跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 16:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林以辰
研究生(外文):Lin, Yi-Chen
論文名稱:轉殖冷溫誘導蛋白質peaci11.8基因及水稻熱休克蛋白質Oshsp16.9基因之大腸桿菌在不同溫度逆境下表現之研究
論文名稱(外文):Expression of Pea Cold-Induced Protein Gene peaci11.8 and Oryza sativa Heat-Shock Protein Gene Oshsp16.9 Enhances Escherichia coli Viability under Heat and Cold Stress.
指導教授:陳益明陳益明引用關係
指導教授(外文):Chen, Yih-Ming
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:1999
畢業學年度:88
語文別:英文
論文頁數:80
中文關鍵詞:熱休克蛋白質冷溫誘導蛋白質水稻豌豆大腸桿菌耐熱性耐冷性
外文關鍵詞:heat-shock proteincold-induced proteinricepeaEscherichia colithermotolerancecold-tolerance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用水稻白化幼苗所分離出的水稻第一族低分子量熱休克蛋白質基因, oshsp16.9,及自豌豆白化幼苗所分離出的豌豆冷溫誘導蛋白質基因,peaci11.8,為材料,將這兩股cDNA分別構築 (construct) 到pGEX2T表現載體 (expression vector) 中,並轉型 (transformation) 到大腸桿菌中表現。利用適當濃度isopropyl β-D-thiogalactopyranoside (IPTG) 誘導,促使大腸桿菌大量表現融合蛋白質 glutathione S-transferase (GST)、GST-oshsp16.9及GST-peaci11.8。目前已知48℃ 及4℃ 都會造成pGEX2T的轉殖細胞死亡,因此將大量表現蛋白質的大腸桿菌移入48℃或4℃中處理。在48℃處理之下,計算細胞的存活率,發現轉殖熱休克蛋白質基因之大腸桿菌具有顯著的耐熱性,但相對地,轉殖pGEX2T之細胞則無;另外發現轉殖冷溫誘導蛋白質基因的大腸桿菌,在高溫處理下仍具有部份耐熱性,其存活率約為轉殖熱休克蛋白質基因之細胞的一半。在4℃的處裡之下,轉殖冷溫誘導蛋白質基因之大腸桿菌細胞表現出不錯的耐冷性,而轉殖熱休克蛋白質基因的細胞也具有部份的耐冷性。因此,不論轉殖熱休克蛋白質基因或冷溫誘導蛋白質基因的大腸桿菌,其在高溫或低溫逆境下,均可提高細胞不同程度的耐熱性或耐冷性。

Orzya sativa heat-shock protein gene (Oshsp16.9) was isolated from etiolated rice seedlings and pea cold-induced protein gene (peaci11.8)was isolated from etiolated pea seedlings. We constructed the recombinant Oshsp16.9 and peaci11.8 to expression vector, pGEX2T, and transformed into Escherichia coli XL1-Blue cells. After isopropyl β-D-thiogalactopyranoside (IPTG) induction, the transformed E. coli cells overexpressed the fusion proteins, glutathione S-transferase (GST), GST-Oshsp16.9 and GST-peaci11.8. After overexpressing the fusion proteins, cells were transferred to 48℃ and 4℃, the conditions lethal to pGEX2T cells. Under 48℃ treatment, pGEX2T-oshsp16.9 resulted in significant thermotolerance is similar to the previous reports. There was an interesting finding that pGEX2T-peaci11.8 also increased thermotolerance, and the efficiency was between that of pGEX2T and pGEX2T-oshsp16.9 revealed. However, different results were obtained at 4℃ treatment. A new finding revealed that pGEX2T-peaci11.8 enhanced the cell survival efficiency. The difference of survival was more than 50% after 3 days treatment. In addition, pGEX2T-oshsp16.9 could not only have thermotolerance but also increase cold-tolerance. In conclusion, in the prokaryotic expression system, whether the heat-shock protein gene or cold-induced protein gene from plants could cause different levels of thermotolerance or cold-tolerance under different temperature stress.

中文摘要---------------------------------------------------1
Abstract------------------------------------------------------2
Introduction--------------------------------------------------3
Materials and Methods-------------------------------------11
Result---------------------------------------------------------34
Discussion---------------------------------------------------58
References---------------------------------------------------66
Appendix-----------------------------------------------------70

龔政哲 (1997) 豌豆白化幼苗冷溫誘導蛋白質基因之研究。國立台灣大學植物學研究所博士論文。
Alberdi M, Corcuera, LJ (1991) Cold acclimation in plants. Phytochemistry. 30: 3177-3184.
