跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 14:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉信良
研究生(外文):Hsing Lange Liu
論文名稱:流蘇細胞懸浮培養生長發育及其pH變化之特性
論文名稱(外文):The growth, development and pH change in cell suspension culture of fringe tree (Chionanthus retusus Lindl.)
指導教授:許圳塗許圳塗引用關係
指導教授(外文):Chou Tou Shii
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:82
中文關鍵詞:流蘇細胞懸浮培養生長發育酸鹼度
外文關鍵詞:fri nge treecellsuspension culturegrowthdevelopmentpH
相關次數:
  • 被引用被引用:6
  • 點閱點閱:325
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
流蘇懸浮細胞生長於含1MG/L 2,4-D之MS基本培養基?,其生長發育過程並非同步化的進行,且呈現有優勢族群及隨生長變遷的現象。混合生長型之細胞,依優勢族群生長細胞型態可區分成:游離單細胞至多胞期、團胞期、原球狀期、球狀期、增大期、變形期、重組期及釋放期等八個發育期。並可依其生長型態及特性,將其歸納為分裂旺盛的增生相,具原表皮構造的球體相,及經逆分化作用增殖與釋放細胞或細胞群的生殖相等三個生長相。懸浮細胞不同發育相的生長速率,依細胞沈積體估算,以原球狀期者及球體相者較高,一繼代(10天間隔)之細胞增生量各為0.38 x 10及0.34 x 10。
流蘇懸浮細胞之生長周期,可以區分為二種模式或三種途徑進行循環生長。生長週期呈2至5個月的變化,其因細胞胚性潛力、細胞生殖模式及循環生長途徑等因素之而異。細胞初始培植密度、繼代培養基更新比例及繼代頻率等因子,會影響流蘇懸浮細胞培養之生長發育。流蘇懸浮細胞維持50 ml培養液含有2 ~ 3 ml細胞量、培養基以舊液:新液為1:1 ~ 1:4的比例更新,每十天繼代一次的頻率,皆有助於長期維持細胞較佳的生長勢。而pH值3.2 ~ 6.2範圍之培養基,對流蘇懸浮細胞的繼代生長並無明顯之影響;Auxin-free培養基,則影響培養之細胞族群的生長型態及循環生長週期。
流蘇懸浮細胞胚性潛力檢定,以原球狀期及球狀期之細胞團接種於再生培養基其組成為含0.4 mg/l NA、45 g/l sucrose及2.5g/l gelrite,可獲得快速大量的體胚。平板培養後起始接種體,先細胞分裂,形成明顯可見的黃色細胞團,再進一步進行體胚發生。流蘇體胚發生的形態發育步驟為原胚期、球狀胚期、心臟胚期、魚雷胚期、子葉胚期。
流蘇懸浮細胞生長發育期之胞外pH值,呈現高pH調變,其,增生相為5.3±0.3,球體相為5.6±0.3,生殖相初期為5.35±0.3,後期隨釋放途徑不同而異,循環生長途徑二會自調至5.1,循環生長途徑三則會自調至6.1。呈現高pH調變,其變域範圍為在4.7 ~ 6.8。正常的細胞系在長期繼代培養下,其pH值大多會維持在5.0以上。劣變的細胞系,其pH值在長期繼代培養後,會逐漸酸化至4.2左右。推測pH 4.7 ~ 5.0為流蘇細胞活力的緩衝區,細胞存活則胞外pH值會回復至5.0以上,劣變死亡的胞外pH值會持續低於4.7。
經流蘇胚性懸浮細胞繼代培養世代胞外pH之變化模式,可將其區分為快速反應期及自調反應期二階段,快速反應期為繼代後1 ~ 2小時內pH值快速上升,並在30小時內下降,接自調反應期,則呈現緩慢調昇pH值。進行繼代培養可衝擊及維持懸浮細胞重複胞外pH如前之變化模式,而維持胚性循環生長。若細胞失去胚性或發生劣變,繼代培養後則無此急速上升下降波動變化及自調現象。2,4-D會影響快速反應期的發生與否,但自調反應期則非由2,4-D所控制。另外,以一般pH meter測量流蘇懸浮細胞之胞外pH值變化趨向,亦會隨細胞接種量之增加而提高的趨勢,但不受繼代培養基初始調控pH位階之影響。
The embryogenic suspension cells of fringe tree (Chionanthus retusus Lindl.) was amprised of heterogenous population. According predominant cell population, which could be discriminated into eight developmental stages, including free cells and cell cluster, cell mass, pro-globular body, globular body, enlarged body, deformed body reorganization body and releasing propagale stages. The eight developmental stages could be epitomized as three develop mental phases, including the proliferation phase was vigorous cell division and developed into polar or apolar cell musses, the globularization phase was characterized with dermal structure, and the reproduction phase was directly or indirectly releasing propagules. Measuring cell packing volume (CPV) in-dicated that the pro-globular body stage and globularization phase was higher growth rate with 10 days time increase in each subculture generation.
