材的吸濕性
(二)酯化木材的吸濕性
三、化學改質木材的尺寸安定性
(一)醚化木材的尺寸安定性
(二)酯化木材的尺寸安定性
四、化學改質木材的熱穩定性
(一)木材的熱穩定性
(二)醚化木材的熱穩定性
(三)酯化木材的熱穩定性
五、化學改質木材的耐腐朽性
(一)木材的耐腐朽性
(二)化學改質木材的耐腐朽性
(三)化學改質木材經真菌腐朽後的化學結構變化
(四)化學改質木材經真菌腐朽後的熱性質
六、化學改質木材的耐光性
(一)素材的光劣化
1.素材照光後的表面顏色變化
2.室內放置與加速耐光試驗的相關性
3.素材表面的化學結構變化
4.素材表面的結晶度變化
5.素材表面的粗糙度變化
(二)透明塗裝木材的光劣化
1.透明塗裝材的光劣化
(1).不同透明塗料塗裝木材之耐光性比較
(2).木材種類對透明塗裝木材耐光性之影響
(3).添加不同光安定劑對透明塗裝木材耐光性之影響
(4).聚胺基甲酸酯塗裝木材照光後表面性質的變化
2.游離塗膜下層木材的光劣化
(三)醚化木材的耐光性
(四)酯化木材的耐光性
1.酯化木材的光劣化
2.丁醯化木質素的耐光性
伍、結論
陸、參考文獻
王松永、丁昭義 1984 林產學。第156-181頁。台灣商務書局。
639頁。
張上鎮 1983 談木材之天候劣化。林產工業 2(1): 82-84。
張上鎮 1984 木材用透明塗料的耐光性。林產工業 3(4): 31-41。
張上鎮 1984 以ESCA分析木質材料的界面特性。林產工業 3(3):
107-114。
張上鎮 1985 木質素在木材光劣化反應中的角色。林產工業 4(2):
17-23。
張上鎮 1989 硝化纖維素塗料光劣化後之表面化學性質變化分
析。林業試驗所研究報季刊 4(3): 123-136。
張上鎮 1989 白蟻之生態、生活習性與防治驅除法。林產工業 8(4):
70-80。
張上鎮 1989 光譜分析之利器─霍氏紅外線光譜分析。林產工業
8(4): 112-124。
張上鎮、李鴻麟、顧文君 1993 藥劑前處理對透明塗料塗裝木材
耐光性之影響。中華林學季刊 26(3): 109-126。
張上鎮 1995 透明塗料抑止木質材料光劣化效能之評估。中華林
學季刊 28(2): 117-134。
張上鎮、張惠婷 1995 木材之醚化處理及其對木材性質之影響。
中華林學季刊 28(1): 157-170。
張上鎮、周佰隆 1995 透明塗料之耐候性改善及其天候變色與光
變色之比較。林產工業 14(3): 373-390。
張上鎮、張惠婷 1996 以光譜反射曲線評估木材之色澤與耐光性。
中華林學季刊 29(1): 31-44。
張上鎮 1997 光波長對聚胺基甲酸酯塗膜性質之影響 -- 表面化
學結構變化。中華林學季刊 30(2): 235-244。
張上鎮、張惠婷、葉汀峰 1997 光波長對聚胺基甲酸酯塗膜性質
之影響 -- 顏色變化與波譜敏感性。中華林學季刊 30(2):
227-233。
張上鎮、蕭雅方 1998 塗裝木材人工加速劣化與自然曝露試驗之
相關性。(II)室內耐光性。中華林學季刊 31(1): 105-114。
劉正字、李文昭、林福元 1998 木材之化學改質及其膠合性之研
究 (I) ─ 醚化處理對木材尺寸安定性及力學性質之影響。
林產工業 17(2): 305-320。
Bachler, R.H. 1959. Improving wood''s durability through
chemical modification. Forest Product Journal. 9(5):
166-171.
Boonstra, M.G., A. Pizzi, P. Tekely and J. Pendlebury. 1996.
Chemical modification of Norway spruce and scots pine. A
13C NMR CP-MAS study of the reactivity and reactions of
polymeric wood components with acetic anhydride.
Holzforschung. 50(3): 215-220.
Boonstra, M.G., A. Pizzi, P. Tekely and J. Pendlebury. 1997. A
study of the influence of solvents on the modification
of wood with organic anhydrides. Holzforschung. 51(1):
62-66.
Chang, S.T., D.N. S. Hon and W.C. Feist. 1982. hotodegradation
and photoprotection of wood surfaces. Wood and Fiber. 14
(2): 104-117.
Clemons, C., R.A. Young and R.M. Rowell. 1992. Moisture
sorption properties of composite boards from esterified
aspen fiber. Wood and Fiber Science. 24(3): 353-363.
