|
[1] J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst, Solving linear systems on vector and shared memory computers, (SIAM, Philadelphia ,1991). [2] Y. Saad, Iterative methods doe sparse linear systems, (PWS Publishing Company, USA, 1996). [3] P. R. Amestoy, Factorization of large unsymmetric sparse matrices based on a multifrontal approach in a multiprocessor environment, Ph.D. Dissertation, L’Institut National Polytechnique de Toulouse, Toulouse, France, 1990. [4] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, (Oxford Science Publications, New York, 1989). [5] I. S. Duff, Direct Methods, Technical Report TR/PA/98/28, CERFACS, Toulouse, 1998. [6] M. T. Heath, E. G. Ng, and B. W. Peyton, Parallel algorithms for sparse linear systems, SIAM Review 33 (1991) 420-460. [7] I. S. Duff, Sparse matrices and their uses (Academic Press, New York and London, 1981). [8] I. S. Duff, R. G. Grimes, and J. G. Lewis, Users'' guide for the Harwell-Boeing sparse matrix collection (Release I), Technical Report TR/PA/92/86, Computer Science and Systems Division, Harwell Laboratory, Oxon, U.K., 1992. [9] J. A. George and J. W. H. Liu, Computer solution of large sparse positive definite systems (Prentice-Hall, Englewood Cliffs, NJ, 1981). [10] J. A. George, M. T. Heath, J. W. H. Liu, and E. G. Ng, Solution of sparse positive definite systems on a shared-memory multiprocessor, International Journal of Parallel Programming 15 (1986) 309-325. [11] J. W. H. Liu, Modification of the minimum degree algorithm by multiple elimination, ACM Transactions on Mathematical Software 11 (1985) 141-153. [12] J. A. George and J. W. H. Liu, An automatic nested dissection algorithm for irregular finite element problems, SIAM Journal on Numerical Analysis 15 (1978) 1053-1069. [13] M. Raghavachari and A. Rogers, A Study of the Effects of Ordering, Partitioning and Factorization Algorithms on Distributed Sparse Cholesky Factorization, Technical Report CS-TR-505-96, Department of Computer Science, Princeton University, Princeton, NJ, 1996. [14] G. A. Geist and E. G. Ng, Task scheduling for parallel sparse Cholesky factorization, International Journal of Parallel Programming 18 (1989) 291-314. [15] J. A. George and J. W. H. Liu, An optimal algorithm for symbolic factorization of symmetric matrices, SIAM Journal on Computing 9 (1980) 583-593. [16] W. Y. Lin and C. L. Chen, Minimum completion time reordering for parallel sparse Cholesky factorization, in: Proceedings of the ISCA 1993 International Conference on Parallel and Distributed Computing Systems, (Louisville, KY, USA, 1993) 339-343. [17] W. Y. Lin, Reordering of sparse matrices for parallel Cholesky factorization, Ph.D. Dissertation, Department of Computer Science and Information Engineering, National Taiwan University, 1994. [18] W. Y. Lin and C. L. Chen, Minimum communication cost reordering for parallel sparse Cholesky factorization, Parallel Computing 25 (1999) 943-967. [19] G. Alaghband and R. Schreiber, Optimal parallel solution of sparse triangular systems, SIAM Journal on Scientific Computing 14 (1993) 446-460. [20] E. Anderson and Y. Saad, Solving sparse triangular linear systems on parallel computers, International Journal of High Speed Computing 1 (1989) 73-95. [21] J. A. George, M. T. Heath, J. W. H. Liu, and E. G. Ng, Solution of sparse positive definite systems on a hypercube, Journal of Computational and Applied Mathematics 27 (1989) 129-156. [22] S. Parter, The use of linear graphs in Gaussian elimination, SIAM Review 3 (1961) 364-369. [23] D. J. Rose, Triangulated graphs and the elimination process, Journal of Mathematical Analysis and Applications 32 (1970) 597-607. [24] R. Schreiber, A new implementation of sparse Gaussian elimination, ACM Transactions on Mathematical Software 8 (1982) 256-276. [25] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM Journal on Matrix Analysis and Applications 11 (1990) 134-172. [26] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Transactions on Mathematical Software 9 (1983) 302-325. [27] I. S. Duff, Parallel implementation of multifrontal schemes 3 (1986) 193-204. [28] I. S. Duff, Multiprocessing a sparse matrix code on the Alliant FX/8, Journal of Computational and Applied Mathematics 27 (1989) 229-239. [29] I. S. Duff and J. K. Reid, The multifrontal solution on unsymmetric set of linear equations, SIAM Journal on Scientific and Statistical Computing 5 (1984) 633-641. [30] I. S. Duff, N. I. M. Gould, M. Lescrenier, and J. K. Reid, The multifrontal