( 您好!臺灣時間:2021/08/01 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Yu-Wu Ling
論文名稱(外文):Spatial Pattern Analysis of Sassafras randaiense(Hay.) Rhed. at Chilan Shan, Northeastern Taiwan
指導教授(外文):Biing T. Guan
外文關鍵詞:SassafrasSpatial patternChilan Shan
  • 被引用被引用:3
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:1
Spatial patterns of a plant community determine the intensity and mode of local competition, they may also induce habit heterogeneity through the differential modifications of soil and microclimate. As an on going project to understand the population biology and ecology of Taiwan sassafras (Sassafras randaiense Rhed.), this study focused on the spatial patterns of that species in a stand at Chilan Shan, northeastern Taiwan.
To examine the spatial patterns of Taiwan sassafras at different resolution, both quadrat and distance approaches were used in this study. For quadrat approach, which was used to examine the spatial patterns at a stand level, two-term local quadrat variance (TTLQV) method was adopted. Distance approach, which was used to examine the spatial patterns at an individual tree level, included nearest neighbor method, distance to second-nth nearest neighbors, a goodness-of-fit method, a nonparametric trend analysis method, and logistic regression.
The results showed that as a whole Taiwan sassafras in that stand had an aggregated pattern. However, different size classes had different patterns, with smaller- and medium-sized trees showing aggregated patterns, but large trees were randomly distributed throughout the stand. Trend analysis suggested that no particular relationship between the size of a Taiwan sassafras tree and its neighbors. Results from logistic regression further suggested that, based on the collected data, we were unable to predict the probability whether the nearest neighbor with a given size would be present at a particular distance or direction. However, the results from a main effect model did show that there was no association among distance, direction and size.
表次 v
圖次 vii
壹、前言 1
貳、前人研究 3
參、理論基礎 11
3.1樣區法 11
3.1.1連續樣區法 12
3.2距離法 15
3.2.1最近鄰樹法 15
3.2.2順序法 17
3.2.3適合度檢定 19
3.3個體之空間分佈 20
3.3.1趨勢分析 20
3.3.2 Logistic迴歸分析 22
3.3.3主效應模式分析 23
肆、個案研究 24
4.1野外調查 25
4.2資料分析 26
伍、結果 27
5.1樣區法 37
5.1.1連續樣區法 37
5.2距離法 40
5.2.1最近鄰樹法 40
5.2.2順序法 42
5.2.3適合度檢定 46
5.3個體之空間分佈 49
5.3.1趨勢分析 49
5.3.2 Logistic迴歸分析 56
5.3.3主效應模式分析 58
陸、討論 59
柒、結論 65
捌、參考文獻 67
1.江洪 1992 雲杉種群生態學。中國林業出版社。
2.呂福源 1979 台灣樹之數項研究心得。台灣林業5(5):29。
3.胡青野、顧懿仁1980 台灣樹果實及種子發育之觀察報告。台灣林業6(5):29-31。
4.張至善 1992 北大武山針闊葉樹自然保護區鐵杉林林分組成與塊集構造之研究。台灣大學森林學研究所碩士論文。
5.張哲彰 1992 北大武山針闊葉樹自然保護區鐵杉林森林動態之研究。台灣大學森林學研究所碩士論文。
6.曾彥學 1991 台灣中部沙里仙溪集水區植群生態之研究Ⅱ、台灣雲杉森林動態及族群結構之研究。台灣大學森林學研究所碩士論文。
7.黃群修 1994 雪山北坡台灣冷杉林森林動態與族群結構之研究。台灣大學森林學研究所碩士論文。
8.劉堂瑞、蘇鴻傑 1983 森林植物生態學。台灣商務印書館。
9.劉淑芬 1998 塔塔加地區台灣雲杉天然林林分空間結構與生長動態之研究。台灣大學森林學研究所碩士論文。
10.顧懿仁 1977 生長快速經濟價值高之台灣樹(一)。台灣林業3(11):21-25。
11.顧懿仁 1978 生長快速經濟價值高之台灣樹(二)。台灣林業3(12):12-15。
12.顧懿仁 1982 台灣樹實生苗木生長比較試驗。中華林學季刊15(2):87-95。
13.Andersen, E. B. 1994. The Statistical Analysis of Categorical Data. Third Edition. Springer-Verlag.
14.Barot, S., J. Gignoux, and J. C. Menaut. 1999. Demography of a sa-vanna palm tree : Predictions from comprehensive spatial pattern analysis. Ecology. 80(6) : 1987-2005.
15.Boose, E. R., E. F. Boose, and A. L. Lezberg. 1998. A practical method for mapping trees using distance measurements. Ecology. 79(3) : 819-827.
16.Campbell, D. J. and D. J. Clarke. 1971. Nearest neighbour tests of significance for non-randomness in the spatial distribution of singing crickets ( Teliogryllus commodus ( Walker ) ). Animal Behaviour. 19 : 750-756.