Cetin, N.S. and C.A.S. Hill. 1999. An investigation of the
reaction of epoxides with wood. Journal of Wood
Chemistry and Technology. 19(3): 247-264.
Elder, T. 1991. Pyrolysis of wood. In "Wood and Cellulosic
Chemistry" (D.N.S. Hon and N. Shiraishi Ed.). Marcel
Dekker Inc. New York. pp.665-681.
Ellis, W.D. and R.M.Rowell. 1982. Reaction of isocyanate with
southern pine wood to improve dimensional stability and
decay resistance. Wood and Fiber Science. 16(3): 349-
356.
Eriksson, K.E.L., R.A. Balanchette and P. Ander. 1990.
Biodegradation of cellulose. In "Microbial and Enzymatic
Degradation of Wood and Wood Components" (K.E.L.
Eiksson, R.A. Balanchette and P. Ander Ed.). Springer-
Verlag Berlin Heidelberg. Germany. pp.89-123.
Feist, W.C., R.M. Rowell and W.D. Ellis. 1991. Moisture
sorption and accelerated weathering of acetylated and
methylacrylated aspen. Wood and Fiber Science. 23(1):
128-136.
Fuse, G. 1988. On the safety of preservatives against fungi,
termites and insects. Mokuzai Gakkaishi. 34(9): 709-717.
Haygreen, J.G. and J.L. Bowyer. 1996. Wood and water. In "
Forest Products and Wood Science " (J.G. Haygreen and
J.L. Bowyer Ed.). Iowa State University Press. USA. pp.
155-175.
Heitner, C. 1993. Light-induced yellowing of wood-containing
papers. In " Photochemistry of Lignocellulosic
Materials " (C. Heitner and J.C. Scaiano Ed.). American
Chemical Society. Washington D.C. pp. 2-22.
Hill, C.A.S., D. Jones and G. Strickland. 1996. The
dimensional stabilization of Corsican pine sapwood by
reaction with carboxylic acid anhydride. Holzforschung.
50(5): 457-462.
Hill, C.A.S., D. Jones, G. Strickland and N.S. Cetin. 1998.
Kinetic and mechanistic aspects of the acetylation of
wood with acetic anhydride. Holzforschung. 52(6): 623-
629.
Hindsgaul, C., J. Schramm, L. Gratz and U. Henriksen. 2000.
Physical and chemical characterization of particles in
producer gas from wood chips. Bioresource Technology.
73: 147-155.
Hirata, T. 1995. Kinetic of pyrolysis of wood and cellulose.
Mokuzai Gakkaishi. 41(10): 879-886.
Hon, D.N.S., G. Ifju and W.C. Feist. 1980. Characteristics of
free radical in wood. Wood and Fiber. 12(2): 121-130.
Hon, D.N.S. and N. Minemura. 1991. Color and discoloration. In
"Wood and Cellulosic Chemistry" (D.N.S. Hon and N.
Shiraishi Ed.). Marcel Dekker Inc. New York. pp. 395-454.
Imamura, Y., I. Iida and A. Ikeuchi. 1987. Internal bond
strength of acetylated flakeboard exposed to decay
hazards. Mokuzai Gakkaishi. 33(12): 986- 991.
Imamura, Y. 1992. Morphological changes in acetylated wood
exposed to weathering. Wood Research. 79: 54-61.
Jaeger, C., A. Nourmamode and A. Castellan. 1993.
Photodegradation of lignin: A photochemical study of
phenolic coniferyl alcohol lignin model molecules.
Holzforschung. 47: 375-390.
Jakab, E., O. Fax and F. Till. 1997. Thermal decomposition of
milled wood lignins studied by thermogravimetry/mass
spectrometry. Journal of Analytical and Applied
Pyrolysis. 40: 171-186.
Kalnins, M.A. 1984. Photochemical degradation of acetylated,
methylated, phenylhydrazine-modified and ACC-treated
wood. Journal of Applied Polymer Science. 29: 105-115.
Kapich, A.N., K.A. Jensen and E. Hammel. 1999. Peroxyl
radicals are potential agents of lignin biodegradation.
FEBS Letters. 461: 115-119.
Kiguchi, M. 1990. Chemical modification of wood surfaces by
etherification Ⅰ. Manufacture of surface hot-melted
wood by etherification. Mokuzai Gakkaishi. 36(8): 651-
658.
Kiguchi, M. 1990. Chemical modification of wood surfaces by
etherification Ⅱ. Weathering ability of hot-melted wood
and manufacture of self hot-melt bonded particleboard.
Mokuzai Gakkaishi. 36(10): 867-875.