method in a parallel environment, Technical Report CSC211, Computer Science and System Division, AERE Harwell 1987. [31] I. S. Duff, Parallel algorithms for general sparse systems, in: Computer algorithms for solving linear algebraic equations - the state of the art, (NATO ASI Series, 1989) 277-297. [32] S. M. Hadfield, On the LU factorization of sequences of identically structured sparse matrices within a distributed memory environment, Ph.D. Dissertation, Department of Computer and Information Sciences, University of Florida, 1994. [33] J. W. H. Liu, Computational models and task scheduling for parallel sparse Cholesky factorization, Parallel Computing 3 (1986) 327-342. [34] J. A. George, M. T. Heath, J. W. H. Liu, and E. G. Ng, Sparse Cholesky factorization on a local-memory multiprocessor, SIAM Journal on Scientific and Statistical Computing 9 (1988) 327-340. [35] J. A. George, J. W. H. Liu and E. G. Ng, Communication results for parallel sparse Cholesky factorization on a hypercube, Parallel Computing 10 (1989) 289-297. [36] E. Zmijewski and J. Gilbert, A parallel algorithm for sparse symbolic Cholesky factorization on a multiprocessor, Parallel Computing 7 (1988) 199-210. [37] J. Dongarra and M. Fischer, Another Architecture: PVM on Windows 95/NT, in: Proceedings of the Cluster Computing Conference - CCC ''97 (Emory University Atlanta, Georgia, USA, 1997) 1-8. [38] J. W. H. Liu, The multifrontal method for sparse matrix solution: theory and practice, SIAM Review, 34 (1992) 82-109. [39] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon, Progress in sparse matrix methods for large linear systems on vector supercomputers, International Journal of Supercomputing Applications 1 (1987) 10-19. [40] R. E. Benner, G. R. Montry and G. G. Weigand, Concurrent multifrontal methods: shared memory, cache, and frontwidth issues, International Journal of Supercomputing Applications 1 (1987) 26-44. [41] J. K. Reid, TREESOLVE, a Fortran package for soling large sets of linear finite element equations, Technical Report CSS155, Computer Sciences and Systems Division, AERE Harwell, Oxfordshire, UK, 1984. [42] P. R. Amestoy and R. Tilch, Solvingthe compressible Navier-Stokes equations with finite elements using a multifrontal method, Impact of Computing in Science and Engineering, 1 (1989) 93-107. [43] A. R. Conn, N. I. M. Gould, M. Lescrenier and P. L. Toint, Performance of a multifrontal scheme for partially separable optimization, Technical Report 88/4, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada, 1989. [44] R. Lucas, Solving planar systems of equations on distributed-memory multiprocessor, Ph.D. Dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA, 1987. [45] A. Pothen and C. Sun, A mapping algorithm for parallel sparse Cholesky factorization, SIAM Journal on Scientific and Statistical Computing 14 (1993) 1253-1257. [46] A. Pothen and C. Sun, Distributed multifrontal factorization using clique trees, in: Proceedings of the Fifth Conference on Parallel Processing for Scientific Computing (SIAM, Philadelphia, 1992) 34-40. [47] K. Hwang, Advanced computer architecture: parallelism, scalability, programmability (McGraw-Hill, Singapore, 1993). [48] D. A. Carlson, Parallel processing of tree-like computations, in: Proceedings of the 4th International Conference on Distributed Computing Systems, (San Francisco, California, USA, 1984) 192-200. [49] C. Y. Tang and R. C. T. Lee, Optimal speeding up of parallel algorithms based upon the divide-and-conquer strategy, Information Sciences 32 (1984) 173-186. [50] Y. C. Chen, Z. C. Yeh and G. H. Chen, Using fewer processors to reduce time complexities of semigroup computations, Information Processing Letters 32 (1989) 89-93. [51] D. A. Carlson, Performing tree and prefix computations on modified mesh-connected parallel computers, in: Proceeding of International Conference on Parallel Processing, University Park, Pa., USA, (IEEE Computer Society Press, August 1985) 715-718. [52] R. Miller and Q. F. Stout, Varying diameter and problem size on mesh-connected computers, in: Proceeding of International Conference on Parallel Processing, University Park, Pa., USA, (IEEE Computer Society Press, August 1985) 697-699. [53] I. S. Duff, R. G. Grimes, and J. G. Lewis, Sparse matrix test problems, ACM Transactions on Mathematical Software 15 (1989) 1-14. [54] D. Morton, K. Wang, and D. O. Ogbe, Lessons learned in porting Fortran/PVM code to the Cray T3D, IEEE Parallel and Distributed Technology 3 (1995) 4-11.
|