跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佩芳
研究生(外文):Pei-Fang Lee
論文名稱:大豆種子成熟蛋白基因在轉殖阿拉伯芥中之表現與調控
論文名稱(外文):The Expression and Regulation of Soybean GmPM Genes Encoding Seed Maturation Proteins in Transgenic Arabidopsis thaliana
指導教授:周德源
指導教授(外文):Teh-Yuan Chou
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:植物學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
中文關鍵詞:大豆啟動子成熟蛋白轉殖阿拉伯芥
外文關鍵詞:soybeanpromotermaturation proteintransgenicArabidopsis thaliana
相關次數:
  • 被引用被引用:6
  • 點閱點閱:769
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在種子發育過程中,有一類蛋白質會大量累積於種子成熟後期,並於種子萌芽後消失,故被稱為 LEA (late embryogenesis abundant ) 蛋白質,此類蛋白質也稱為種子成熟蛋白,在單子葉及雙子葉植物中皆已廣泛地被發表。大豆種子成熟蛋白GmPM殖系已陸續被定序出41個選殖株,在本文中,將對GmPM9之啟動子活性及GmPM1、GmPM2及GmPM8之蛋白質功能加以探討,以轉殖阿拉伯芥為策略,研究大豆種子成熟蛋白基因之調控與表現作用。在調控研究方面,將GmPM9之啟動子區域切割成不等長度的五個片段後,把這些片段構築於GUS (β-glucuronidase)基因上游,成為農桿菌(Agrobacterium tumefaciens)之轉殖載體,再轉殖入阿拉伯芥中,結果顯示 GUS 活性僅被偵測於轉殖阿拉伯芥之成熟種子及之幼苗之子葉與下胚軸部份。種子發育期間,各啟動子片段皆於開花十天後開始累積 GUS 活性於種子中,並在開花十四天後種子成熟時達到最高值。利用螢光定量分析顯示最長之啟動子區域 (-966 bp 至 +91 bp) 可獲得最高之GUS 表現值,而最短之啟動子片段 (-114 bp 至 +91 bp) 足以使報導基因表現於種子中。對轉殖植株施以 PEG、mannitol 及 NaCl 處理,可誘導 GUS 活性表現於葉片,但外加 ABA、低溫及傷害處理則無法誘導其表現。上述結果顯示 GmPM9 之啟動子具有種子專一性,適合將其利用於研究種子專一性之課題上。在蛋白質功能研究部分,則以 CaMV 35S 啟動子分別驅動 GmPM 蛋白質表現於轉型阿拉伯芥中,所得之轉型植株可持續表現 GmPM1、GmPM2 或 GmPM8 蛋白質,分別稱為 TAZ2、TAZ16 及 TAZ238 。以轉型阿拉伯芥測試其耐逆境之能力,得知其生長狀況及外表型與未轉型種子相同。以雜交方式使轉型阿拉伯芥能同時表現二或三種 GmPM 蛋白質於同一植株中,其抗逆境之能力亦與未轉型植株相同。以免疫金粒定位 GmPM 蛋白質之結果顯示,GmPM1 蛋白質表現於轉型阿拉伯芥之細胞質及細胞核中,GmPM2 蛋白質存在於細胞質中,而GmPM8 蛋白質則出現於細胞質及澱粉粒中。保存於4 ℃之 TAZ 種子經過四年後仍保有約9成之發芽率,而未轉型之種子及 TAZP 系列(見第一章)之種子則幾乎全數死亡,種子之存活與 GmPM 蛋白質之表現是否有關,仍需進一步之確認。
Late embryogenesis abundant (LEA) proteins are synthesized during the late stages of seed development, and have been widely reported in monocot and dicot plants. In order to understand the developmental regulation and protein function of the soybean GmPM genes encoding LEA proteins, we used the transgenic Arabidopsis as tools in this study. For developmental regulation, a series of fragments of the promoter region were fused to the β-glucuronidase (GUS) reporter gene (uirA), to an Agrobacterium transgenic vector, and transformed the resulting constructs (pZP966, pZP572, pZP510, pZP294 and pZP114) into Arabidopsis thaliana. GUS enzyme activities were detected only in mature seeds, and cotyledons and hypocotyls of seedlings in transgenic Arabidopsis containing any one of the five constructs; they were not detected in other tissues at different developmental stages. During seed development, GUS activity detected at 10 days after flowering (DAF) and increased rapidly to a maximum in the mature seeds at 14 DAF. The longest promoter construct (pZP966) enabled the transgenic plants to exhibit the highest GUS activity, whereas the shortest construct (pZP114) was sufficient to direct the expression of the GUS gene at a detectable level. These findings indicate that the promoter of GmPM9 can be used to express desired genes in seeds during late seed maturation. The expression of the GUS gene could be induced in the leaves of the transgenic plants by salt and desiccation, but not by ABA, cold and wounding treatment. For protein function study, the GmPM1, GmPM2 and GmPM8 are seed maturation proteins of soybean, which were introduced into Arabidopsis by vacuum transformation method independently. Expression of these GmPM genes were regulated by CaMV 35S promoter and the proteins could constitutive accumulate in transgenic Arabidopsis. Cellular localizations of GmPM proteins were detected by immunogold. GmPM1 proteins were found in both cytoplasm and nucleus, GmPM2 proteins were accumulated in cytoplasm and GmPM8 proteins were in cytoplasm and starch grains. The transgenic Arabidopsis were subjected to osmotic and salt stress, there were no difference in the phenotype between transgenic and untransformed plants. These results suggested that GmPM proteins were not sufficient to increase stress tolerance in transgenic Arabidopsis. The untransformed seeds stored at 4℃ for four years loss the germination ability, but the seeds of TAZ2, TAZ16 and TAZ238 stored at the same condition could germinate at high percentage, however, the correlation between GmPM proteins and seed longevity needs to be further examined.
封面
中文摘要
英文摘要
前人研究
第一章 大豆種子成熟蛋白基因GmPM9在阿拉伯芥中調控之研究
壹、前言
貳、材料與方法
參、結果
肆、討論
伍、圖表
第二章 大豆種子成熟蛋白在轉殖阿拉伯芥中之表現
壹、前言
貳、材料與方法
參、結果
肆、討論
伍、圖表
參考文獻
施明德.1994.大豆種子成熟蛋白基因表現之研究.國立臺灣大學農藝學研究所碩士論文。
國際種子檢查規則.中華民國八十四年六月.臺灣省政府農林廳編印。
Almoguera, C. and Jordano, J. 1992. Developmental and environmental concurrent expression in sunflower dry-seed-stored low-molecular-weight heat shock protein and Lea mRNAs. Plant Mol. Biol. 19: 781-792.
Arenas-Mena, C., Raynal, M., Borrell, A., Varoquaux, F., Cutanda, M. C., Stacy, R. A. P., Pages, M., Delseny, M. and Culianez-Macia, F. A. 1999. Expression and cellular localization of Atrab28 during Arabidopsis embryogenesis. Plant Mol. Biol. 40:355-363.
Baker, J. C., Steele, C. and Dure, III, L. 1988. Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol. Biol. 11: 277-291.
Bechtold, N., Ellis, J. and Pelletier, G. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. USA. 316: 1194-1199.
Bettey, M., Sinniah, U. R., Finch-Savage, W. E. and Ellis, R. H. 1998. Irrigation and seed quality development in rapid-cycling Brassica: accumulation of stress proteins. Annals. of Botany 82: 657-663.
Blackman, S. A., Wettlaufer, S. H., Obendorf, R. L. and Leopold, A. C. 1991. Maturation proteins associated with desiccation tolerance in soybean. Plant Physiol. 96: 868-874.