17.Clark, P. J. and F. C. Evans. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology.35: 445-453.
18.Czárán, T. and B. Bartha. 1992. Spatiotemporal dynamic models of plant population and communities. T.R.E.E. 7(2) : 38-42.
19.Dice, L. R. 1952. Measure of the spacing between individual within a population. Contrib. Lab. Vert. Biol. Univ. Mich. 55 : 1-23.
20.Diggle, P. J. 1983. Statistical Analysis of Spatial Point Patterns. Aca-demic Press, London.
21.Donnelly, K. 1978. Simulations to determine the variance and edge-effect of total nearest neighbor distance. P. 91-95 in Simulation Methods in Arachaeology. Hodder, I. (eds) Cambridge University Press, London.
22.Eberhardt, L. L. 1967. Some developments in ‘distance sampling’. Biometrics. 23 : 207-216.
23.Getis, A. and J. Franklin. 1987. Second-order neighborhood analysis of mapped point pattern. Ecology. 68(3) : 473-477.
24.Gleason, H. A. 1920. Some applications of the quadrat method. Bull. Torrey Bot. Club 47 : 21-33.
25.Goodall, D. W. 1952. Quantitative aspect of plant distribution. Biol. Rev. 27 : 194-245.
26.Green, R. H. 1966. Measurement of non-randomness in spatial dis-tributions. Researches in Population Ecology. 8 : 1-7.
27.Haase, P. 1995. Spatial pattern analysis in ecology based on Ripley’s K-function:Introduction and methods of edge correction. Journal of Vegetation Science. 6 : 575-582.
28.Hill, M. O. 1973. Diversity and evenness a unifying notation and its consequences. Ecology. 54 : 427-432.
29.Hines, W. G. S. and R. J. Hines. 1979. The Eberhardt statistics and the detection of non-randomness of spatial point distribution. Bio-metrika. 66 : 73-79.
30.Hosmer, D. W. and S. Lemeshow. 1989. Applied Logistic Regression. Wiley, New York.
31.Krebs, C. J. 1999. Ecological Methodology. 2nd ed, Addison-Welsey Educational Publishers.
32.Lehmann, E. L. 1975. Nonparametrics : Statistical Methods Based on Rank. San Francisco. Holden-Day, c1975.
33.Ludwig, J. A. and J. F. Reynolds. 1988. Statistical Ecology : A Primer on Methods and Computing. Wiley, New York.
34.Parker, K. R. 1979. Density estimation by variable area transet. Journal of Wildlife Management. 43 : 484-492.
35.Péélissier, R. 1998. Tree spatial pattern in three contrasting plots of a southern Indian tropical moist evergreen forest. Journal of Tropical Ecology. 14 : 1-16.
36.Pielou, E. C. 1961. Segregation and symmetry in two-species popula-tion as studied by nearest neighbour relationships. Journal of Ecology. 49 : 255-269.
37.Pielou, E. C. 1977. Mathematical Ecology. Wiley, New York.
38.Quedanu, H. D. and M. Fröhlich. 1995. Statisitcal analysis of the dis-tribution pattern of natural regeneration in forest. Forest Ecology and Management. 73 : 45-57.
39.Ripley, B. D. 1979. Test of ‘Randomness’ for spatial point pattern. J. R. Statist. Soc. B 41(3) : 368-374.
40.Ripley, B. D. 1981. Spatial Statistical. John Wiley, New York.
41.Ruxton, G. D. 1996. Effects of the spatial and temporal ordering of events on the behaviour of a simple cellular automata. Ecological Modelling. 84 : 311-314.
42.SAS Institute Inc. 1989. SAS/STAT® User’s Guide, Version 6, Volume 1, Fourth Edition. Cary, NC : SAS Institute Inc.
43.SAS Institute Inc. 1990. SAS/IML® Software:Usage and Reference, Version 6, First Edition. Cary, NC : SAS Institute Inc.
44.SAS Institute Inc. 1991. SAS/GRAPH® Software:Usage, Version 6, First Edition. Cary, NC : SAS Institute Inc.
45.SAS Institute Inc. 1995. Logistic Regression Examples Using the SAS® System, Version 6, First Edition. Cary, NC : SAS Institute Inc.
46.SAS Institute Inc. 1997. SAS/STAT® Software : Change and En-hancements through Release 6.12, Cary, NC : SAS Institute Inc.
47.Sinclair, D. F. 1985. On test of spatial randomness using mean near-est neighbor distance. Ecology. 66 : 1084-1085.
48.Smith, G. C. and D. S. Bull. 1997. Spatial and temporal order of events in discrete time cellular automata-An overview. Ecological Modelling. 96 : 305-307.
49.Thompson, H. R. 1956. Distribution of distance to nth neighbor in a population of randomly distributed individuals. Ecology.37: 391-394.
第一頁 上一頁 下一頁 最後一頁 top