There are two models or three pathways for maintenance and recyclic growth of embryogenic cell culture. The duration of cyclic growth varied in the range 2 ~ 5 months dependent growth phases, refresh medium ratio and sub-culture duration. While the conditional medium:fresh medium of 1:1 ~ 1:4 ratio, and 10 days interval of subculture, would maintain embryogenic cell growth vigorously. The growth type and cyclic pathway were affected by cells exogenous auxin.
The assay of embryogenic potentiality of suspension cells was conducted on SH median supplemented with 0.4 mg/l NAA, 45 g/l sucrose and 2.5 g/l gelrite. If was demonstrated that the cell population of pro-globular body stage and globular body stage showed higher competence of somatic embryogenesis and regenerated an amount of somatic embryos quickly.
The extracellular pH value associated of the three growth phases was measured at the end of subculture generation. The proliferation phase showed pH 5.3±0.3, the globulization phase indicated pH 5.6±0.3 and the reproduction phase was pH 5.35±0.3. The normal cell line''s pH values arose above 5.0 under long-term subculture. The abnormal cell population downgraded to 4.2. It is suggested that the extracellular pH level may serried as indexing of cell growth vigor.
In the subculture generation, the extracellular pH change could be distinguished as rapid change and auto-regulated phases. The rapid rising occurred 1 ~ 2 hours after subculture, then drop to lower pH level by 30 hours. Thereafter, gradually auto-regulated to a higher level until the end of subculture generation, which was associated with growth phase.
內 容 目 次
誌 謝 Ⅰ
縮 寫 字 Ⅱ
內容目次 Ⅲ
圖 目 次 Ⅴ
表 目 次 Ⅸ
一、前 言 1
二、前人研究 3
(一)流蘇的組織培養及超低溫保存: 3
1.胚培養: 3
2.誘導結合子胚之體胚發生: 3
3.細胞懸浮培養及體胚發生: 4
4.細胞超低溫保存: 4
(二)細胞懸浮培養的生長發育: 5
1.懸浮細胞之生長發育及循環生長途徑: 5
2.懸浮細胞之生長分析: 6
3.懸浮細胞之胚性潛力: 6
(三)細胞懸浮培養之pH變化: 7
1.胞內pH值變化: 7
2.胞外pH值變化: 8
三、材料與方法 10
(一)植物材料: 10
(二)流蘇細胞懸浮培養系統之建立: 10