Blackman, S. A., Obendorf, R. L. and Leopold, A. C. 1992. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiol. 100: 225-230.
Block, A., Dangl, J. L., Hahlbrock, K. and Schulze-Lefert, P. 1990. Functional borders, genetic fine structure, and distance requirements of cis elements mediating light responsiveness of the parsley chalcone synthase promoter. Proc. Natl. Acad. Sci. USA. 87: 5387-5391.
Bostock, R. M. and Quatrano, R. S. 1992. Regulation of Em gene expression in rice: interaction between osmotic stress and abscisic acid. Plant Physiol. 98: 1356-1363.
Burow, M. D., Sen, P., Chlan, C. A. and Muria, N. 1992. Developmental control of the β-phaseolin gene requires positive, negative, and temporal seed-specific transcriptional regulatory elements and a negative element for stem and root expression. Plant J. 2:537-548.
Busk, P. K., Jensen, A. B. and Pagès, M. 1997. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J. 11: 1285-1295.
Bustos, M. M., Guiltinan, M. J., Jordano, J., Begum, D., Kalkan, F. A. and Hall, T. C. 1989. Regulation of β-glucuronidase expression in transgenic tobacco plants by an A/T rich, cis-acting sequence found upstream of a french bean β-phaseolin gene. Plant Cell 1: 839-853.
Bustos, M. M., Begum, D., Kalkan, F. A., Battraw, M. J. and Hall, T. C. 1991. Positive and negative cis-acting DNA domains are required for spatial and temporal regulation of gene expression by a seed storage protein promoter. EMBO J. 10: 1469-1479.
Chen, Z.-Y., Hsing, Y.-I., Lee, P.-F. and Chow, T.-Y. 1992. Nucleotide sequences encoding a soybean cDNA encoding an 18 kilodalton late embryogenesis abundant protein. Plant Physiol. 99: 773-774.
Choi, J. H., Liu, L. S., Borkird, C. and Sung, Z. R. 1987. Cloning of genes developmentally regulated during plant embryogenesis. Proc. Natl. Acad. Sci. USA 84: 1906-1910.
Calvo, E. S., Wurtle, E. S. and Shoemaker, R. C. 1997. Cloning, mapping, and analyses of expression of the Em-like gene family in soybean [Glycine max (L). Merr.]. Theor. Appl. Genet. 94: 957-967.
Close, T. J., Kortt, A. A. and Chandler, P. M. 1989. A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol. Biol. 13: 95-108.
Close, T. J. and Lammers, P. J. 1993. An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins. Plant Physiol. 101: 773-779.
Close, T. J., Fenton, R. D. and Moonan, F. 1993. A view of plant dehydrins using antibodies specific to the carboxyl terminal peptide. Plant Mol. Biol. 23: 279-286.
Cohen, A., Plant, A. L., Moses, M. S. and Bray, E. A. 1991. Organ-specific and environmentally regulated expression of two abscisic acid-induced genes of tomato. Nucleotide sequence and analysis of the corresponding cDNAs. Plant Physiol. 97: 1367-1374.
Cohen, A. and Bray, E. A. 1992. Nucleotide sequence of an ABA-induced tomato gene that is expressed in wilted vegetative organs and developing seeds. Plant Mol. Biol. 18: 411-413.
Cuming, A. C. and Lane, B. G. 1979. Protein synthesis in imbibing wheat embryos. Eur. J. Biochem. 99: 217-224.
Curry, J., Morris, C. F. and Walker-Simmons, M. K. 1991. Sequence analysis of a cDNA encoding a group 3 LEA mRNA inducible by ABA or dehydration stress in wheat. Plant Mol. Biol. 16: 1073-1076.
Curry, J. and Walker-Simmons, M. K. 1993. Unusual sequence of group 3 LEA (II) mRNA inducible by dehydration stress in wheat. Plant Mol. Biol. 21: 907-912.
Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N. and Sarhan, F. 1998. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10: 623-638.
Doyle, J. J., Doyle, J. L. and Hortorium, L. H. B. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
Donald, R. G. and Cashmore, A. R. 1990. Mutation of either G box or I box sequences profoundly affects expression of the Arabidopsis rbcS-1A promoter. EMBO J. 9: 1717-1726.
Dure III, L., Greenway, S. C. and Galau, G. A. 1981. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20: 4162-4168.
Dure III, L., Crouch, M., Harada, J., Ho, T.-H. D., Mundy, J., Quatrano, R. S., Thomas, T. and Sung, Z. R. 1989. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 12: 475-486.
Dure III, L 1993. Structural motifs in Lea proteins. In: Close, T. J. and Bray, E. A. (eds.), Plant responses to cellular dehydration during environmental stress, vol. 10. The American Society of Plant Physiologists, Rockville, M. D. pp.91-103.
Dure III, L. 1997. Lea proteins and desiccation tolerance of seeds. In Larkins, B. A. and Vasil, I. K. (eds.) Cellular and Molecular Biology of Plant Seed Development, pp. 525-543.
Eimert, K., Wang, S. M., Lue, W. L. and Chen J. 1995. Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell. 7: 1703-1712.
Ellerström, M., Stålberg, K., Ezcurra, I. and Rask, L. 1996. Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol. Biol. 32: 1019-1027.
Espelund, M., Saeboe-Larssen, S., Hughes, D. W., Galau, G. A., Larsen, F. and Jakobsen, K. S. 1992. Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J. 2: 241-252.
Espelund, M., De Bedout, J. A., Outlaw, W. H. and Jakobsen, K. S. 1995. Environmental and hormonal regulation of barley late-embryogenesis- abundant (Lea) mRNAs is via different signal transduction pathways. Plant Cell Environ. 18: 943-949.
Fiedler, U., Filistein, R., Wobus, U. and Bäumlein, H. 1993. A complex ensemble of cis-regulatory elements controls the expression of a Vicia faba non-storage seed protein gene. Plant Mol. Biol. 22: 669-679.
Finch-Savage, W. E., Pramanik, S. K. and Bewley, J. D. 1994. The expression of dehydrin proteins in desiccation-sensitive (recalcitrant) seeds of temperate trees. Planta 193: 478-485.
Finkelstein, R. R. 1993. Abscisic acid-insensitive mutations provide evidence for stage-specific signal pathways regulating expression of an Arabidopsis late-embryogenesis-abundant (lea) gene. Mol. Gen. Genet. 238: 401-408.
Franz, G., Hatzopoulos, P., Jones, T. J., Krauss, M. and Sung, Z. R. 1989. Molecular and genetic analysis of an embryonic gene, DC8, from Daucus carota L. Mol. Gen. Genet. 218: 143-151.
Galau, G. A., Hughes, D. W. and Dure III, L. 1986. Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol. Biol. 7: 155-170.
Galau, G. A. and Close, T. J. 1992. Sequences of the cotton group 2 LEA/RAB/dehydrin encoded by Lea3 cDNA. Plant Physiol. 98: 1523-1525.
Galau, G. A., Wang, H. Y. C. and Hughes, D. W. 1992. Cotton Lea4(D19) and LeaA2(D132) group 1 Lea genes encoding water stress-related proteins containing a 20-amino acid motif. Plant Physiol. 99: 783-788.
Gaubier, P., Raynal, M., Hull, G., Huestis, G. M., Grellet, F., Arenas, C., Pagès, M. and Delseny, M. 1993. Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Mol. Gen. Genet. 238: 409-418.
Gilmour, S. J., Artus, N. N. and Thomashow, M. F. 1992. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol. Biol. 18: 13-21.
Godoy, J. A., Pardo, J. M. and Pintor-Toro, J. A. 1990. A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern. Plant Mol. Biol. 15: 685-705.
