跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 15:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊玫玲
研究生(外文):Yang, Mei-Ling
論文名稱:三斗石櫟苗木對不同光度及磷肥之形態暨生理反應
論文名稱(外文):Effects of Light and Phosphorus Fertilizer on the Morphological and Physiological Attributes of Three-cupule Tanoak(Pasania ternaticupula Hay.)Seedlings
指導教授:郭幸榮郭幸榮引用關係
指導教授(外文):Kuo, Shing-Rong
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:93
中文關鍵詞:三斗石櫟光度磷肥
外文關鍵詞:Pasania ternaticupula Hay.LightPhosphorus Fertilizer
相關次數:
  • 被引用被引用:9
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討三斗石櫟苗木對不同光度及磷肥處理之生長和形質反應以及出栽於林地後之生長表現。
試驗結果顯示,不同光度處理對苗高淨生長量、總葉面積、平均單葉面積、總乾重、根部、莖部及葉部乾重、相對苗高、Dickson品質指數等之效應,均以相對光度58%者為最大。另葉面積比、比葉面積、葉重量比、葉部乾重百分比及葉綠素總量等,呈現隨光度之增強而下降之趨勢。至於R/T比、根重及莖重百分比、氣孔密度等,則隨光度之增強而增加。不同磷肥施用量間,苗木總乾重、根部及葉部乾重、Dickson品質指數等,均以P60(60kg/ha)處理最大。而各部位磷濃度,隨磷肥施用量增加而呈上升之勢。
三斗石櫟苗木經不同光度及磷肥處理,於出栽林地1年後的生長,不同磷肥施用量對於苗木之高生長、直徑生長及成活率並未造成顯著之影響。至不同光度處理間,苗木高生長以原生長於相對光度44%者最佳,可能與造林地留存上木有關;而直徑生長則無顯著差異;成活率則以原生長於相對光度44%及58%者最佳。
另就本研究結果而言,苗圃期給予適當程度之遮蔭,確有利於生物量之累積。至磷肥之效益,在每公頃60kg之低施用量時,可增加苗木生物量,超過此量的效益不顯著,因此,對三斗石櫟而言,最有效而經濟的育苗處理組合為:相對光度58%及每公頃施用60公斤磷肥。
The objective of this study was aimed to ascertain the effects of light intensity and phosphorus fertilizer on the growth and field performance of Pasania ternaticupula seedlings. Three-month old seedlings of P. ternaticupula were applied with 0, 60, 90, 120, 150 kg ha-1 phosphorus fertilizer, respectively, combined with 300 kg ha-1 nitrogen fertilizer and 100 kg ha-1 potassium fertilizer, while seedlings were grown under 44%, 58% relative light intensity, and full daylight, respectively.
The results showed that the one-year old seedlings grown in relative light intensity of 58% full daylight had biggest items in height growth, total leaf area, average leaf area, total dry mass, dry mass of roots, stem and leaves, and Dickson quality index. However, leaf area ratio(LAR), specific leaf area(SLA), leaf weight ratio(LWR), dry weight partition to leaf , and chlorophyll concentration of seedlings were increased as shading intensity increased. Root-top ratio, dry weight of roots, and the stomata density were increased in the higher light intensity environment. The light intensity significantly affected the growth and morphology of seedlings.
The responses of total weight, dry weight of roots and leaves, Dickson quality index showed that the 60 kg ha-1 P level was optimal. The concentration of P in seedlings was increased as the amount of P fertilizer increased. The first year field performance of the seedlings after out-planting was also affected by light intensity during nursery stage. The seedlings grown under relative light intensity 44% had highest height growth in first year in field might be due to the scattered trees that shading the planted seedlings. However, P fertilizer did not affect the performance of the seedlings in the field.
The results of this study showed that suitable shading had an advantage in dry mass production of P. ternaticupula seedlings; however, the optimal amount of P for the seedlings was as low as 60 kg/ha. In summary, the best scheme to cultivate P. ternaticupula seedling is to apply 60 kg ha-1 of phosphorus fertilizer and a relative light intensity 58% of full daylight.