Amundson RG, Kohut RJ, Laurence JA, Fellows S, Colavito LJ (1993) Moderate water stress alters carbohydrate content and cold tolerance of red spruce foliage. Environ Exp Bot 33: 383-390.
Anderson MD, Prasad TK, Stewart CR (1995) changes in isozyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocoyls of maize seedlings. Plant Physiol 109: 1247-1257.
Bienz, M, Pelham HRB (1987) Mechanism of heat-shock gene deactivation in higher eukaryotes. Adv Genet 24: 31-72
Cabane M, P Calvet, P Vincens, Bouder AM (1993) Characterization of chilling-acclimation-related proteins in soybean and identification of one as a member of the heat shock protein (HSP70) family. Planta 190: 346-353.
Cattivelli L, Bartels D (1990) Molecular cloning and characterization of cold-regulated genes in barley. Plant Physiol 93: 1504-1510.
Chou M, Chen YM, Lin CY (1989) Thermotolerance of isolated mitochondria associated with heat shock proteins. Plant physiol 89: 617-721.
Christie P J, Hahn M, Walbot V (1991) Low-temperature accumulation of alcohol dehydeogenase-1 mRNA and protein activity in maize and rice seedling. Plant Physiol 95: 699-706.
Collins GG, Nie XL, Saltveit Jr ME (1993) Heat shock increases chilling tolerance of mung bean hypocotyl tissue. Plant Physiol 89: 117-124.
Garces R, Sarmiento C, Mancha M (1992) Temperature regulation of oleate desaturase in sunflower (Heloanthus annuus L.) seeds. Planta 186: 461-465.
Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16: 433-442.
Graham GG, Nie XL, Saltveil Jr Me (1993) Heat shock increases chilling poterance of mung bean hypocotyl tissue. Physiol. Plant. 89:117-124.
Gureley WB, Key JL (1991) Transcriptional regulation of the heat-shock response: a plant perspective. Biochemistry 30: 1-12
Hajela R K, Horvath DP, Gilmour SJ, Thomashow MF (1990) Molecular cloning and expression of cor (cold-regulated genes in Arabidopsis thaliana. Plant Physiol 93: 1246-1252.
Hazebroek IP, Metzger JD, Mansager ER (1993) Thermoinductive regulation of gibberellin metabolism in Thlaspi arvense L. II. Cold induction of enzymes in gibberellin biosysthesis. Plant Physiol 102: 547-552.
Hon WC, Griffith M, Chong P, Yang DSC (1994) Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol 104: 971-980.
Houde M, Danyluk J, Laliberte JF, Rassart E, Dhindsa RS, Sarhan F (1992) Cloning, characterization, and expression of a cDNA encoding a 50 kilodalton protein specifically by cold acclimation in wheat. Plant Physiol 99: 1381-1387.
Hsieh MH, Chen JT, Jinn TL, Chen YM, Lin CY (1992) A class of soybean low molecular weight heat shock proteins. Plant Physiol 99: 1279-1284
Hughes MA, Dunn MA (1996a) The effect of temperature on plant growth and development. Biotech Genet Engineer Rev 8: 161-188.
Hughes MA, Dunn MA (1996b) The molecular biology of plant acclimation to low temperature. J Exp Bot 47: 291-305.
Ismail AM, Hall AE, Close TJ (1999) Purification and partial characterization of a dehydration involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120: 237-244.
Kasuga MQ, Liu S, Miura K, Yamaguchi S, Shinozaki k(1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17: 287-291.
Kazuoka T, Oeda K (1992) Heat-stable COR (cold-regulated) proteins associated with freezing tolerance in spinach. Plant Cell Physiol 33: 1107-1114.
Key JL, Lin CY, Chen YM (1981) Heat shock proteins of higher plants. Proc Natl Acad Sci USA 78: 3526-3530
Kurkela S, Franck M (1990) Cloning and characterization of cold and ABA inducible Arabidopsis gene. Plant Mol Biol 15: 137-144.
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head fo bacteriophage T4. Nature 227: 680-685.
LaFayette PR, Nagao RT, O'Grady K, Vierling E, Key JL (1966) Molecular characterization of cDNAs encoding low-molecular-weight heat shock protein of soybean. Plant Mol Biol 30: 159-169
Lee H, Xiong L, Ishitani M, Stevenson B, Zhu JK (1999) Cold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant. Plant J 17: 301-308.