Goday, A., Alba, M. M., Torrent, M. and Pages, M. 1993. Immunolocalization of RAB-17 (Lea D-11 family) in maize embryo cells. In: Close, T. J. and Bray, E. A. (eds.), Plants responses to cellular dehydration during environmental stress, vol. 10. The American Society of Plant Physiologists, Rockville, M. D. pp.267.
Goldberg, R. B., Barker, S. J. and Perez-Grau, L. 1989. Regulation of gene expression during plant embryogenesis. Cell 56: 149-160.
Gosti, F., Bertauche, N., Vartanian, N. and Giraudat, J. 1995. Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol. Gen. Genet. 246: 10-18.
Guerrero, F. D., Jones, J. T. and Mullet, J. E. 1990. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol. Biol. 15: 11-26.
Guiltinan, M. J., Marcotte, W. R. and Quatrano, R. S. 1990. A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267-271.
Guo, W., Ward, R. W. and Thomashow, M. F. 1992. Characterization of a cold-regulated wheat gene related to Arabidopsis cor47. Plant Physiol. 100: 915-922.
Hanahan, L. 1985. Techniques for transformation of E. coli. In Molecular Cloning. vol. I, chapter 6. pp.109-135. IRL. Press Ltd. Oxford, U. K.
Harada, J. J., De Lisle, A. J., Baden, C. S. and Crouch, M. L. 1989. Unusual sequence of an abscisic acid-inducible mRNA which accumulates late in Brassica napus seed development. Plant Mol. Biol. 12: 395-401.
Hatzopoulos, P., Fong, F. and Sung, Z. R. 1990. Abscisic acid regulations of Dc8, a carrot embryonic gene. Plant Physiol. 94: 690-695.
Holsters, M.,de-Waele, D., Depicker, A., Messens, E., van-Montagu, M. and Schell, J. 1978. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163: 181-187.
Hong, B., Uknes, S. J. and Ho, T.-H. D. 1988, Cloning and Characterization of a cDNA encoding a mRNA rapidly induced by ABA in barley aleurone layers. Plant Mol. Biol. 11: 495-506.
Hong, B., Barg, R. and Ho, T.-H. D. 1992. Developmental and organ-specific expression of an ABA-and stress-induced protein in barley. Plant Mol. Biol. 18: 663-674.
Hsing, Y.-I. C., Chen, Z.-Y. and Chow, T.-Y. 1992. Nucleotide sequences of a soybean complementary DNA encoding a 50-kilodalton late embryogenesis abundant protein. Plant Physiol. 99: 354-355.
Hsing, Y.-I. C. and Wu, S.-J. 1992. Cloning and characterization of cDNA clones encoding soybean seed maturation polypeptides. Bot. Bull. Acad. Sin. 33: 191-199.
Hsing, Y.-I. C., Chen, Z.-Y., Shih, M.-D., Hsieh, J.-S. and Chow, T.-Y. 1995. Unusual sequences of group 3 LEA mRNA inducible by maturation or drying in soybean seeds. Plant Mol. Biol. 29: 863-868.
Hull, G. A., Bies, N., Twell, D. and Delseny, M. 1996. Analysis of the promoter of an abscisic acid responsive late embryogenesis abundant gene of Arabidopsis thaliana. Plant Sci. 114: 181-192.
Imai, R., Moses, M. S. and Bray, E. A. 1995. Expression of an ABA-induced gene of tomato in transgenic tobacco during periods of water deficit. J. Exp. Bot. 46: 1077-1084.
Imai, R., Chang, L., Ohta, A., Bray, E. A. and Takagi, M. 1996. A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170: 243-248.
Iturriaga, G., Schneider, K., Salamini, F. and Bartels, D. 1992. Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol. Biol. 20: 555-558.
Jefferson, R. A., Kavanagh, T. A. and Bevan, M. W. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901-3907.
