跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 13:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昶源
研究生(外文):Chang-Yuan Chen
論文名稱:木質構造建築之複合壁體與屋頂對隔熱及溫濕度之調節效應
論文名稱(外文):The Conditioning Effect of Compisite Walls and Roofs on The Thermal Insulation ,Temperature and Relative Humidity of Wooden Structure Building
指導教授:王松永王松永引用關係
指導教授(外文):Dr.Song-Yung Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:60
中文關鍵詞:木質構造RC建築綠色建築政策室溫變動比生物氣象圖不舒服指數舒適度熱貫流率
外文關鍵詞:Wooden structure buildingReinforce Concrete(RC) buildingGreen Architectures PolicyVariation ratio of room temperatureBioclimate chartUncomfortable indexComfortableThermal transmittance
相關次數:
  • 被引用被引用:5
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究係探討建築物的牆壁與屋頂藉著裝設不同隔熱材料,對各種熱特性的結果,牆壁以實木及水泥板為材料試驗之熱流密度值(Q)會隨著材料厚度的增加而減少,其熱抵抗值(R)及熱貫流抵抗值( 1/K),則反之。木質外壁牆及屋頂材料之熱傳導率(λ)值均小於0.02(W/m‧k),與水泥板相同厚度比較時,至少低於水泥板30倍。
木質構造2 by 4建築外壁牆,在內部加1 塊玻璃纖維棉其厚度為4cm,而 R值及λ值皆相差3倍,加2及3塊玻璃纖維棉之λ值並無差異。屋頂材料λ值隔熱處理者為未隔熱者約10倍,隔熱材料拔熱加一塊玻璃纖維棉加一塊PU foam,可達到完全隔熱保溫效果。
其次則探討台灣D Log原木屋(D type log house)室內溫濕度之調節效應,並且期待能為綠色建築政策之推展有所助益。本實驗是利用座落於高雄縣大樹鄉一棟西部側柏6"×6" D Log住宅,利用溫濕度感應器監測壁體及屋頂內外溫度之經時變化,經軟體程式記錄下來並加以分析,研究結果歸納如下:
室內溫度對室外溫度有時間上的遲延現象,室溫變動範圍比室外低,其室溫變動比值為0.33~0.78,皆小於1。室內溫度與濕度分別受室外溫度與濕度所影響均可以直線迴歸式來預測,迴歸式均具有統計上的顯著相關性,但木材對濕度調節比對溫度調節來得明顯。因為木材具吸脫濕特性,可調節室內相對濕度,因此室內日平均相對濕度不受室外日平均溫度所影響。
各試驗日之室內日平均溫度、日平均相對濕度填入生物氣象圖中,大部分皆在舒適範圍之內,不舒服指數約在51~60。D Log住宅屋頂及壁體在炎熱氣候時有較好的隔熱效能,寒流來襲時有較好的保溫效能。
The thermal effects of wood structural building wall and roof with thermal insulation material were investigated in this study. The experimental results are summarized as follows:
The wooden structure building wall with solid wood and cement board materials were tested, the heat flow of wall materials decreased with increasing thickness, and the thermal resistance and overall thermal resistance of wall materials increased with increasing thickness. The thermal conductivity of wooden structure building wall and roof was <0.02(W/m‧k). And It’s lower than concrete board are 30 times.
The thermal resistance and overall thermal resistance of wood structural 2 by 4 building wall with one layer lining of glass fiber floss is 3 times greater than that without glass fiber floss lining ; and the thermal effects of wood structural 2 by 4 building wall are the same as that with 2 or 3 linings of glass fiber floss. The thermal conductivity of wood structural building roof with thermal insulation material is 10 times greater than that without thermal insulation material, and complete thermal insulation can be achieved, if we use thermal insulation material with the addition of one lining of glass fiber floss and PU foam.
The next this experiment was to investigate the conditioning effect of indoor temperature and relative humidity of D type log house in Taiwan, and the results of this study may be expected as the basic information and helpful for the extension of “Green Architectures Policy”.
The western red cedar 6"×6" D Log house that located at Kao-siung prefecture was applied for the experiment. THT-B47 Temperature-humidity sensors and ADAM 4018 instrument were used for the measurement of the variation of indoor and outdoor temperature with time. The signals of temperature and humidity were continuously recorded and analyzed through Geni-software. The main results obtained by this experiment may be summarized as follows:
According to the experiment, it seemed that the delay phenomenon was existing in the indoor and outdoor temperatures with time. The range of the variation of indoor temperature was smaller that that of outdoor. The valuts for the variation ratio of indoor temperature was ranging from 0.33 to 0.78, then were almost smaller then 1.0 .The relation between indoor and outdoor temperatures can be expressed by T(in)=0.73T(out)+6.86 ,R2=0.922, they appeared to have statistically conspicuous relation, that is showing the indoor temperature of D Log house was influenced by the outdoor temperature.