Kiguchi, M. and K. Yamamoto. 1992. Chemical modification of
wood surfaces by etherification Ⅲ. Some properties of
self-bonded benzylated particleboard. Mokuzai Gakkaishi.
38(2): 150-158.
Kiguchi, M. 1997. Photo-deterioration of chemically modified
wood surfaces: Acetylated wood and alkylated wood.
Japan Agricultural Research Quarterly. 31(2): 147-154.
Kirk, T.K. 1984a. Biological decomposition of solid wood.
pp.455-483. In "The Chemistry of Solid Wood " (R. Rowell
Ed.). American Chemical Society. Washington. D.C.
Kirk, T.K. 1984b. Degradation of lignn. In "Microbial
Degradation of Organic Compounds" (D.T. Gibson Ed.).
Marcel Dekker. New York. pp. 399-437.
Kollman, F.F.P. and W.A. Cote. 1968. Physics of wood. In
"Principles of Wood Science and Technology" (F.F.P.
Kollman and W.A. Cote Ed.). Springer-Verlag. Germany.
pp. 180-219.
Kumar, S. 1994. Chemical modification of wood. Wood and Fiber
Science. 26(2): 270-280.
Kuo, M.L. and N. Hu. 1991. Ultrastructural changes of
photodegradation of wood surface exposed to UV.
Holzforschung. 45(5): 347-353.
Li, C. and A.J. Ragauskas. 1999. Brightness reversion of
mechanical pulps part XIII: Photoinduced degradation of
lignin on cellulose matrix. Journal of Wood Chemistry
and Technology. 19(1): 43-60.
Macleod, I.T., A.D. Scully, K.P. Ghiggins, P.J.A. Ritchie,
O.M. Paravagna and B. Leary. 1995. Photodegradation at
the wood-clearcoat interface. Wood Science and
Technology. 29: 183-189.
Martinez-Inigo, M.J., P. Immerzeel, A. Gutierrez, J.C. Rio and
R. Sierra-Alvarez. 1999. Biodegradability of extractives
in sapwood and heartwood from scots pine by sapstain and
white rot fungi. Holzforschung. 53(3): 247-252.
Matsuda, H. 1987. Preparation and utilization of esterified
wood bearing carboxyl groups. Wood Science and
Technology. 21: 75-88.
Masuda, M. 1992. Visual characteristics of wood and the
psychological images. Mokuzai Gakkaishi. 38(12): 1075-
1081.
Nakano, T. 1993. Reaction of glyoxal and glyoxal/glycol with
wood. Wood Science and Technology. 28: 23-33.
Newman, R.H., J.A. Hemmingson and I.D. Suckling. 1993.
Carbon-13 nuclear magnetic resonance studies of kraft
pulping. Holzforschung. 47(3):234-238.
Nilsson, T., R.M. Rowell, R. Simonson and A. Tillman. 1988.
Fungal resistance of pine particle boards made from
various type of acetylated chips. Holzforschung. 42(2):
123-126.
Ogawa, T. and M. Ohkoshi. 1997. Properties of medium density
fiberboards produced from thermoplasticized wood fibers
by allylation without adhesives. Mokuzai Gakkaishi. 43
(1): 61-67.
Ohkoshi, M. 1990. Bonding of wood by thermoplasticizing the
surface Ⅰ. Effect of allylation and hot press
condition. Mokuzai Gakkaishi. 36(1): 57-63.
Ohkoshi, M. and A. Kato. 1997. 13C-NMR analysis of acetyl
groups in acetylated wood II. Acetyl groups in lignin.
Mokuzai Gakkaishi. 43(4): 364-369.
Ota, M., K. Abe and T. Sekiguchi. 1996. Light-induced color
change of acetylated wood meal of kiri (Paulownia
tomentosa Steud.). Mokuzai Gakkaishi. 42(2): 216-221.
Pan, J., Y. Song, W.Y. Lau and S.H. Goh. 1993.
Characterization of urethane functional hindered amine
light stabilizers. Polymer Degradation and
Stabilization. 41: 275-281.
Patil, D., R.D. Gilbert and R.E. Forens. 1990. Environmental
effects on latex paint coatings. I. Base polymer
degradation. Journal of Applied Polymer Science. 41:
1641-1650.
Pettersen, R.C. 1984. The chemical composition of wood.
pp.57-126. In "The Chemistry of Solid Wood " (R. Rowell
Ed.). American Chemical Society. Washington. D.C.
Rabek, J.F. 1990. Photostabilization of polymers: Principles
and applications. Elsevier Applied Science. pp. 42-79.
Rijsdijk, J.F. and P.B. Laming. 1994. Physical properties of
145 timber. In " Physical and Related Properties of 145
Timbers " (J.F. Rijsdijk and P.B. Laming Ed.). Kluwer
Academic Publishers. Netherlands. pp.48-49.