1.誘導胚性癒合組織: 10
2.細胞懸浮培養: 10
3.懸浮細胞增生培養: 10
4.生胚平板培養: 11
(三)流蘇懸浮細胞之生長發育: 11
1.流蘇懸浮細胞生長發育型態之觀察: 11
2.流蘇懸浮細胞循環生長途徑的觀察與分析: 11
3.流蘇懸浮細胞之生長分析: 11
4.流蘇懸浮細胞生長發育之影響因子試驗: 12
5.流蘇懸浮細胞發育期之胚性檢定: 13
(四)流蘇細胞培養pH變化之特性: 13
1.一般胞外pH值的測量與分析: 13
2.胞外pH值電腦監測系統: 13
3.流蘇懸浮細胞培養期間pH值之變化模式: 14
4.流蘇懸浮細胞胞外pH變化之影響因子試驗: 14
四、結 果 16
(一)流蘇細胞懸浮培養之生長發育: 16
1.流蘇懸浮細胞之生長發育期及其生長類型: 16
2.流蘇細胞懸浮培養之循環生長途徑及其週期: 18
3.流蘇懸浮細胞之生長分析: 19
4.流蘇懸浮細胞生長發育之影響因子: 20
5.流蘇胚性懸浮細胞胚性檢定及平板培養生長發育之形態變化: 22
(二)流蘇細胞懸浮培養pH變化之特性: 22
1.流蘇懸浮細胞生長發育期及發育相pH值變化範圍: 22
2.流蘇懸浮細胞繼代培養期間pH之變化模式: 23
3.流蘇懸浮細胞繼代培養期間pH變化之影響因子: 23
3.流蘇懸浮細胞生長自調之pH範圍: 25
五、討 論 26
(一)流蘇細胞懸浮培養之生長發育: 26
1.流蘇懸浮細胞之生長發育及影響因子之探討: 26
2.流蘇細胞懸浮培養之循環生長途徑及其週期: 27
(二)流蘇細胞懸浮培養pH變化之特性: 28
1.流蘇懸浮細胞培養期間pH變化之模式及影響因子之探討: 28
2.流蘇懸浮細胞生長發育期及發育相pH值之範圍: 30
3.流蘇懸浮細胞生長自調之pH範圍: 30
六、中文摘要 70
七、英文摘要 72
參 考 文 獻 74
參 考 文 獻
江舒君。1994。流蘇細胞懸浮培養之體胚發生及植株再生。國立台灣大學園藝學研究所碩士論文。67頁。
李阿嬌。1992。流蘇體外培養之體胚發生及植株之再生。國立台灣大學園藝學研究所碩士論文。64頁。
李梅蘭。1995。馬拉巴栗組織及細胞培養體胚誘導之探討。國立台灣大學園藝學研究所碩士論文。67頁。
何錦紋。1994。綠竹與無根萍之組織培養。國立台灣大學園藝學研究所博士論文。161頁。
吳雅婷。1997。香蕉及流蘇胚性細胞玻璃質化法超低溫保存之研究。國立台灣大學園藝學研究所碩士論文。86頁。
林錦蘭。1996。人參細胞懸浮培養。國立台灣大學園藝學研究所碩士論文。82頁。
邱寶玲。1971。低溫及GA處理打破流蘇上胚軸休眠之試驗。國立台灣大學園藝學系學士論文。
馬溯軒、許圳塗。1988。植物再生與繁殖及改良。園藝作物組織培養之應用研討會專集。1-18頁。
許圳塗、馬溯軒、蔡幸鈴、李阿嬌。1999。流蘇胚發育期胚芽與胚根之不同步休眠。植物種苗 1:19-34。
許圳塗、鍾仁彬。1998。香蕉胚性細胞懸浮培養自調酸化與生長發育相變化關係。行政院國家科學委員會專題研究計畫成果報告。8頁。
陳威臣、黃漢龍、陳忠川、蔡新聲。1997。當歸組織培養之研究 (Ⅲ) MS鹽類、蔗糖濃度、培養基形態及pH值對懸浮細胞形成體胚與體胚苗之影響。中華農學會報 183:79-87。
陳振光、馬寶焜、林順權、雷建軍。1995。園藝植物離體培養學。中國農業出版社。北京。207頁。
曾一真、劉麗飛。1996。生長素如何調控基因之表現。科學農業 44:220-225。
黃怡君、劉麗飛。1987。植物體胚形成的研究與應用。科學農業 35:297-303。
黃怡菁。1994。香蕉細胞懸浮培養及原生質體培養體胚誘導研究。國立台灣大學園藝學研究所博士論文。205頁。
黃怡菁。1999。香蕉AAA基因組華蕉系亞群集AAB品種胚性細胞懸浮培養之生長週期及循環生長特性。中國園藝 45:130-143。
蔡幸鈴、李阿嬌、馬溯軒、許圳塗。1992。流蘇未成熟胚培養及上胚軸休眠之克服。科學農業 40:331-332。
蔡佳蓉。1990。裸子植物多胚性體胚發生之研究。科學農業 38:310-314。
小島邦彥。1993。植物組織培養之榮養學。朝倉書店。東京。165頁。
Arrillaga, I., T. Marzo and J. Segura. 1992. Embryo culture of Fraxinus ornus and Sorbus domestica removes seed dormancy. HortScience 27:371.