中文摘要……………………………………………………………Ⅰ
英文摘要……………………………………………………………Ⅱ
表次…………………………………………………………………Ⅳ
圖次…………………………………………………………………Ⅴ
附表次………………………………………………………………Ⅵ
壹、前言 1
貳、前人研究 3
一、三斗石櫟之相關育苗研究 3
二、磷與苗木生長之關係 4
三、光度對苗木形態及生長之影響 6
(一)葉的大小 6
(二)葉片數量 7
(三)葉片厚度 7
(四)氣孔密度 8
(五)葉綠素濃度 9
(六)生物量生產及分配 9
(七)高生長及直徑生長 11
(八)其他性狀 11
參、材料及方法 12
一、供試苗木 12
二、試驗用肥料及遮蔭網 12
(一)肥料 12
(二)遮蔭網 12
三、試驗設計及處理 13
(一)苗木選擇及分配 13
(二)光度及施肥處理 13
四、苗木調查及測定項目 14
(一)生長調查 14
(二)生物量測定 15
(三)苗木形態品質指數 15
(四)葉片形質 16
(五)氣孔密度 16
(六)葉綠素濃度 16
(七)根系生長潛能(root growth potential;RGP) 17
(八)植物體礦質養分濃度分析 18
五、育苗介質之化學性質 18
(一)pH值之測定 19
(二)有效磷濃度 19
(三)可交換性鉀、鈉、鈣及鎂濃度 19
六、林地栽植試驗 20
七、資料分析統計 20
(一)苗高累積淨生長及苗徑累積淨生長資料分析方式 20
(二)其他生長資料分析方式 21
肆、結果 22
一、苗木生長 22
(一)苗高及地際直徑之生長 22
(二)生物量 25
(三)苗木形態品質指數 27
(四)葉片形質 30
(五)氣孔密度 30
(六)葉綠素濃度之變化 34
(七)根系生長潛能之比較 34
(八)苗木礦質養分濃度之變化 34
二、苗木生長介質化學性質之變化 44
三、林地生長 47
伍、討論 49
一、光度對苗木生長及形態之影響 49
(一)苗高、苗徑之生長 49
(二)生物量生產及分配 50
(三)苗木形態品質指數 51
(四)葉片形質 52
(五)氣孔密度之變化 56
(六)葉綠素濃度之變化 57
(七)根系生長潛能 58
(八)礦質養分濃度 59
二、施用磷肥對苗木之影響 60
三、生長介質之化學變化 62
四、出栽苗木之生長 63
陸、結論及建議 65
柒、參考文獻 67
捌、附錄 77
王相華,1995. 不同光度對四種季風雨林樹種幼苗生長及形態之影響,林業試驗所研究報告季刊 10(4):405-418。
王聰瑞,1999. 出栽前施肥對台灣四種原生樹種苗木出栽表現之影響,台灣大學森林學研究所碩士論文。
方榮坤、邱陸陽、廖天賜、林鴻忠,1990. 林木耐蔭性之研究(Ⅱ)不同光度對於香杉、台灣杉苗木生物量之影響,國立中興大學農學院實驗林、森林系所研究報告 12(2):1-20。
李建霖、姜家華、潘富俊、王亞男,1999. 臺灣地區不同種源青剛櫟變異之研究,中華林學季刊 32(1):13-24.