The relation between the indoor and outdoor humidity can be expressed by RH(in)=0.47RH(out)+42.03 ,R2=0.823, they glso have statistically conspicuous relation. However, respectively, and they could be predicted by significant linear regression formulas. However, wood possesses more conspicuous conditioning effect for humidity than temperature. The average indoor relative humidity in a day of D-log house was not affected by the outdoor average temperature in a day. Because wood possesses the desorption behavior for reliving the decrease of relative humidity, when introduction of the average temperature and relative humidity of a day into the did not on the bioclimatic chart, it showing that they were mostely in the comfortable range and the uncomfortable index 51 ~60 were calculated. Wall and roof seemed to have relatively better thermal insulation effect in the hige temperature and scorching period,and they have relatively better properties to keep a room ware during the cold current period.
1.緒論…………………………………………………………………… 1
1-1研究動機……………………………………………………………… 1
1-2研究目的……………………………………………………………… 2
2.試驗材料與方法……………………………………………………… 4
2-1台灣木質構造及RC建築之複合壁體隔熱效應 …………………… 4
2-1-1試驗材料 ………………………………………………………… 4
2-1-2試驗方法 ………………………………………………………… 9
2-2台灣南部地區D型原木屋住宅室內溫濕度之經時變化與隔熱效應 13
2-2-1試驗材料 ……………………………………………………… 14
2-2-2試驗方法 ……………………………………………………… 17
2-2-2.1室內外濕度之測定 ………………………………………… 17
2-2-2.2室內外各部溫度之測定 …………………………………… 18
2-2-2.3壁體及屋頂內外溫度之測定 ……………………………… 19
3.試驗結果與討論……………………………………………………… 20
3-1木質構造建築外壁牆及屋頂材料在30℃溫差下之熱特性……… 20
3-1-1 熱流密度(Q)………………………………………………… 20
3-1-2 熱抵抗(R)及熱貫流抵抗(1/K)…………………………… 23
3-1-3熱傳導率(λ)………………………………………………… 24
3-2不同木質構造建築組合壁體材料及水泥材料牆在30℃溫差下之
熱特性……………………………………………………………… 25
3-2-1台灣目前常使用的木質構造建築和RC建築外壁牆之熱抵抗(R)
及熱傳導率(λ) ………………………………………… 26
3-3不同木質構造建築組合屋頂材料及水泥材料屋頂在30℃溫差下之
熱特性 ………………………………………………… 28
3-3-1台灣目前常使用的木質構造建築和RC建築屋頂板之熱抵抗(R)
及熱傳導率(λ) ……………………………………………… 28
3-4室內外溫濕度之變化…………………………………………… 31
3-4-1室內外相對濕度之變化………………………………………… 35
3-4-2溫度之調節效果 …………………………………………… 36
3-4-3 濕度之調節效果 ……………………………………………… 37
3-4-4 D型原木屋住宅室內溫濕度環境與人體舒適度關係………… 39
3-4-5 D型原木屋住宅室內溫度之垂直分佈………………………… 44
3-4-6 D型原木屋住宅屋頂及壁體之隔熱保溫效能………………… 46
3-4-6.1 D型原木屋住宅屋頂及壁體之隔熱效能…………………… 47
3-4-6.2 D型原木屋住宅屋頂及壁體之保溫效能 ……………… 51
4.結論…………………………………………………………………… 53
5.參考文獻…………….……………………………………………… 56
附錄……………………………………………………………………… 59
1.中央氣象局(1997)氣候資料年報。
2.內政部建築研究所(1999)綠建築與居住環境科技計劃(2/4)。
3.王松永(1986)木材物理學,國立編譯館出版,pp.110~144。
4.王松永(1990)木材對室內之溫度與濕度調節性能,科學發展季刊,18
(8): 982~987。
5.王松永(1996)木質材料之調節溫濕度功能,木質建築雜誌(創刊號)
,pp.3~8。
6.王松永(1998)壁體材料之熱特性對於住宅溫度調節作用之影響,造林
木應用於木質構造建築研討會論文集,pp.188~214。
7.王松永(1999)木材利用與環境保護,人工林生態系永續經營與利用研
討會論文集,pp.143~165。
8.王松永、卓志隆(1991)木材內裝對室內之溫度與濕度之調節效應,
林產工業10(2):1~5。
9.杜月香(1992)建築物理環境,逢甲電腦打字印刷行,pp.1~91。
10.卓志隆(1992)木質環境對溫濕度調節效應之研究,國立台灣大學森林
學研究所博士論文,pp.146~191。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top