Ammirato, P. V. 1984. Induction, maintenance and manipulation of develop-ment in embryogenic cell suspension culture. In:Vasil, I. K. (ed.) Cell Culture and Somatic Cell Genetics of Plants. Vol.ⅠLaboratory procedures and their application. p.139-151. Academic Press Inc. London.
Bridgen, M. P. 1994. A review of plant embryo culture. HortScience 29:1243-1246.
Brodelius, P. E. 1990. Transport and accumulation of secondary metabolites. In:H. J. J. Nijkamp, L.H.W. Van Der Plas, and J. V. Aartrijk (eds.) Progress in Plant Cellular and Molecular Biology. p. 567-575. Kluwer Academic, London.
Brummell, D. A. and J. L. Hall. 1987. Rapid cellular responses to auxin and the regulation of growth. Plant Cell Environ.10:523-543.
Butenko, R. G., A. K. Lipsky, N. D. Chernyak and H. C. Arya. 1984. Changes in culture medium pH by cell suspension cultures of Diodcorea deltoidea. Plant Sci. Lett. 35:207-212.
Chan, C. R. and R. D. Marquard. 1999. Accelerated propagation of Chionanthus virginicus via embryo culture. HortScience 34:140-141.
Cheng, C. L., D. F. Wetherell and D. K. Dougall. 1985. 4-Coumarate:CoA-ligase in wild carrot cell culture clones which accumulate different amounts of anthocyanin. In:K. H. Neumann, W. Barz, and E. Reinhard (eds.) Primary and Secondary Metabolism of Plant Cell Cultures. p.87-98. Springer-Vrlag, Berlin.
Choudhary, M. L. and C. K. Chin. 1995. Somatic embryogenesis in cell sus-pension culture of carnation (Dianthus caryophyllus L.). Plant Growth Regulat. 16:1-4.
Cousson, A., P. Toubart and K. T. T. Van. 1989. Control of morphogenetic pathways in thin cell layers of tobacco by pH. Can. J. Bot. 67:650-654.
Collin, H. A. and Sue Edwards. 1998. Plant Cell Culture. BIOS Scientific, Ltd. p.59-153.
Conner, T. W., V. H. Goekjian, P. R. LaFayette and J. L. Key. 1990. Structure and expression of two auxin-inducible genes from Arabidopsis. Plant Mol. Biol. 15:623-632.
Cowan, A. K., P. D. Rose and L. G. Horne. 1992. Dunaliella salina:A model system for studying the response of plant cells to stress. J. Exp. Bot. 257:1535-1547.
Dirr, M. A. 1990. Manual of Woody Landscape Plants:Their Identification , Ornamental Characteristics, Culture, Propagation and Uses. Stipes Publ. Co., Champaign, Ⅲ. (cited from Chan and Marquard, 1999)
Dirr, M. A. 1994. The fringe tree, spectacular for its variability in growth habit, leaf color and size. Nursery Manager, June, p. 24-26. (cited from Chan and Marquard, 1999)
Dirr, M. A. and C. W. Heuser, Jr. 1987. The Reference Manual of Woody Plant Propagation from Seed to Tissue Culture. Varsity press, Athens. (cited from Chan and Marquard, 1999)
Dodeman, V. L., G. Ducreux and M. Kreis. 1997. Zygotic embryogenesis ver-sus somatic embryogenesis. J. Exp. Bot. 313:1493-1509.
Escalant, J. V., C. Teisson and F. Cote. 1994 Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa spp.). In Vitro Cell Dev. Biol. 30:181-186.
Fagan, A. E. and M. A. Dirr. 1980. Fringetree - Ready to be propagated. Amer. Nurseryman. 152:14-15,114-117. (cited from Chan and Marquard, 1999)
Falkner, G., F. Horner, K. Werdan and H. W. Heldt. 1976. pH change in the cytoplasm of the blue-green alga Anacystis nidulanas caused by light-dependent proton flux into the thylakoid space. Plant Physiol. 58:717-718.
Felle, H. 1988. Short term pH-regulation in plant. Physiol. Plant. 74:583-591.
Felle, H. 1989. Chapter 6:pH as a second messenger in plants. In:W. F. Boss and D. J. Morre (eds.) Second Messengers in Plant Growth and Develop-ment. p 145-166. Alan R. Liss, Inc. New York.