林添富,1992. 光度對台灣櫸與毛柿苗木生長之影響,中興大學森林學研究所碩士論文。
洪富文、程煒兒、游漢明、馬復京,1994. 光度與養分對於福山次生樟儲林苗木生長的影響,林業試驗所研究報告季刊 9(3):257-265。
柳榗,1968. 台灣植物群落分類之研究Ⅰ台灣植物群系之分類,台灣省林業試驗所報告第一六六號。
陳岫女,1990. 紅檜與臺灣扁柏穴植管苗施肥之效應,中興大學森林學研究所碩士論文。
陳舜英,1997. 光度及氮肥對三斗石櫟苗木形質生長暨林地表現之影響,台灣大學森林學研究所碩士論文。
陳仁炫、劉有祥. 1999. 土壤水分境況對強酸性土壤磷吸著與有效性的影響,土壤與環境 2(1):45-58。
范貴珠,1993. 施肥對瓊崖海棠苗木生長及生理反應之影響,中興大學森林學研究所碩士論文。
范貴珠、張峻德,1996. 瓊崖海棠苗木對氮磷鉀肥之生理反應,中華林學季刊 29(1):51-68。
郭魁士,1980. 土壤實驗,中國書局。
郭幸榮、黃進輝,1998. 烏心石苗木在溫室內不同光度下之生長表現,台大實驗林研究報告12(4):289-298。
郭幸榮、黃進輝,1999. 烏心石苗木生長於溫室內不同光度下之生理特性,中華林學季刊 32(1):25-37。
郭幸榮、劉瓊霦,1992. 移植、修根及施肥對台灣杉苗木若干形態與生理性質之效應,中華林學季刊 25(1):17-32。
郭耀綸、吳祥鳴,1997. 黃心柿、毛柿及大葉山欖苗木光合作用與形態對不同光量的可塑性,中華林學季刊 30(2):165-185。
許原瑞,1994. 氮型態對三斗石櫟及木荷苗木生長及形質之影響,台灣大學森林學研究所碩士論文。
許原瑞,1996. 赤皮苗木早期生長與種子大小之關係,台灣林業科學 11(3):267-273。
黃進輝,1994. 烏心石苗木在不同光度下形態暨生理反應,台灣大學森林學研究所碩士論文。
黃進輝、郭幸榮,1996. 烏心石苗木形態於不同光度下之變化,台大實驗林研究報告10(1):49-65。
程煒兒、洪富文、陳財輝,1996. 施肥對澎湖四種防風林樹種造林的初期效應,台灣林業科學11(3):303-313。
劉棠瑞、廖日京,1988. 樹木學(上冊),台灣商務印書館。
劉慧瑛、黃菊美、張庚鵬、朱晉戈 良,1998. 磷肥施用量對水耕小白菜化學成分之影響,土壤與環境 1(3):237-248。
鄧英才,1992. 三斗石櫟幼苗施肥之試驗,嘉義農專學報 30:25-42。
蕭祺暉,1996. 施氮磷肥對烏心石苗木形態及生理性質之影響,台灣大學森林學研究所碩士論文。
Abrams, M.D. 1986. Physiological plasticity in water relations and leaf structure of understory versus open-grown Cercis canadensis in northeastern Kansas. Can. J. For. Res. 16: 1170-1174.
Abrams, M.D., and M.E. Kubiske. 1990. Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin: influence of light regime and shade-tolerance rank. For. Ecol. Manage. 31:245-253.
Abrams, M.D., B.D.Kloeppel, and M.E. Kubiske. 1992. Ecophysiological and morphological responses to shade and drought in two contrasting ecotypes of Prunus serotina. Tree Physiol. 10:343-355.
Ashton, P.M.S., and G.P. Berlyn. 1992. Leaf adaptations of some Shorea species to sun and shade. New Phytol.121: 587-596.
Ashton, P.M.S., and G.P. Berlyn. 1994. A comparison of leaf physiology and anatomy of Quercus (section Erythrobalanus-Fagaceae) species in different light environments. Amer. J. Bot. 81(5): 589-597.
Ashton, P.M.S., H.S.Yoon, R. Thadani, and G.P. Berlyn. 1999. Seedling leaf structure of New England maples(Acer)in relation to light environment. For. Sci. 45(4): 512-519.
Barnes, B.V., D.R. Zak, S.R. Denton, and S.H. Spurr. 1998. Forest ecology. John Wiley and Sons. Inc.
Barnett, J.P. 1984. Relating seedling physiology of surival and growth in container-grown Southern pines. P.157-176 In: Duryea M.L.and G.N.Brown (eds.). Proc.Physiology Working Group Technical Session. Martinus Ni ihoff/ Dr. W. Junk Publishers, Dordrecht/Boston/Lancaster.
Bazzaz, F. A. 1987. Experimental studies on the evolution of niche in successional plant populations. PP.245-272. In Gray, A. J., M.J. Crawley, and P.J. Edwards, eds. Colonization, succession, and stability. Blackwell, Oxford, England.
Bazzaz, F. A., and J. Grace. 1997. Plant resource allocation. Academic Press.
Binder, W.D., R.K. Scagel, and G.J. Krumlik. 1988. Root growth potential: facts, myths, value? p.111-118. In: Landis, T.D. Proc. Of the 1988 Combined Meeting of the Western Forest Nursery Associations. Vernon, BC Canada. USDA For. Serv. Gen. Tech. Rep. RM-167.