Kawagoe, Y. and Murai, N. 1992. Four distinct nuclear proteins recognize in vitro the proximal promoter of the bean seed storage protein β-phaseolin gene conferring spatial and temporal control. Plant J. 2: 927-936.
King, S. W., Joshi, C. P. and Nguyen, H. T. 1992. DNA sequence of an ABA responsive gene (rab 15) from water stressed wheat roots. Plant Mol. Biol. 18: 119-121.
Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Higashi, K., Satoh, S., Kamada, H. and Harada, H. 1992. Isolation and characterization of a cDNA that encodes ECP 31, an embryogenic-cell protein from carrot. Plant Mol. Biol. 19: 239-249.
Konieczny, A. and Ausubel, F. M. 1993. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4: 403-410.
Koster, K. L. and Leopold, A. C. 1988. Sugars and desiccation tolerance in seeds. Plant Physiol. 88: 829-832.
Kuhlemeier, C., Fluhr, R., Green, P. J. and Chua N.-H. 1987. Sequences in the pea rbcS-3A gene have homology to constitutive mammalian enhancers but function as negative regulatory elements. Genes Devel. 1: 247-255.
Lam, E., Kano-Murakami, Y., Gilmartin, P., Niner, B. and Chua, N.-H. 1990. A metal-dependent DNA —binding protein interacts with a constitutive element of a light-responsive promoter. Plant Cell 2: 857-866.
Lang, V. and Palva, T. E. 1992. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana(L.) Heynh. Plant Mol. Biol. 20: 951-962.
Lee, P.-F. , Chow, T.-Y., Chen, Z.-Y. and Hsing, Y.-I. C. 1992. Genomic nucleotide sequence of a soybean seed maturation protein GmPM9 gene. Plant Physiol. 100: 2121-2122.
Litts, J. C., Colwell, G. W., Chakerian, R. L. and Quatrano, R. S. 1987. The nucleotide sequence of a cDNA clone encoding the wheat Em protein. Nucleic Acids Res. 15: 3607-3618.
Litts, J. C., Colwell G. W., Chakerian, R. L. and Quatrano, R. S. 1991. Sequence analysis of a functional member of the Em gene family from wheat. DNA seq. 1: 263-274.
Litts, J. C., Erdman, M. B., Huang, N., Karrer, E. E., Noueiry, A., Quatrano, R. S. Rodriguez, R. L. 1992. Nucleotide sequence of the rice (Oryzae sativa) Em protein gene (Emp 1). Plant Mol. Biol. 19: 335-337.
Marcotte, W. R., Bayley, C. C. and Quatrano, R. S. 1988. Regulation of a wheat promoter by abscisic acid in rice protoplasts. Nature 335: 454-457.
Marcotte, W. R., Russell, S. H. and Quatrano, R. S. 1989. Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell. 1: 969-976.
McCubbin, W. D., Kay, C. M. and Lane, B. G. 1985. Hydrodynamic and optical properties of the wheat germ Em protein. Can. J. Biochem. Cell Biol. 63: 803-811.
McKendree, W. L. Jr., Paul, A. L., DeLisle, A. J. and Ferl, R. J. 1990. In vivo and in vitro characterization of protein interactions with the dyad G-box of the Arabidopsis Adh gene. Plant Cell 2: 207-214.
Michel, D., Salamini, F., Bartels, D., Dale, P., Baga, M. and Szalay, A. 1993. Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plant Craterostigma plantagineum. Plant J. 4: 29-40.
Michel, D., Furini, A., Salamini, F. and Bartels, D. 1994. Structure and regulation of an ABA- and desiccation-responsive gene from the resurrection plant Craterostigma plantagineum. Plnat Mol. Biol. 24: 549-560.
Moons, A., Bauw, G., Prinsen, E., Van-Montagu, M. and Van-Der-Straeten, D. 1995. Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol. 107: 177-186.