Rowell, R.M., D.I. Gutzmer, I.B. Socks and R.E. Kinney. 1976.
Effect of alkene oxide treatment on dimensional
stability of wood. Wood Science. 9(1): 51-54.
Rowell, R.M. 1978. Distribution of bonded chemicals in
southern pine treated with alkylene oxides. Wood
Science. 10(4): 193-197.
Rowell, R.M., S.V. Hart and G.R. Esenther. 1979. Resistance of
alkylene-oxide-modified southern pine to attack by
subterranean termites. Wood Science. 11(4): 271-275.
Rowell, R.M. 1980. Distribution of reacted chemical in
southern pine modified with methyl isocyanate. Wood
Science. 13(2): 102-110.
Rowell, R.M. 1982. Distribution of acetyl group in southern
pine reacted with acetic anhydride. Wood Science. 15(2):
172-184.
Rowell, R.M. and A.M. Tillman. 1986. Dimensional stabilization
of flakeboard by chemical modification. Wood Science
and Technology. 20: 83-95.
Rowell, R.M. 1990. Chemical modification of wood. In "Wood
and Cellulosic Chemistry". (D.N.-S.Hon and N. Shiraishi
Ed.). Marcell Dekker Inc. New York and Basel. pp. 703-
756.
Rowell, R.M., R. Simonsen and A.M. Tillman. 1990. Acetyl
balance for the acetylation of wood particles by a
simplified procedure. Holzforschung. 44(4): 263-269.
Rowell, R.M., R. Simonson, S. Hess, D.V. Plackett, D. Cronshaw
and E. Dunningham. 1994. Acetyl distribution in
acetylated whole wood and reactivity of isolated wood
cell-wall components to acetic anhydride. Wood and Fiber
Science. 26(1): 11-18.
Sawatari, A. 1997. Surface characterization of wood, pulp and
paper by means of ESCA. Mokuzai Gakkaishi. 43(9):
701-708.
Skaar, C. 1984. Wood-water relationships. In "The Chemistry of
Solid Wood " (R. Rowell Ed.). American Chemical Society.
Washington. D.C. pp. 127-140.
Siau, J.F. 1984. Basic wood-moisture relationships.
In "Transport Process in Wood" (J.F. Siau Ed.). Springer-
Verlag Berlin Heidelberg. Germany. pp. 1-25.
Simms, J.A. 1987. Acceleration shift factor and its use in
evaluation weathering data. Journal of Coating
Technology. 59(748): 45-53.
Sjoholm, R., B. Holmbom and N. Akerback. 1992. Studies of the
photodegradation of spruce lignin by NMR spectroscopy.
Journal of Wood Chemistry and Technology. 12(1): 35-52.
Sun, Y.P., K.L. Nguyen and F.A. Wallis. 1998. Ring-opened
products from reaction of lignin model compounds with
UV-assisted peroxide. Holzforschung. 52(1): 61-66.
Wnag, S.Y. and C.L. Cho. 1993. Equilibrium moisture content of
six wood species and its influential factors. Mokuzai
Gakkaishi. 39(2): 126-137.
Wegener, G. and D. Fengel. 1979. Rapid ultrasonic isolation of
milled wood lignins fractionation and degradation
experiments. Tappi. 62(3): 97-100.
Williams, R.S. 1983. Effect of grafted UV stabilizers on wood
surface erosion clear coating performance. Journal of
Applied Polymer Science. 28: 2093-2103.
Williams, F.C. and M.D. Hale. 1999. The Resistance of wood
chemically modified with isocyanates. Part 1. Brown rot,
white rot and acid chlorite delignification.
Holzforschung. 53(3): 230-236.
Wu, K.T. 1977. Electron spin resonance study on wood. Journal
of Agriculture and Forestry of National Chung Hsing
University. 26: 129-141.
Yasuda, R. and K. Minato. 1995. Chemical modification of wood
by non-formaldehyde cross-linking reagents. Part. 3
Mechanism of dimensional stabilization by glyoxal
treatment and effect of the addition of glycol. Wood
Science Technology. 29(3):243-251.
Young, R.A., R.M. Rammon, S.S. Kelly and R.H. Gillespie 1982.
Bond formation by wood surface reactions: Part I ─
Surface analysis by ESCA. Wood Science. 14(3): 110-119.
Zhao, G.J., M. Norimoto, F. Tanaka, T. Yamada and R.M. Rowell.
1987. Structure and properties of acetylated wood. I.
Changes in the degree of crystallinity and dielectric
properties by acetylation. Mokuzai Gakkaishi. 33(2): 136-
142.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top