Finer, J. J. 1994. Chapter 5:Plant regeneration via embryogenic suspension cultures, p.99-125. In:Dixon, R. A. and R. A. Gonzales. (eds.) Plant Cell Culture - A practical approach. 2nd. Oxford Univ. Press Inc., New York.
Frohnmenyer, H., A. Grabov and M.R. Blatt. 1998. A role for the vacuole in auxin-mediated control of cytosolic pH by Vicia mesophyll and guard cells. Plant J. 13:109-116.
Gehl K. A. and B. Colman. 1985 Effector external pH on the internal pH of Chlorella saccharophila. Plant Physiol. 77:917-921.
Gill, T. D. and F. L. Pogge. 1974. Chionanthus virginicus. In:Seeds of Woody Plants in the United States. USDA Agri. Handbook, No. 450 p.323-325.
Gogarten, J. P., J. Fichmann, Y. Braun, L. Morgan, P. Styles, S. L. Taiz, K. DeLapp and L. Taiz. 1992. The use of antisense mRNA to inhibit the tonoplast H+ ATPase in carrot. Plant Cell 4:851-864.
Goodchild, J. A. and C. V. Givan. 1990 Influence of ammonium and extra-cellular pH on the amino and organic acid contents of suspension culture cells of Acre pseudoplatanus. Physiol.plant. 78:29-37.
Greger, M., J. E. Tillberg and M. Johansson. 1992. Aluminum effects on Scenedesmus obtusiusculus with different phosphorus satus.Ⅱ. Growth, photosynthesis and pH. Physiol. Plant. 84:202-208.
Gupta, P. K. and D. J. Durzan. 1986. Somatic polyembryogenesis from callus of mature sugar pine embryos. Bio/technology 4:643-645.
Herzbeck, H. and W. Husemann. 1985. Photosynthetic carbon metabolism in photoautotrophic cell suspension cultures of Chenopodium rubrum L. In:K. H. Neumann, W. Barz and E. Reinhard (eds.) Primary and Secondary Metabolism of Plant Cell Cultures. p.15-23. Springer-Vrlag, Berlin.
Humphreys, T. 1982. Cytoplasmic pH of maize scutellum cells. Phytochemistry 21:2165-2171.
Husemann, W., R. Callies and D. Leibfritz. 1992. External pH modifies the intracellular pH and the mode of photosynthetic CO2-assimilation in photoautotrophic cell suspension cultures of Chenopodium rubrum L. Bot. Acta 105:116-120.
Kameya, T. 1983. Studies on plant cell fusion by dextran:effect of pH, in-organic salts and electrical stimulus. Cytologia. 48:873-878.
Katz, A., M. Bantal, H. Degani and M. Avron. 1991. In vitro pH regulation by a Na+ /H+ antiporter in the halotolerant alga Dunaliella salina. Plant Physiol. 96:110-115.
Krikorian, A. D. 1996. Strategies for "Minimal growth maintenance" of cell cultures: A perspective on management for extended duration experi-mentation in the microgravity environment of a space station. Bot. Rev. 62:41-108.
Kropf, D. L. 1997. Induction of polarity in fucoid zygotes. Plant Cell 9:1011-1020.
Kropf, D.L., C. A. Henry and B. C. Gibbon. 1995. Measurement and manipulation of cytosolic pH in polarizing zygotes. Eur. J. Cell Biol. 68:297-305.
Kropf, D. L., J. R. Jordan, V. W. Allen and B. C. Gibbon. 1992. Cellular po-larity in Pelvetia zygotes:Studies of intracellular pH and division alignment. Curr. Top. Plant Biochem. Mol. Physiol. 11:143-152.
Kurkdjian, A. and J. Guern. 1989. Intracellular pH:measurement and im-portance in cell activity. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 40:271-303.
Lazzeri, P. A., D. F. Hildebrand and G. B. Collins. 1987. Soybean somatic embryogenesis:Effects of nutritional, physical and Chemical factors. Plant Cell Tiss. Org. Cult. 10:209-220.
Leifert, C., S. Pryce, P. J. Lumsden and W. M. Waites. 1992. Effect of medium acidity on growth and rooting of different plant species growing in vitro. Plant cell Tiss. Org. cult. 30:171-192.