Brand, M.H. 1997. Shade influences plant growth, leaf color, and chlorophyll content of Kalmia latifolia L.cultivars. Hort Sci. 32(2): 206-208.
Campbell, R. J., K. N. Mobley, R. P. Marini, and D. G. Pfeiffer. 1990. Growing conditions alter the relationship between SPAD-501 values and apple leaf chlorophyll. Hort. Sci. 25(3):330-331.
Carpenter, S.B., and N.D. Smith. 1975. Stomatal distribution and size in southern Appalachian hardwoods. Can. J. Bot.53: 1153-1156.
Carpenter, S.B., and N.D. Smith. 1981. A comparative study of leaf thickness among southern Appalachian hardwoods. Can. J. Bot. 59:1393-1396.
Chabot, B.F., and J.F., Chabot. 1977. Effects of light and temperature on leaf anatomy and photosynthesis in Fragaria vesca. Oecologia 26:363-377.
Chen, H.Y.H. 1997. Interspecific responses of planted seedlings to light availability in interior British Columbia: survival, growth, allometric patterns, and specific leaf area. Can. J. For. Res. 27:1383-1393.
Chen, H.Y.H., and K. Klinka. 1998. Survival, growth, and allometry of planted Larix occidentalis seedlings in relation to light availability. For. Ecol. Manage. 106:169-179.
Chen, H. Y. H., K. Klinka, and G. J. Kayahara, 1996 Effects of light on growth, crown architecture, and specific leaf area for naturally established Pinus contorta var. latifolia and Pseudotsuga menziesii var. glauca Saplings. Can. J. For. Res. 26: 1149-1157.
Ciha, A.J., and W.A. Brun. 1975. Stomatal size and frequency in soybeans. Crop Sci. 15:309-313.
Claussen, J. W. 1996. Acclimation abilities of three tropical rainforest seedlings to an increase in light intensity. For. Ecol. Manage. 80:245-255.
Crawley, M.J., and M. Nachapong. 1985. The establishment of seedlings from primary and regrowth seeds of rawort(Senecio jacobaea). J. Ecol. 73:255-261.
Dey, D.C., and W.C. Parker. 1997. Morphological indicators of stock quality and field performance of red oak (Quercus rubra L.)seedlings underplanted in a central Ontario shelterwood. New For. 14:145-156.
DeWald, L. E., and P.P. Feret. 1977. Changes in loblolly pine seedlings root growth potential, dry weight, and dormancy during cold storage. For. Sci. 34(1): 41-54.
Drew, M.C., and L.R. Saker. 1978. Nutrient supply and the growth of the seminal root system in barley. J. Exp. Bot. 29(109):435-451.
Evans, J.R. 1988. Acclimation by the thylakoid membranes to growth irradiance and the partitioning of nitrogen between soluble and thylakoid proteins. In Ecology of photosynthesis in sun and shade. Edited by J.R. Evans, S. von Caemmerer, and W.W. Adams Ⅲ. CSIRO, Melbourne, Australia. Pp. 93-106.
Gardiner, E.S., and J.D. Hodges. 1998. Growth and biomass distribution of cherrybark oak(Quercus pagoda Raf.)seedlings as influenced by light availability. For. Ecol. Manage. 108:127-134.
Goulet, F., and P. Bellefleur. 1986. Leaf morphology plasticity in response to light environment in deciduous tree species and its implication on forest succession. Can. J. For. Res. 16:1192-1195.
Grime, J.P. 1965. Shade tolerance in flowering plants. Nature NO.5006: 161-163.
Gratani, L. 1992. A non-destructive method to determine chlorophyll content of leaves. Photosynthetica 26(3):469-473.
Harmer, R. 1999.Survival and new shoot production by artificially browsed seedlings of ash, beech, oak and sycamore grown under different levels of shade. For. Ecol. Manage. 116:39-50.
Holmes, T.H. 1995. Woodland canopy structure and the light response of juvenile Quercus lobata(Fagaceae). Amer. J. Bot. 82(11):1432-1442.
Hopkins, W.G. 1995. Introduction to plant physiology. John Wiley and Sons. Inc.