Lee TM, Lur HS, Lin YH, Chu C (1996) Physiological and biochemical changes related to methyl jasmonate-induced chilling tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ. 19: 65-74
Lin C, Thomashow MF (1992a) DNA sequence analysis of a complementary COR15 polypeptide. Plant Physiol 99: 519-525.
Lin C, Thomashow MF (1992b) A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Rescomm 183:1103-1108
Lindquist S, Kim G (1996) Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc Natl Acad Sci USA 93: 5301-5306.
Lindquist S (1996) The heat-shock response. Ann Rev Biochem 55: 1151-1191.
Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24: 445-446.
Monroy AF, Castonguay Y, Laberge S, Sarhan F, Vezina LP, Dhindsa RS (1993a) A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiol 89:375-380.
Monroy AF, Sarhan F, Dhindsa RS (1993b) Cold0induced changes in freezing tolerance, protein phosphorylation, and gene expression. Evidence for a role of calcium. Plant Physiol 102: 1227-1235.
Neven LG, Haskell DW, Guy CL, Denslow N, Klein PA, Green LG, Silverman A (1992) Association of 70-kilodalton heat-shock cognate proteins with acclimation to cold. Plant Physiol. 99: 1362-1369.
Oh HJ, Chen XC, Subjeck JR (1997) Hsp110 protects heat-denatured portein and confers cellular thermoresistance. J Biol Chem 273: 31636-31640
Pratt W (1993) The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J Biol Chem 268: 21455-21458
Rikin A, Waldman M, Richmond AE, DoVrat A. (1975) Hormonal regulation of morphogenesis and cold-resistance. I. Modifications by abscisic acid and by gibberellic acid in alfafa (Medicago sativa L.)seedlings. J Exp Bot 26:175-183
Ritossa F (1962) Anew puffing pattern induced by temperature shock and DEP in Drosohila. Exrperoentia 18: 571-573
Sabahat S, Weiss D, Lurie S (1996) The correlation between heat-shock protein accumulation and persistence and chilling tolerance in tomato fruit. Plant physiol 110: 531-537.
Sabehat S, Lurie S, Weiss D (1998) Expression of small heat-shock proteins at low temperature. Plant Physiol 117: 651-658.
Saez-Vasquez J, Raynal M, Delseny M (1995) A represend cold-inducible transcript encodes a phosphoenopyruvate carboxykinase. Plant Physiol 109: 611-618.
Sambrook J, Fritxch, EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, N.Y.
Sanger F, Nicklen S, Coulson AR (1977) DNA sequence with chain-terminating inhibitor. Proc Natl Acad Sci USA 74: 5463-5467.
Schaffer MA, Fischer RL (1988) Analysis of mRNAs that accumulate in response to low temperature identifies a thiol protease gene in tomato. Plant Physiol 87: 431-436
Sikorska E, Kacperska-palaczA (1979) Phospolipid involvement in frost tolerance. Plant Physiol 47: 144-150.
Smolenska-Sym G , Kacperska A (1994) Phosphatidylinostiol metabolism in low temperature-affected winter iolseed rape leaves. Plant Physiol 91:1-8.
Soto A, Allona I, Collada C, Guevara MA, Casado R, Rodriguez CE, Aragoncillo C, Gomez L (1999) Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiology 120: 521-528.
Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Bio 84: 389-398.
Tsang EWT, Bowler C, Herouart D, Van Camp W, Villarroel R, Genetello C, Van Montagu M, Inze D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3: 783-792.
Vu, JCV, Gupta SK, Yelenosky G, Ku MSB (1995) Cold-induced changes in ribulose 1,5-bisphosphate carboxylase-oxygenase and phosphoenolpyruvate carboxcylase in citrus. Envir Exp Bot 35: 25-31.
Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120: 391-400.
Waters ER, Lee GJ, Vierling E (1995) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bio 47: 1-14.
Welch WJ, Feramisco JR (1985) Rapid purification of mammalian 70000 dalton stress proteins: affinity of the proteins for nucleotides. Mol Cell Bio 15: 1229-1237.
Xu Z, Gorwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388: 741-750.
Yeh CH, Chang PL, Yeh KW, Lin WC, Chen YM, Lin CY (1997) Expression of a gene encoding a 16.9 kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc Natl Acad Sci USA 94:10967-10972.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top