Liebl, R. A., U. B. Zehr and P. H. Teyker. 1992. Influence of nitrogen form on extracellular pH and bentazon uptake by cultured soybean (Glycine max) cells. Weed Sci. 40: 418-423.
Litz, R. E. and D. J. Gray. 1992. Organogenesis and somatic embryogenesis. Biotechol-Agric. Wallingford, Oxford,:CAB Internation. (8) p. 3-34.
Litz, R. E. and D. J. Gray. 1995. Somatic embryogenesis for agricultural improvement. World J. Microbiol Biotech. 11:416-425.
Lulsdorf, M. M., T. E. Tautorus, S. I. Kikcio and D. I. Dunstan. 1992. Growth parameters of embryodebic suspension cultures of interior spruce (Picea glauca-engelmannii complex) and black spruce (Picea mariand Mill.) Plant Sci. 82:227-234.
Nicholson, R. 1990. The fringe tree and its far-flung cousins. Arnoldia 50:24-31. (cited from Chan and Marquard, 1999)
Marsolais, A. A., D. P. M. Wilson and M. J. Tsujita. 1991. Somatic embryo-genesis and artificial seed production in Zonal (Pelargonium x hortorum) and Regal (Pelargonium x domesticum) geranium. Can. J. Bot. 69:1188-1193.
Martin, S. M. and D. Rose. 1976. Growth of plant cell (Ipomea) suspension cultures at controlled pH levels. Can. J. Bot. 54:1264-1270.
McDonald, K. A. and A. P. Jackman. 1989. Bioreactor studies of growth and nutrient utilization in alfalfa suspension cultures. Plant Cell Rep. 8:455-458.
Minocha, S. C. 1987. pH of medium and the growth and metabolism of cells in culture. In:J. M. Bonga, and D. J. Durzan (eds.) Cell and Tissue Culture in Forestry. Vol. 1. p.125-141. Kluwer Academic, London.
Moura, C. P. H., Viana, A. M. and Mantell, S. H. 1995 In vitro platelet re-generation of Ocotea catharinensis, and endangered Brazilian hardwood forest tree. Plant Cell Tiss. Org. Cult. 35:279-286.
Pichon, O. and M. O. Desbiez. 1994. Is cytoplasmic pH involved in the re-gulation of cell cycle in plan? Physiol. Plant. 92:261-265.
Redcay, S. and J. J. Frett. 1990. Germination of doubly dormant Chionanthus virginicus seeds. HortScience 25:627. (Abstr.)
Robinson, K. R. 1996. Fucoid zygotes germinate from their dark regions, not their brightest ones. Plant Physiol. 112:1401.
Rubery, P. H. 1987 Auxin transport. In:P. J. Davies, (ed.) Plant Hormones and Their Role in Plant Growth and Development. p.341-362. Dordrecht: Martinus Nijhoff.
Sarma, K. S., K. Maesto, T Hara and Y. Sonoda. 1990. Effect of agar addition on post-autoclave pH of the tissue culture media. Ann. Bot. 65:37-40.
Salzwedel, J. L., M. E. Daub and J. S. Huang. 1989. Effect of singlet oxygen quenchers and pH on the bacterially induced hypersensitive reaction in tobacco suspension cell cultures. Plant Physiol. 90:25-28.
Shang, X., J. Y. Huang, C. H. Haigler and N. L. Trolinder. 1991. Buffer capacity of cotton cells and effects of extracellular pH on growth and somatic embryogenesis in cotton cell suspensions. In Vitro Cell. Dev. Biol. 27:147-152
Shigeta, J., K. Sato and M. Mill. 1996. Effects of initial cell density, pH and dissolved oxygen on bioreactor production of carrot somatic embryos. Plant Sci. 115:109-114.
Skirvin, R. M., M. C. Chu, M. L. Mann, H. Young, J. Sullivan and T. Fermanian. 1986. Stability of tissue culture medium pH as a function of autoclaving, time, and cultured plant material. Plant Cell Rep. 5:292-294.
Smith, D. L. and A. D. Krikorian. 1990a. Somatic embryogenesis of carrot in hormone-free medium:external pH control over morphogenesis. Amer. J. Bot. 77:1634-1647.