Huante, P., E. Rincon, and F.S. Chapin. 1995. Responses to phosphorus of contrasting successional tree-seedling species from the tropical deciduous forest of Mexico. Funct. Ecol. 9:760-766.
Hunt, R. 1990. Basic Growth Analysis. Unwin Hyman Inc.London, UK.
Igboanugo, A.B.I. 1990. Effects of shading on shoot morphology, wood production and structure of Ouercus petraea seedlings. For. Ecol. Manage. 38:27-36.
Jackson, L.W.R. 1967. Effect of shade on leaf structure of deciduous tree species. Ecology 48:498-499.
Jones, R. H., and K.W. McLeod. 1990. Growth and photosynthetic responses to a range of light environments in Chinese tallowtree and Carolina ash seedlings. For. Sci. 36(4):851-862.
Jurik, T.W. 1986. Temporal and spatial patterns of specific leaf weight in successional northern hardwood tree species. Amer. J. Bot. 73(8):1083-1092.
King, D.A. 1997. Branch growth and biomass allocation in Abies amabilis saplings in contrasting light environments. Tree Physiol. 17:251-258.
Kolb, T.E., and K.C. Steiner. 1990. Growth and biomass partitioning response of northern red oak genotypes to shading and grass root competition. For. Sci. 36: 293-303.
Kozlowski, T.T., and S.G. Pallardy. 1997. Growth control in woody plants. Academic press.641PP.
Kull, O., and B. Kruijt. 1999. Acclimation of photosynthesis to light: a mechanistic approach. Funct. Ecol. 13:24-36.
Lewandowska, M., and P.G. Jarvis. 1977. Changes in chlorophyll and carotenoid content, specific leaf area and dry weight fraction in sitka spruce, in response to shading and season. New Phytol. 79:247-256.
Loach, K. 1967. Shade tolerance in tree seedlings I. Leaf photosynthesis and respiration in plants raised under artificial shade. New Phytol. 66:607-621.
Loach, K. 1970. Shade tolerance in tree seedlings II. Growth analysis of plants raised under artifical shade. New Phytol. 69:273-286.
Mailly, D., and J.P. Kimmins. 1997. Growth of Pseudotsuga menziesii and Tsuga heterophylla seedlings along a light gradient: resource allocation and morphological acclimation. Can. J. Bot. 75:1424-1435.
Marschner, H. 1986. Mineral nutrition of higher plants. Academic Press, London.
McCreary D.D., T. Jerry 1994. Lifting and storing bareroot oak seedlings. New For. 8:89-103.
McWilliam, A.L.C., J.M. Roberts, O.M.R. Cabral, M.V.B.R. Leitao, A.C.L.de Costa, G.T. Maitelli, and C.A.G.P. Zamparoni. 1993. Leaf area index and above-ground biomass of terra firme rain forest and adjacent clearings in Amazonia. Funct. Ecol. 7:310-317.
Mitchell, A.K., and J.T. Arnott. 1995. Effects of shade on the morphology and physiology of amabilis fir and western hemlock seedlings. New For. 10:79-98.
Nakos, G. 1980. Fertilization and nutrition experiments with conifer seedlings in pots. Plant and Soil 55:269-281.
Ndufa, J.K., K.D. Shepherd, R.J. Buresh, and B.Jama. 1999. Nutrient uptake and growth of young trees in a P-deficient soil: Tree species and phosphorus effects. For. Ecol. Manage.122: 231-241.
NeSmith, D.S. 1993. Summer squash response to root restriction under different light regimes. J. Plant Nutr. 16(5): 765-780.
Neter, J., M. Kutner, C. J. Nachtsheim, and W. Wasserman. 1996. Applied Linear Statistical Model. 4th ed. Ritchard D. Irwin, Inc., Illinois.
Niinemets, U., and K. Kull. 1994. Leaf weight per area and leaf size of 85 Estonian woody species in relation to shade tolerance and light availability. For. Ecol. Manage. 70:1-10.
Noland, T.L., G.H. Mohammed, and M. Scott. 1997. The dependance of root growth potential on light level, photosynthetic rate, and root starch content in jack pine seedlings. New For. 13:105-119.