Morris, P. C., Kumar, A., Bowles, D. J. and Cuming, A. C. 1990. Osmotic stress and abscisic acid induce expression of the wheat Em genes. Eur. J. Biochem. 190: 625-630.
Murashige, T. and Skoog, K. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-479.
Mundy, J. and Chua, N. H. 1988. Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J. 7: 2279-2286.
Mundy, J., Yamaguchi-Shinozaki, K. and Chua, N. H. 1990. Nuclear proteins bind conserved elements in the abscisic acid responsive promoter of a rice rab gene. Proc. Natl. Acad. Sci. USA 87: 1406-1410.
Parra, M. M., del-Pozo, O., Luna, R., Godoy, J. A., and Pintor-Toro, J. A. 1996. Structure of the dehydrin tas14 gene of tomato and its developmental and environmental regulation in transgenic tobacco. Plant Mol. Biol. 32: 453-460.
Piatkowski, D., Schneider, K., Salamini, F. and Bartels, D. 1990. Characterization of five abscisic acid-responsive cDNA clones isolated from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol. 94: 1682-1688.
Pla, M., Goday, A., Vilardell, J., Gomez, J. and Pagès, M. 1989. Differential regulation of ABA-induced 23-25 kDa proteins in embryo and vegetative tissues of the viviparous mutants of maize. Plant Mol. Biol 13: 385-394.
Pla, M., Gomez, J., Goday, A. and Pagès, M. 1991. Regulation of the abscisic acid-responsive gene rab28 in maize viviparous mutants. Mol. Gen. Genet. 230: 394-400.
Pla, M., Vilardell, J., Guiltinan, M. J., Marcotte, W. R., Niogret, M. F., Quatrano, R. S. and Pagès, M. 1993. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28. Plant Mol. Biol. 21: 259-266.
Puupponen-Pimia, R., Saloheimo, M., Vasara, T., Ra, R., Gaugecz, J., Kurten, U., Knowles, J. K. C., Keranen, S. and Kauppinen, V. 1993. Characterization of a birch (Betula pendula Roth.) embryogenic gene, BP8. Plant Mol. Biol. 23: 423-428.
Raynal, M., Depigny, D., Cooke, R. and Delseny, M. 1989. Characterization of a radish nuclear gene expressed during late seed maturation. Plant Physiol. 91: 829-836.
Ried, J. L. and Walker-Simmons, M. K. 1993. Group 3 late embryogenesis abundant proteins in desiccation-tolerant seedlings of wheat (Triticum aestivum L.). Plant Physiol. 102: 125-131.
Rosenberg, L. A. and Rinne, R. W. 1986. Moisture loss as a prerequisite for seedling growth in soybean seeds (Glycine max L. Merr.). J. Exp. Bot. 37: 1663-1674.
Rosenberg, L. A. and Rinne, R. W. 1988. Protein synthesis during natural and precocious soybean seed (Glycine max [L.] Merr.) maturation. Plant Physiol. 87: 474-478.
Rouse, D. T., Marotta, R. and Parish, R. W. 1996. Promoter and expression studies on an Arabidopsis thaliana dehydrin gene. FEBS Lett. 381: 252-256.
Sambrook, J., Fritsch, E F. and Maniatis, T. 1989. Molecular Cloning:A laboratory manual. 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
Schneider, K., Wells, B., Schmelzer, E., Salamini, F. and Bartels, D. 1993. Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum Hochst. Planta 189: 120-131.
Shen, Q. and Ho, T. H. D. 1995. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7: 295-307.
Shen, Q., Zhang, P. and Ho, T. H. D. 1996. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in Barley. Plant Cell 8: 1107-1119.
Siddiqui, N. U., Chung, H. J., Thomas, T. L. and Drew, M. C. 1998. Abscisic acid-dependent and —independent expression of the carrot late-embryogenesis- abundant-class gene Dc3 in transgenic tobacco seedlings. Plant Physiol. 118: 1181-1190.
