Bastin, G., Lorent, B. Duque, C. and Gevers, M., “ Optimal Estimation of the Average Rainfall and Optimal Selection of Rainagae Locations”, Water Resources Research, 20(4), p463-470, 1984.
Chang F-J, Hwang Y-Y. 1999. A self-organization algorithm for real-time flood forecast. Hydrological Processes 13: 123-138.
Fiering, M.B., 1962, “On the use of correlation to augment data”, J. Am, Stat. Assoc, 57, pp.20-32
Fiering, M.B., 1967, “ Streamflow synthesis”, Harvard University Press. Cambridge, Massachusetts
Fukushima K. 1988. Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Networks 1: 119-130.
Hirsh, R.M., 1914, “ An evaluation of some record reconstruction techniques”, Water Resour. Res.,15.1781-1790
Hecht-Nielsen R. 1987. Counterpropagation network. Applied Optics. 26: 4979-4984.
Hecht-Nielsen R. 1990. Applications of counterpropagation network. Neural Networks 1: 131-139.
Hopfield JJ. 1982. Neural networks and physical systems with emergent collective computational abilities. Proceeding of the National Academy of Scientists 79:2554-2558.
J. Park, I. W. Sandberg, “Universal Approximation Using Radial-Basis-Function Networks”, Neural Computation, 3, pp.246-257, 1991.
Kohonen T. 1998. Self-organization and associative memory. 2nd edition, Springer-Verlag.: New York.
Martheron, G., Theory of Regionalized Variables and Its Applications, Ecole National Superieure des Mines, Paris, 1971.
Matals, N.C., & B. Jacobs, 1964, “ A correlation Procedure for augmentating hydrologic data”, U.S. Geol. Surv. Prof. Pap., 434-E, E1-E7
McCulloch WS, Pitts W. 1943. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5: 115-133.
Nie J. 1997. Nonlinear time-series forecasting: A fuzzy-neural approach. Neurocomputing 16: 63-76.
Nie J, Linkens DA. 1994. Fast self-learning multivariable fuzzy controllers constructed from a modified CPN network. International Journal on Control 60: 369-393.
Nowlan SJ, Hinton FE. 1992. Simplifying neural networks by soft weight-sharing. Neural Comput. 4: 473-491.
Riggs, H.C., 1972, “Low-flow investigations”, U.S. Geol. Surv. Tech. Water Resour. Invest., 4
Rumelhart DE, Hinton GE, Willianms RJ. 1986. Learning internal representation by error propagation. Parallel Distributed Processing 1: 318-362.
Shaw, E.M., “Hydrology in Practice”, Second Edition, Van Nostrand Reinhold, London, 1989.
Schalkoff RJ. 1997. Artificial neural network. McGraw-Hill: New York.
Shamseldin AY. 1997. Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology 199: 272-294.
Sajikumar N Thandaveswara BS. 1999. A non-linear rainfall-runoff model using an artificial network. Journal of Hydrology 216: 32-55.
S. Chen, S. A. Billings, and P. M. Grant, “Recursive hybird algorithm for non-linear system identification using radial basis function networks”, INT. J. Control, Vol.55, No.5, pp.1051-1070, 1992.
S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks”, IEEE Transactions on Neural Networks, Vol.2, No.2, pp.302-309, 1991.
S. Chen, C. F. N. Cowan, S. A. Billings, and P. M. Grant, “Parallel recursive prediction error algorithm for training layered neural networks”, INT. J. Control, Vol.51, No.6, pp.1215-1228, 1990.
Tianping Chen, and Hong Chen, “Approximation Capability to Function of Several Variables, Nonlinear Functionals, and Operators by Radial Basis Function Neural Networks”, IEEE Transactions on Neural Networks, Vol.6, No.4, pp.904-910, 1995.
Tianping Chen, and Hong Chen, “Universal Approximation to Nonlinear Operators by Neural Networks with Arbitrary Activation Functions and Its Application to Dynamical Systems”, IEEE Transactions on Neural Networks, Vol.6, No.4, pp.911-917, 1995.
Tomaso Poggio, and Federico Girosi, “Networks for Approximation and Learning”, Proceedings of the IEEE, Vol.78, No.9, pp.1481-1496, 1990.
Virdee, T. S., and Kottegoda, N. T., “A Brief Review of Kriging and Its Application Journal, 29(4), 1984.
Vassilas N, Tiran P, Ienne P. 1996. On modifications of Kohonen’s feature map algorithm for an efficient parallel implementation. IEEE : 932-937.
Weigend AS, Rumelhart DE, Huberman GA. 1991. Generalization by weight-elimination with application to forecasting. Advances in Neural Information Processing System 3: 875-882.
Yager RR. 1984. Approximate reasoning as a basis for rule based expert systems. IEEE Transactions on Systems, Man and Cybernetics 14: 636-673.
張斐章、黃源義,降雨在空間變異之研究,第八屆水利工程研討會,1996。
張斐章,孫建平,類神經網路及其應用於降雨─逕流過程之研究,中國農業工程學報,第43卷,第1期,pp.9-25,1997。張斐章,黃源義,梁晉銘,「模糊推論模式之建立及其應用於水文系統之研究」,中國農業工程學報,第39卷,第1期,pp.71-83,1993。陳莉、張斐章,1992,「巢狀超矩形學習模式於水資源系統之研究」,中國農業工程學報,Vol.38,No.3,pp.27-37。張斐章、胡湘帆、黃源義,「應用模糊類神經網路於流量推估之研究」,八十六年度農業工程研討會,pp.37-43,1997。
鄭克聲、葉惠中,雨量站網設計與評估─區域化變數理論之應用,第八屆水利工程研討會,1996,p113-122
鄭士仁,降雨深度最佳估計方法之研究及其應用於區域雨量站網之規劃設計,國立臺灣大學農工研究所碩士論文,1993。易任、黃文政,1984,擴展是卡門濾波理論應用於降雨逕流模式之研究-濁水溪流域,國立台灣大學農業工程研究所。
易任、王如意,1983,應用水文學,茂昌圖書有限公司。
易任、鄭克聲,1984,「脊迴歸分析法應用於河流水文特性及洪水流量預測之研究」,防災科技研究報告第73-03號。
易任、許榮庭,1987,「HEC-1洪水套裝程式檢討及修訂應用-複站洪水流量分析」,台灣水利,33卷4期。
吳戒秦,「利用具有地增近似功能的RBF類神經網路壓縮立體曲面的數據」,國立台灣大學電機工程研究所碩士論文,1996。吳茂正,「演化輻狀基底函數網路與非線性時間序列預測」,國立台灣大學資訊工程研究所碩士論文,1997。葉怡成,類神經網路模式應用與實作,儒林圖書有限公司,台北,1993。
大甲溪水力普查報告,經濟部能源委員會,HS-025-7504,民國75年6月。