Peracy, R.W. 1990. Sunflecks and photosynthesis in plant canpoies. Ann. Rev. Plant Physiol.41: 421-453.
Phares, R.E. 1970. Growth of red oak (Quercus rubra L.) seedlings in relation to light and nutrients. Ecology 52(4): 669-672.
Poorter, L. 1999. Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Funct. Ecol. 13:396-410.
Poorter, L., S.F. Oberbauer, and D.B. Clark. 1995. Leaf optical properties along a vertical gradient in a tropical rain forest canopy in costa rica. Amer. J. Bot. 82(10):1257-1263.
Raaimakers, D., and H.Lambers. 1996. Response to phosphorus supply of tropical tree seedlings: a comparison between a pioneer species Tapirira obtusa and a climax species Lecythis corrugata. New Phytol.132: 97-102.
Rao, P.B. 1988. Effects of environmental factors on germination and seedling growth in Quercus floribunda and Cupressus torulosa, tree species of central Himalaya. Ann. Bot. 61:531-540.
Reich, P. B., D. S. Ellsworth, and M. B. Walters. 1998. Leaf structure(specific leaf area)modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups. Funct. Ecol. 12:948-958.
Rincon, E., and P. Huanrte. 1993. Growth responses of tropical deciduous tree seedling to contrasting light condition. Trees 7:202-207.
Ritchie, G.A. 1985. Evaluating seedling quality: Root growth potential: principles, procedures and predictive ability. In Evaluating seedling quality: principles, procedures and predictive abilities of major tests. Edited by M. L. Duryea. Forest Research Lab, Orgen State University, Corvallis, OR. Pp.93-104.
Thompson, B. E. 1985. Seedling morphological evaluation-what you can tell by looking. In: Evaluating seedling quality: Principles, procedures, and predictive abilities of major tests.(M.L. Duryea eds).Forest Research laboratory, Oregen state University,Corvallis,Oregon.
Tsel’niker, Y.L. 1977. Regulation processes of CO2 exchange and morphogenesis in seedlings of forest trees under under conditions of shading. Sov. Plant Physiol. 24:43-48.
van den Driessche, R. 1985. Late-season fertilization, mineral nutrient reserves, and retranslocation in planted Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. For. Sci. 31(2): 485-496.
van den Driessche, R. 1988. Nursery growth of conifer seedlings using fertilizers of different solubilities and application time, and their forest growth. Can. J. For. Res. 18:172-180.
Vogel, S. 1968. “Sun leaves” and “Shade leaves”: differences in connective heat dissipation. Ecology 49(6):1203-1204.
Vitousek, P. 1984. Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65:285-298.
Walters, M.B., E.L. Kruger, and P.B. Reich. 1993. Growth, biomass distribution and CO2 exchange of northern hardwood seedlings in high and low light: relationships with successional status and shade tolerance. Oecologia 94:7-16.
Walters, M.B. and P.B. Reich. 1996. Are shade tolerance, survival, and growth linked?low light and nitrogen effects on hardwood seedlings. Ecology 77(3): 841-853.
Wang, J.R., S.W. Simard, and J.P.(Hamish)Kimmins, 1995 Physiological responses of paper birch to thinning in British columbia. For. Ecol. Manage. 73:177-184.
Welander, N.T., and B. Ottosson. 1998. The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L. For. Ecol. Manage. 107:117-126.
Witkowski, E.T.F., and B.B. Lamont. 1991. Leaf specific mass confounds leaf density and thickness. Oecologia 88:486-493.
Yadava, U. L.1986. A rapid and nondestructive method to determine chlorophyll in intact leaves. Hort. Sci. 21(6): 1449-1450.
Young, D.R., and J.B.Yavitt. 1987.Differences in leaf structure, chlorophyll, and nutrients for the understory tree Asimina triloba. Amer. J. Bot. 74:1487-1491.
Zhang, S., T.C. Hennessey, and R.A. Heinemann. 1997. Acclimation of loblolly pine(Pinus taeda)foliage to light intensity as related to leaf nitrogen availability. Can. J. For. Res. 27:1032-1040.
Ziegenhagen, B., and W. Kausch. 1995. Productivity of young shaded oaks(Quercus robur L.)as corresponding to shoot morphology and leaf anatomy. For. Ecol. Manage. 72:97-108.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top