Skriver, K. and Mundy, J. 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 503-512.
Skriver, K., Olsen, F. L., Rogers, J. C. and Mundy, J. 1991. cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc. Natl. Acad. Sci. USA 88: 7266-7270.
Staiger, D., Kaulen, H. and Schell, J. 1989. A CACGTG motif of the Antirrhinum majus chalcone synthase promoter is recognized by an evolutionarily conserved nuclear protein. Proc. Natl. Acad. Sci. USA. 86: 6930-6934.
Stålberg, K., Ellerström, M., Ezcurra, I., Ablov, S. and Rask, L. 1996. Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta 199: 515-519.
Straub, P. F., Shen, Q. and Ho, T. H. D. 1994. Structure and promoter analysis of an ABA-and stress-regulated barley gene, HVA1. Plant Mol. Biol. 26: 617-630.
Swire-Clark, G. A. and Marcotte, W. R. 1999. The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol. Biol. 39: 117-128.
Thompson, E. W. and Lane, B. G. 1980. Relation of protein synthesis in imbibing wheat embryos to the cell-free translational capacities of bulk mRNA from dry and imbibing embryos. J. Biol. Chem. 225: 5965-5870.
Thomann, E. B., Sallinger, J., White, C. and Rivin, C. J. 1992. Accumulation of group 3 late embryogenesis abundant proteins in Zea mays embryos. Plant Physiol. 99: 607-614.
Towbin, H., Staehlin, T. and Gordon, J. 1979. Electrophoresis transfer of proteins from polyacrylamide gels to nitrocellulose sheets:Procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350-4354.
Ulrich, T. H., Wurtele, E. S. and Nikolau, B. J. 1990. Sequence of EMB-1, an mRNA accumulating specifically in embryos of carrot. Nucleic Acids Res. 18: 2826.
Vilardell, J., Goday, A., Freire, M. A., Torrent, M., Martinez, M. C., Torne, J. M. and Pages, M. 1990. Gene sequence, developmental expression and protein phosphorylation of RAB 17 in maize. Plant Mol. Biol. 14: 423-432.
Vilardell, J. Mundy, J., Stilling, B., Leroux, B., Pla, M., Freyssinet, G. and Pages, M. 1991. Regulation of the maize rab 17 gene promoter in transgenic heterologous systems. Plant Mol. Biol. 17: 985-993.
Vivekananda, J., Drew, M. C. and Thomas, T. L. 1992. Hormonal and environmental regulation of the carrot lea-class gene Dc3. Plant Physiol. 100:576-581.
Williams, B. and Tsang, A. 1991. A maize gene expressed during embryogenesis is abscisic acid-inducible and highly conserved. Plant Mol. Biol. 16: 919-923.
Williamson, J. D. and Quatrano, R. S. 1988. ABA-regulation of two classes of embryo-specific sequences in mature wheat embryos. Plant Physiology 86: 208-215.
Wu, S. J. and Zhu, J. K. 1996. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8: 617-627.
Xu, P., Duan, X., Wang, B., Hong, B., Ho, T. H. D. and Wu, R. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249-257.
Yamaguchi-Shinozaki, K., Mundy, J. and Chua, N. H. 1989. Four tightly linked rab genes are differentially expressed in rice. Plant Mol. Biol. 14: 29-39.
Yamaguchi-Shinozaki, K., Koizumi, M., Urao, S. and Shinozaki, K. 1992. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol. 33: 217-224.
Yamaguchi-Shinozaki, K. and Shinozaki, K. 1993. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol. Gen. Genet. 236: 331-340.
Yang, H., Saitou, T., Komeda, Y., Harada, H. and Kamada, H. 1996. Late embryogenesis abundant protein in Arabidopsis thaliana homologous to carrot ECP31. Physiol. Plant 98: 661-666.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top