Smith, D. L. and A. D. Krikorian. 1990b. Somatic proembryo production from excised, wounded zygotic carrot embryos on hormone-free medium:evaluation of the effects of pH, ethylene and activated charcoal. Plant Cell Rep. 9:34-37.
Smith, D. L. and A. D. Krikorian. 1990c. pH control of carrot somatic em-bryogenesis. In:H. J. J. Nijkamp, L.H.W. Van Der Plas and J. V. Aartrijk (eds.) Progress in Plant Cellular and Molecular Biology. p. 567-575. Kluwer Academic, London.
Smith, D. L. and A. D. Krikorian. 1991. Growth and maintenance of and em-bryogenic cell culture of daylily (Hemerocallis) on hormone-free medium. Ann. Bot. 67:443-449.
Smith, D. L. and A. D. Krikorian. 1992. Low external pH prevents cell elongation but multiplication of embryogenic carrot cells. Physiol. Plant. 84:495-501.
Smith, F. A. and J. A. Raven. 1979. Intracellular pH and its regulation. Ann. Rev. Plant Physiol. 30:289-311.
Suzuki, M. 1995. Enhancement of anthocyanin accumulation by high osmotic stress and low pH in Grape cells (Vitis hybrids). J. Plant Physiol. 147:152-155.
Takeshige, K., F. Mitsumori, M. Tazawa and T. Mimura. 1992. Role of cyto-plasmic inorganic phosphate in light-induced activation of H+-pumps in the plasma membrane and tonoplast of Chara corallina. Planta 186:466-472.
Tautorus, T. E. and D. I. Dunstan. 1995. Scale-up of embryogebesis plant sus-pension culture in bioreactors. In:Jain, S., P. Gupta and R. Newton (eds.), Somatic Embryogensis in Woody Plants. p 265-292. Kluwer Academic, London.
Tautorus, T. E., M. M. Lulsdorf, S. I. Kikcio and D. I. Dunstan. 1992. Bioreac-tor culture of Piceamariana Mill (black spruce) and the species complex Picea glauca engelmannii. (interior spruce) somatic embryo. Growth parameter. Appl. Microb. Biotech. 38:46-51. (cited from Tautorus and Dunstan, 1995)
Torello, W. A., R Rufner and A. G. Symington. 1985. The ontogeny of somatic embryos from long-term callus cultures of red fescue. HortScience 20:938- 942.
Treat, W. J., C. R. Engler and E. J. Soltes. 1989. Culture of photomixotrophic soybean and pine in a modified fermentor using a novel impeller. Biotech. Bioeng. 34:1191-1202.
Veliky, I. A. and D. Rose. 1973. Nitrate and ammonium as nitrogen nutrients for plant cell cultures. Can. J. Bot. 51:1837-1844.
Vicient, C. M. and F. X. Martinez. 1998. The potential uses of somatic embryo-genesis in agroforestry are not limited to synthetic seed technology. Revista Brasileira de Fisiologia Vegetal 10:1-12.
Williams, E. G. and G. Maheswaran. 1986. Somatic embryogenesis:factors influencing coordinated behavior of cells as an embryogenic group. Ann. Bot. 57:443-462.
Xu, J. F., C. B. Liu, X. D. Fang and P. S. Feng. 1997. Effect of medium pH decrease on salidroside release and cell viability in cell suspension culture of Rhodiola sachalinensis. Acta Bot. Sinica 39:1022-1029.
Yang, Y. M., D. G. He and K. J. K. Scott. 1994. Cell aggregates in wheat suspension culture and their effects on isolation and culture of protoplasts. Plant Cell Rep 13:176-179.
Yasuda, .H., M. Nakajima, H. Masuda and T. Ohwada. 2000. Direct formation of heart-shaped embryos from differentiated single carrot cells in culture. Plant Sci. 152:1-6.
Yoshihara, T. and H. Hanyu. 1992. pH changes in culture medium with progress of growing stages, callus, multiple shoot and intact plant of strawberry. Acta Horti. 319:291-294.
Zhang, W. and S. Fuusaki. 1997. Regulation of anthocyanin synthesis in sus-pension cultures of strawberry cell by pH. Biotech. Lett. 19:1057-1061.
Zimmerman, J. L. 1993. Somatic embryogenesis:A model for early develop-ment in higher plants. Plant Cell 5:1411-1423.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top